跳到主要內容

臺灣博碩士論文加值系統

(44.201.92.114) 您好!臺灣時間:2023/03/31 11:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:薛宇翔
研究生(外文):HSUEH, YU-SHIANG
論文名稱:以電化學地質氧化技術進行實驗室尺度三氯乙烯污染地下水及現地模場重金屬污染土壤之整治
論文名稱(外文):Remediation of Trichloroethylene contaminated groundwater in lab-scale and heavy metals contaminated soil in field by ElectroChemical Geooxidation Technology
指導教授:袁菁袁菁引用關係
指導教授(外文):YUAN, CHING
口試委員:翁誌煌連興隆
口試日期:2020-09-24
學位類別:碩士
校院名稱:國立高雄大學
系所名稱:土木與環境工程學系碩士班
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:711
中文關鍵詞:電化學地質氧化技術現地模場三氯乙烯重金屬電動力系統模場標準作業流程
外文關鍵詞:ECGO systemIn-situTrichloroethyleneHeavy metalStandard Operating Procedures of ECGO system
相關次數:
  • 被引用被引用:0
  • 點閱點閱:98
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文以電化學地質氧化系統進行實驗室尺度三氯乙烯污染地下水及現地模場重金屬污染土壤整治之研究,於實驗室尺度,探討Fe/Al氧化電極表面微結構特性及進行三氯乙烯污染地下水整治試驗;再將電化學系統擴大尺度至重金屬污染土壤模場系統,評估重金屬處理效能及土壤鍵結型態對重金屬去除率之影響,同時建立現地本系統之現地標準作業流程 (SOP)。並進行電動力技術經濟成本分析,作為未來將電動力技術廣泛推廣至實場整治之參考依據。
以掃描電子顯微鏡 (SEM) 輔以EDS進行氧化電極表面拍攝及半定量分析,結果顯示金屬Fe之重量百分比介於70.2% ~ 70.7%之間;進一步藉由X-射線繞射進行晶格結構分析,發現於 (0 1 2)、(1 0 4)、(3 1 1)、(0 2 4) 及 (3 0 0) 皆有Fe2O3及Fe3O4之特徵峰值,由此確認Fe/Al氧化電極表面晶格為Fe2O3及Fe3O4。
電化學液相降解TCE試驗中,研究結果發現,於施加3.0 V/cm電位坡降、pH = 3.0環境下,分別添加10.0 mM SPS、12.0 mM PMS及2.0 mM KMnO4氧化劑,10.0 mM SPS及2.0 mM KMnO4氧化劑分別於整治5.0小時及3.0小時後達降解率99.9%以上,添加12.0 mM PMS氧化劑,於整治7.0小時後降解率達69.9%;進一步比較後發現,KMnO4氧化劑降解TCE僅3.0小時即達降解率99.9%,具最佳整治成效,因KMnO4氧化劑不經催化即有55.4%之整治效益,相較分別單獨添加SPS及PMS氧化劑,整治成效僅分別為10.3%及8.8%,SPS及PMS氧化劑較具長時間之電化學催化優勢,其中又以SPS氧化處理TCE成效較佳。
現地模場重金屬污染土壤整治試驗中,已建立電動力系統模場設置標準作業流程 (SOP)。整治試驗分別於蜂巢型及方型排列模組之陽、陰極端使用Al電極,施加0.6 V/cm之電位坡降、以地下水作為操作流質 (Test C1及D1),重金屬Cu、Zn、Cr、Ni及Pb去除率分別介於-6.6% ~ 43.7%;提高電位坡降至1.0 V/cm (Test C2及D2),重金屬離子去除率分別介於-24.8% ~ 6.1%,因受陰極井端釋出之氫氧根離子影響,整治成效下降;更換陽極端由Al惰性電極至Fe/Al氧化電極 (Test C3及D3),重金屬離子去除率分別介於1.5% ~ 31.9%,使用Fe/Al氧化電極作為陽極端電極,使土壤重金屬由強鍵結態轉化至弱鍵結態後移除;另更換由地下水至0.05 M乳酸 (Test C4及D4),重金屬離子去除率分別介於-23.4% ~ 24.5%,蜂巢型排列模組因電流密度變化趨勢較大致整治成效較方型排列模組高;分別再提升電位坡降及乳酸濃度至1.4 V/cm及0.30 M (Test C5及D5),重金屬離子去除率分別介於-30.1% ~ 39.4%,因實驗期間之降雨使乳酸受到稀釋而導致整治成效下降。
蜂巢型及方型排列模組於電動力試驗整治前弱鍵結型態比例分別介於0.0% ~ 14.2%及0.0% ~ 4.3%之間,研究結果發現,提升電位坡降及更換操作流質由地下水至乳酸,重金屬弱鍵結型態部分被移除,但陽極端電極更換至Fe/Al氧化電極後發現其最具弱鍵結型態轉化效益,蜂巢型及方型排列模組弱鍵結型態比例分別由0.0% ~ 12.4%及0.0% ~ 12.8%提升至13.2% ~ 19.2%及0.0% ~ 23.2%之間。
本論文經濟成本於實驗室尺度三氯乙烯污染地下水整治試驗中,處理成本約介於140.0 NTD/m3 ~ 97,740 NTD/m3之間,僅約Christopher (2009) 執行電動力技術成本之5.2% ~ 84.1%;現地模場重金屬污染土壤整治試驗中,處理成本約介於1,140.6 NTD/m3 ~ 9,701.8 NTD/m3之間,僅約Christopher (2009) 執行電動力技術成本之33.1% ~ 80.8%,顯示本研究具經濟優勢。

This study is focus on the remediation of Trichloroethylene (TCE) contaminated groundwater at lab-scale and heavy metal contaminated soil in the field site by ElectroChemical Geooxidation (ECGO) system. On a lab-scale, the surface microstructure characteristics of Fe/Al oxidation electrodes are investigated in remediation experiments for TCE contaminated groundwater. The ECGO system was expanded to the heavy metal contaminated soil field system to evaluate the effect of heavy metal treatment efficiency and soil bonding on the removal rate of heavy metals, and at the same time, a Standard Operating Procedure (SOP) of ECGO system is established. After completing the test, an analysis of the technical and economic cost of electric power technology will be carried out as a reference for the extensive promotion of electric power technology to the field renovation in the future.
The surface imaging and semi-quantitative analysis of the Fe/Al oxidation electrode are investigated by Scanning Electron Microscope (SEM) and EDS. Results showed that 70.2% ~ 70.7% of iron is coated on the electrode surface. The lattice structure was further analyzed by X-Ray Diffraction. The characteristic peak of Fe2O3 and Fe3O4 at (0 1 2), (1 0 4), (3 1 1), (0 2 4) and (3 0 0) are found, which confirms the surface lattice of iron are Fe2O3 and Fe3O4.
For TCE degradation in aqueous phase, the results found under an environment of 3.0 V/cm potential gradient and pH = 3.0, 10.0 mM SPS, 12.0 mM PMS and 2.0 mM KMnO4 oxidants, 10.0 mM SPS and 2.0 mM KMnO4 oxidants were added respectively. The degradation rate of SPS and KMnO4 oxidant reached more than 99.9% after 5.0 hours and 3.0 hours of remediation, and the degradation rate of PMS oxidants reached 69.9% after 7.0 hours of remediation. After further comparison, it was found that KMnO4 oxidant degraded TCE in only 3.0 hours. The rate of 99.9%, with the best remediation effect, because the KMnO4 oxidant has 55.4% remediation efficiency without catalysis. Compared with adding SPS and PMS oxidants separately, the remediation effect is only 10.3% and 8.8%, respectively. SPS and PMS oxidants are more effective. It has the advantages of long-term electrochemical catalysis. Among them, the effect of SPS oxidation treatment TCE is better.
A Standard Operating Procedure (SOP) of ECGO system in heavy metal contaminated site is established. For the model field setting of the electric power system has been established. The Al electrodes were used on the anode and cathode well of the honeycomb and square modules, applies a potential gradient of 0.6 V/cm, processing fluid was setting for groundwater (Test C1 and D1), the efficiency of heavy metals Cu, Zn, Cr, Ni and Pb is between -6.6% ~ 43.7%; increase of the potential gradient to 1.0 V/cm (Test C2 and D2), the removal rate of heavy metal are between -24.8% ~ 6.1%, due to the hydroxide ions were produced at the cathode well, reduce the effect of heavy metal remediation. The anode well is replaced from Al inert electrode to Fe/Al oxidation electrode (Test C3 and D3). The removal rate of heavy metal is between 1.5% ~ 31.9%. The Fe/Al oxidation electrode is used as the anode electrode to remove the heavy metals from strong bonding to weak bonding; the other is replaced from groundwater to 0.05 M lactic acid (Test C4 and D4), and the removal rate of heavy metals is between -23.4% ~ 24.5%, the honeycomb module has a higher remediation effect than the square module due to the greater change in current density; the potential gradient and the lactic acid concentration were increased to 1.4 V/cm and 0.30 M (Test C5 and D5), heavy metals removal rate was between -30.1% ~ 39.4%, and the lactic acid was diluted by the rainfall during the experiment, which led to a decrease in the treatment effect.
In the honeycomb and square module, the weak bonding of metals before ECGO experiments is in the range of 0.0% ~ 14.2% and 0.0% ~ 4.3%, respectively. Before the ECGO remediation, increase potential gradient and replace processing fluid from groundwater to lactic acid, the weak bonding are partially removed, but the anode electrode is replaced with Fe/Al oxidation electrode and found to have the weak bonding efficiency of form transformation, the proportion of weak bonding forms of honeycomb and square modules has been increased from 0.0% ~ 12.4% and 0.0% ~ 12.8% to 13.2% ~ 19.2% and 0.0% ~ 23.2%, respectively.
The treatment cost of TCE contaminated groundwater in this study is in the range of 140.0 NTD/m3 ~ 97,740 NTD/m3, which is only about 5.2% ~ 84.1% of Christopher (2009); furthermore, the treatment cost of heavy metal contaminated soil in the study is the range of 1,140.6 NTD/m3 ~ 9,701.8 NTD/m3, which is only about 33.1% ~ 80.8% of the cost of Christopher (2009). The result showed the ECGO technology is a practical technology for remediation of Chloride organic compounds and heavy metals with economic insensitive.

目錄 II
表目錄 X
圖目錄 XIII
摘要 1
ABSTRACT 3
第一章 前言 6
1.1研究緣起 6
1.2研究目的 9
1.3研究內容 9
第二章 文獻回顧 11
2.1含氯有機污染物來源及用途 11
2.2含氯有機污染物之特性及流佈 13
2.2.1三氯乙烯之物化特性 14
2.2.2三氯乙烯對環境及人體健康之影響 14
2.2.3三氯乙烯之環境/職業暴露因子 19
2.2.3.1環境暴露 19
2.2.3.2職業暴露 23
2.3含氯有機物整治技術 24
2.3.1物理處理 24
2.3.2生物處理 27
2.3.3高級氧化處理 29
2.3.3.1羥基自由基氧化機制 30
2.3.3.2過硫酸鹽氧化機制 33
2.3.3.3過錳酸鉀氧化機制 37
2.4含氯有機物之降解途徑 38
2.4.1還原脫氯 38
2.4.2共代謝 38
2.5環境關心之重金屬污染物 40
2.5.1重金屬污染物基本物化特性及其管制標準 40
2.5.2土壤重金屬之結合型態 44
2.6管制重金屬來源及流佈 48
2.6.1管制重金屬流佈 48
2.6.2管制重金屬對環境及人體健康之影響 52
2.7重金屬污染土壤整治技術 53
2.7.1土壤沖洗 (Soil Flushing) 53
2.7.2土壤淋洗 (Soil Washing) 58
2.7.3玻璃化法 (Vitrification) 59
2.7.4植生復育 (Phytoremediation) 60
2.7.5化學固化 (Chemical Immobilization) 61
2.8電化學地質氧化技術原理與機制 62
2.8.1處理機制 64
2.8.2電動力技術之影響因子 71
2.8.2.1 pH環境影響因子 71
2.8.2.2土壤成分影響因子 72
2.8.2.3電極材料影響因子 73
2.8.2.4電壓/電流影響因子 74
2.8.2.5共溶劑影響因子 75
2.8.2.6電極排列影響因子 75
2.9電動力技術應用於污染處理之研究 78
2.9.1實驗室尺度 78
2.9.2實場尺度 80
2.10電動力結合其他技術整治成效 82
2.10.1電動力結合植生復育法整治成效 83
2.10.2電動力結合化學氧化法整治成效 84
2.10.3電動力結合滲透性反應牆整治成效 86
第三章 研究方法 88
3.1研究架構 88
3.2實驗設備與材料 88
3.2.1儀器與設備 88
3.2.2實驗材料 90
3.3含氯有機物分析 92
3.3.1前處理 92
3.3.1.1低懸浮微粒 (LSS) 92
3.3.1.2高懸浮微粒 (HSS) 93
3.3.2氣相層析分析方法 93
3.4重金屬分析 94
3.4.1前處理 94
3.4.2土壤型態分析 (序列萃取) 94
3.4.3感應耦合電漿發射光譜儀 (ICP-OES) 分析方法 96
3.5 Fe/Al氧化電極製備及分析 96
3.5.1製備方法 96
3.5.1.1實驗室尺度電極 97
3.5.1.2實場尺度電極 98
3.5.2電極塗佈量分析 98
3.5.2.1實驗室尺度電極 99
3.5.2.2實場尺度電極 99
3.5.3電極之鐵型態分析 100
3.5.3.1總鐵分析 100
3.5.3.2亞鐵分析 100
3.6實驗室尺度三氯乙烯液相降解整治試驗 101
3.7電動力現地模組系統設計 103
3.7.1前置工程施作階段 103
3.7.2整治作業階段 104
3.7.3場址復原階段 105
3.8實場尺度重金屬污染土壤整治試驗 106
3.8.1試驗模場背景特性分析 106
3.8.2土壤採樣作業 108
3.8.3蜂巢型排列模組 108
3.8.4方型排列模組 108
3.9土壤基本性質分析 109
3.9.1土壤含水率 109
3.9.2土壤陽離子交換容量 (CEC) 110
3.9.3土壤pH值 110
3.9.4土壤有機質 111
3.9.5土壤界達電位 111
3.9.6土壤比表面積測定 112
3.10實驗室之品保/品管 112
第四章 結果與討論 114
4.1土壤基本特性 114
4.2 Fe/Al氧化電極塗佈量及特性分析 114
4.2.1電極塗佈量 116
4.2.2電極表面特性 117
4.2.2.1掃描電子顯微鏡/能量色散X-射線光譜分析 (SEM/EDS) 117
4.2.2.2 X-射線繞射分析 (XRD) 118
4.3實驗室尺度電化學液相降解TCE及其副產物分析 120
4.3.1過硫酸鈉 (Sodium Persulfate, SPS) 系統 120
4.3.1.1實驗結果及分析 122
4.3.1.2副產物分析 126
4.3.1.3降解動力學分析 130
4.3.2過一硫酸氫鉀 (PMS) 系統 132
4.3.2.1實驗結果及分析 135
4.3.2.2副產物分析 139
4.3.2.3降解動力學分析 143
4.3.3過錳酸鉀 (KMnO4) 系統 146
4.3.3.1實驗結果及分析 146
4.3.3.2副產物分析 150
4.3.3.3降解動力學分析 154
4.3.4氯離子及碳原子質量平衡 154
4.3.4.1氯離子分析 157
4.3.4.2碳原子分析 160
4.3.5小結 164
4.4電動力現地模場系統設計 168
4.4.1前置工程施作階段 168
4.4.1.1選址、現場勘查及地主整治意願評估 169
4.4.1.2土壤 (土壤污染場址) 或地下水污染 (地下水污染場址) 調查作業 170
4.4.1.3電動力技術適宜性評估 172
4.4.1.4電極排列模組設計及規劃 172
4.4.1.5地電阻測勘及整流器設計/製造 173
4.4.1.6整地及電極井設置作業 181
4.4.1.7電極安裝及架設 183
4.4.1.8電力系統架設/測試 184
4.4.2整治作業階段 187
4.4.2.1電動力技術整治 187
4.4.2.2電動力相關整治數值觀測/監測 187
4.4.2.3採樣作業 187
4.4.2.4電力系統維護 188
4.4.2.5數據分析及彙整 188
4.4.2.6整治成效及退場時機評估 189
4.4.3場址復原階段 189
4.5現地模場重金屬污染土壤整治試驗 189
4.5.1蜂巢型排列模組 190
4.5.1.1電流密度變化 191
4.5.1.2重金屬殘留濃度分佈 201
4.5.1.3重金屬處理效能分析 340
4.5.2方型排列模組 346
4.5.2.1電流密度變化 347
4.6.2.2重金屬殘留濃度分佈 358
4.5.2.3重金屬處理效能分析 495
4.5.3土壤重金屬鍵結型態分析 502
4.5.3.1蜂巢型排列模組 502
4.5.3.2方型排列模組 523
4.6經濟效益評估 544
4.6.1實驗室尺度三氯乙烯污染地下水 544
4.6.2實場尺度重金屬污染土壤 553
4.6.2.1前置工程施作階段及場址復原階段 553
4.6.2.2整治作業階段 556
4.6.2.3總整治成本分析 563
4.6.3與現行整治技術經濟效益比較 565
第五章 結論與建議 569
5.1結論 569
5.2建議 573
參考文獻 574
行政院環境保護署土壤及地下水整治網,網址:https://sgw.epa.gov.tw/public,查詢日期:2020/07/11。
行政院毒性化學災害防救查詢系統,網址:https://toxicdms.epa.gov.tw/,查詢日期:2019/12/08。
行政院環境保護署環境檢驗所,網址:https://www.epa.gov.tw/niea/A048BA729D1F7D58,土壤中重金屬檢測方法-王水消化法,NIEA S321.65B,查詢日期:2020/07/11。
袁菁 (2016) 長效性氧化電極進行複合污染場只整治及環境地工離心機模擬長期整治成效之研究 期末報告。行政院環境保護署 105年度土壤及地下水污染整治基金補助研究與模場試驗專案。
袁菁 (2020) 建立三維多向性電動力模場系統之優化研究 期末報告。行政院環境保護署 109年度土壤及地下水污染整治基金補助研究與模場試驗專案。
袁菁 (2017) 開發強效型複合金屬氧化電極現地整治技術應用於加油站污染土壤與地下水處理之評估研發計畫 期末報告。106年高雄市政府地方產業創新研發推動計畫 (地方型SBIR )。
袁菁 (2018) 電化學地質氧化技術與過硫酸鹽整合系統進行含氯有機物現地整治之研究 期末報告。行政院環境保護署 107年度土壤及地下水污染整治基金補助研究與模場試驗專案。
王乃寬 (2019) 電動力實地模場研究-探討受含氯有機物污染地下水整治及生物試劑傳輸。
陳彥圻 (2017) 研製Co-Fe/Al氧化電極結合過硫酸鹽土壤/地下水中三氯沙 (Triclosan) 降解效能之研究,碩士論文,國立高雄大學土木與環境工程學系。
張詠筌 (2014) 以Fe/Al複合金屬氧化電極整治布洛芬 (Ibuprofen) 污染土壤之研究,碩士論文,國立高雄大學土木與環境工程學系。
曾瀚緯 (2013) 模擬受二氯乙烯污染之地下水結合厭氧脫氯與好氧共代謝之生物復育研究,碩士論文,國立中興大學環境工程學系。
Acosta, J.A., Martinez-Pagan, P., Martinez-Martinez, S., Faz, A., Zornoza, R., Carmona, D.M. (2014) Assessment of environmental risk of reclaimed mining ponds using geophysics and geochemical techniques. J. Geochem. Explor. 147, 80-90.
Alan, M. and Kara, D. (2019a) Assessment of sequential extraction methods for the prediction of bioavailability of elements in plants grown on agricultural soils near to boron mines in Turkey. Talanta. 200, 41-50.
Alan, M. and Kara, D. (2019b) Comparison of a new sequential extraction method and the BCR sequential extraction method for mobility assessment of elements around boron mines in Turkey. Talanta. 194, 189-198.
Almeida, J. C., Cardoso, C. E. D., Tavares, D.S., Freitas, R., Trindade, T., Vale, C. and Pereira, E. (2019) Chromium removal from contaminated waters using nanomaterials-A review. Trac-Trend Anal. Chem. 118, 277-191.
Alshawabkeh, A.N., Gale, R.J., Ozsu-Acar, E. and Bricka, R.M. (1999) Optimization of 2-D Electrode Configuration for Electrokinetic Remediation. J. Soil. Contam. 8, 617-635.
Aucott, M., Namboodiripad, A., Caldarelli, A., Frank, K. and Gross, H. (2010) Estimated quantities and trends of cadmium, lead, and mercury in US municipal solid waste based on analysis of incinerator ash. Water Air Soil Poll. 206, 349-355.
Bahrami, H., Eslami, A., Nabizadeh, R., Mohseni-Bandpi, A., Asadi, A. and Sillanpää., M. (2018) Degradation of trichloroethylene by sonophotolytic-activated persulfate processes: Optimization using response surface methodology. J. Clean Prod. 198, 1210-1218.
Barba, S., López-Vizcaíno, R., Saez, C., Villaseñor, J., Cañizares, P., Navarro, V. and Rodrigo, M.A. (2018) Electro-bioremediation at the prototype scale: What it should be learned for the scale-up. Chem. Eng. J. 334, 2030-2038.
Barton, C. (2014) Trichloroethylene. Encyclopedia of Toxicology. 4, 827-830.
Beeman, R.E. and Bleckmann, C.A. (2002) Sequential anaerobic-aerobic treatment of an aquifer contaminated by halogenated organics: field results. J. Contam. Hydrol. 57, 147-159.
Bennett, P., Gandhi, D., Warner, S. and Bussey, J. (2007) In situ reductive dechlorination of chlorinated ethenes in high nitrate groundwater. J. Hazard. Mater. 149, 568-573.
Brown, T.M., Macdonald, R.W., Muir, D.C.G. and Letcher, R.J. (2018) The distribution and trends of persistent organic pollutants and mercury in marine mammals from Canada's Eastern Arctic. Sci. Total Environ. 618, 500-517.
Cai, Z.P., DOREN, J.V., Fang, Z.Q. and Li, W.S. (2015) Improvement in electrokinetic remediation of Pb-contaminated soil near lead acid battery factory. T. Nonferr. Metal Soc. 25, 3088-3095.
Chang, J.H., Dong, C.D. and Shen, S.Y. (2019) The lead contaminated land treated by the circulation-enhanced electrokinetics and phytoremediation in field scale. J. Hazard. Mater. 368, 894-898.
Che, H., Bae, S. and Lee, W. (2011) Degradation of trichloroethylene by Fenton reaction in pyrite suspension. J. Hazard. Mater. 185, 1355-1361.
Chen, H.Y., Teng, Y.G., Lu, S.J., Wang, Y.Y. and Wang, J.S. (2015) Contamination features and health risk of soil heavy metals in China. Sci. Total Environ. 512, 143-153.
Chen, X., Murugananthan, M. and Zhang, Y. (2016) Degradation of p-Nitrophenol by thermally activated persulfate in soil system. Chem. Eng. J. 283, 1357-1365.
Chen, M., Zhu, L., Liu, S, Li, R., Wang, N and Tang, H. (2019) Efficient degradation of organic pollutants by low-level Co2+ catalyzed homogeneous activation of peroxymonosulfate. J. Hazard. Mater. 371, 456-462.
Chen, P., Sun, X., Gao, M., Ma, J. and Guo, Q. (2019) Transformation and migration of cadmium during chemical-looping combustion/gasification of municipal solid waste. Chem. Eng. J. 365, 389-399.
Christopher, J.A. (2009) Cost estimates for electrokinetic remediation. Electrochemical Remediation Technologies for Polluted Soils, Sediments and Groundwater. 583-587.
CLU-IN. (2017) In-situ Flushing: Overview. Contaminated Site Clean-Up Information, U.S. Environmental Protection Agency, Washington, D.C.
Dai, C., Zhou, Y., Peng, H., Huang, S., Qin, P., Zhang, J., Yang, Y., Luo, L. and Zhang, X. (2018) Current progress in remediation of chlorinated volatile organic compounds: A review. J. Ind. Eng. Chem-US. 62, 106-119.
David, L.J. (1988) Organic acids in the rhizosphere-a critical review. Plant. Soil. 205, 25-44.
Dellisanti, F., Rossi, P.L. and Valdre, G. (2009) In-field remediation of tons of heavy metal-rich waste by Joule heating vitrification. Int. J. Miner. Process. 93, 239-245.
Dumas, O., Despreaux, T., Perros, F., Lau, E., Andujar, P., Humbert, M., Montani, D. and Descatha, A. (2018) Respiratory effects of trichloroethylene. Resp. Med. 134, 47-53.
Evans, M.V., Chiu, W.A., Okino, M.S. and Caldwell, J.C. (2009) Development of an updated PBPK model for trichloroethylene and metabolites in mice, and its application to discern the role of oxidative metabolism in TCE-induced hepatomegaly. Toxicol. Appl. Pharm. 236, 329-340.
Fang, G.D (2012) Sulfate radical-based degradation of polychlorinated biphenyls: Effects of chloride ion and reaction kinetics. J. Hazard. Mater. 227-228, 394-401.
Frascari, D., Zanaroli, G. and Danko, A.S. (2015) In situ aerobic cometabolism of chlorinated solvents: A review, J. Hazard. Mater. 283, 382-399.
Friesen, M.C., Locke, S.J., Chen, Y.C., Coble, J.B., Stewart, P.A., Ji1. B.T., Bassig, B., Lu, W., Xue, S.H., Chow, W.H., Lan, Q. and Purdue, M.P. (2015) Historical Occupational Trichloroethylene Air Concentrations Based on Inspection Measurements From Shanghai, China. Ann. Occup. Hyg. 59, 62-78.
Garbinski, L.D., Rosen, B.P. and Chen, J. (2019) Pathways of arsenic uptake and efflux. Environ. Int. 126, 585-597.
Giannis, A., Nikolaou, A., Pentari, D. and Gidarakos, E. (2009) Chelating agent-assisted electrokinetic removal of cadmium, lead and copper from contaminated soils. Environ. Pollut. 157, 3379-3386.
Gonzaga, M.I.S., Matias, M.I.A.S., Andrade, K.R., Jesus, A.N., Cunha, G.C., Andrade, R.S. and Santos, J.C.J. (2020) Aged biochar changed copper availability and distribution among soil fractions and influenced corn seed germination in a copper-contaminated soil. Chemosphere. 240, 124828.
Guedes, P., Lopes, V., Couto, N., Mateus, E.P., Pereira, C.S. and Ribeiro, A.B. (2019) Electrokinetic remediation of contaminants of emergent concern in clay soil: Effect of operating parameters. Environ. Pollut. 253, 625-635.
Guo, Y.Y., Li, Y., Wang, J., Zhu, T.Y. and Ye, M. (2014) Effects of activated carbon properties on chlorobenzene adsorption and adsorption product analysis. Chem. Eng. J. 236, 506-512.
Guo, M.Z., Wang, J.L., Du, R., Liu, Y., Chi, J.N., He, X., Huang, K., Luo, Y. and Xu, W. (2020) A test strip platform based on a whole-cell microbial biosensor for simultaneous on-site detection of total inorganic mercury pollutants in cosmetics without the need for predigestion. Biosens. Bioelectron. 150, 111899.
Hader, D.P., Banaszak, A.T., Villafane, V.E., Narvarte, M.A., Gonzalez, R.A. and Helbling, E.W. (2020) Anthropogenic pollution of aquatic ecosystems: Emerging problems with global implications. Sci. Total Environ. 713, 136586.
Ho, S.S. and Hyun, H.L. (2017) Identification and determination of disinfection byproducts in chlorine-containing household cleansing products. Chemosphere. 174, 157-164.
Hu, G., Long, C., Hu, L., Xu, B.P., Chen, T., Gao, X., Zhang, Y., Zheng P., Wang, L., Wang, T., Yan, L., Yu, S., Zhong, L., Chen, W. and Jia, G. (2021) Circulating lead modifies hexavalent chromium-induced genetic damage in a chromate-exposed population: An epidemiological study. Sci. Total Environ. 752, 141824.
Huang, B., Lei, C., Wei, C. and Zeng, G. (2014) Chlorinated volatile organic compounds (Cl-VOCs) in environment-sources, potential human health impacts, and current remediation technologies. Environ. Int. 71, 118-138.
Intiso, A., Miele, Y., Marchettini, N., Proto, A., Sánchez-Domínguez, M. and Rossi, F. (2018) Enhanced solubility of trichloroethylene (TCE) by a poly-oxyethylene alcohol as green surfactant. Environmental Technology & Innovation. 12, 72-79.
Jan, A.T., Azam, M., Siddiqui, K., Ali, A., Choi, I. and Mohd, Q. (2015) Heavy Metals and Human Health: Mechanistic Insight into Toxicity and Counter Defense System of Antioxidants. Int. J. Mol. Sci. 16, 29592-29630.
Jia, D., Sun, S-P., Wu, Z., Wang, N., Jin, Y., Dong, W., Chen, X.D. and Ke, Q. (2018) TCE degradation in groundwater by chelators-assisted Fenton-like reaction of magnetite: Sand columns demonstration. J. Hazard. Mater. 346, 124-132.
Jiang, W., Tao, T. and Liao, Z.M. (2011) Removal of Heavy Metal from Contaminated Soil with Chelating Agents. J. Soil. Sci. 1, 70-76.
Jin, W., Du, H., Zheng, S. and Zhang, Y. (2016) Electrochemical processes for the environmental remediation of toxic Cr(VI): A review. Electrochim. Acta. 191, 1044-1055.
Junque, E., Gari, M., Llull, R.M. and Grimalt, J.O. (2018) Drivers of the accumulation of mercury and organochlorine pollutants in Mediterranean lean fish and dietary significance. Sci. Total Environ. 634, 170-180.
Kazeminezhad and Mosivand, S. (2014) Phase Transition of Electrooxidized Fe3O4 to γ and α-Fe2O3 Nanoparticles Using Sintering Treatment. Acta. Phys. Pol. A. 125, 1210-1214.
Keenan, C.R. and Sedlak, D.L. (2008) Factors Affecting the Yield of Oxidants from the Reaction of Nanoparticulate Zero-Valent Iron and Oxygen. Environ. Sci. Technol. 42, 1262-1267.
Kim, I., Ha, J., Lee, J.H., Yoo, K.M. and Rho, A. (2014) The Relationship between the Occupational Exposure of Trichloroethylene and Kidney Cancer. Annals of Occupational and Environmental Medicine. 26, 12.
Kim, W.S., Park, G.Y., Kim, D.H., Jung, H.B., Ko, S.H and Baek, K. (2012) In situ field scale electrokinetic remediation of multi-metals contaminated paddy soil: Influence of electrode configuration. Electrochim. Acta. 86, 89-95.
Kueper, B.H., Wealthall, G.P., Smith, J.W.N., Leharne, S.A. and Lerner, D.N. (2003) An Illustrated Handbook of DNAPL Transport and Fate in the Subsurface, Environment Agency R&D Publication 133, Bristol, UK.
Leclerc, A. and Laurent, A. (2017) Framework for estimating toxic releases from the application of manure on agricultural soil: National release inventories for heavy metals in 2000-2014. Sci. Total Environ. 590-591, 452-460.
Li, C., Li, F., Wu, Z. and Cheng, J. (2015) Effects of landscape heterogeneity on the elevated trace metal concentrations in agricultural soils at multiple scales in the Pearl River Delta, South China. Environ. Pollut. 206, 264-274.
Li, J., Ding, Y., Wang, K., Li, N., Qian, G., Xu, Y. and Zhang, J. (2020) Comparison of humic and fulvic acid on remediation of arsenic contaminated soil by electrokinetic technology. Chemosphere. 241, 125038.
Li, T., Li, H. and Li, C. (2020) A review and perspective of recent research in biological treatment applied in removal of chlorinated volatile organic compounds from waste air. Chemosphere. 250, 126338.
Li, Q.M., Song, H., Han, R., Wang, G.X. and Li, A. (2019) Efficient removal of Cu (II) and citrate complexes by combined permanent magnetic resin and its mechanistic insights. Chem. Eng. J. 366, 1-10.
Li, Y.F., Wang, D.B., Yang, G.J., Yuan, X.Z., Xu, Q.X., Liu, X., Wang, Y.L., Guan, R., Fu, Q. and Chen, F. (2019) The novel pretreatment of Co2+ activating peroxymonosulfate under acidic condition for dewatering waste activated sludge. J. Taiwan. Inst. Chem. E. 102, 259-267.
Lin, Y.T. and Huang, C.P. (2008) Reduction of chromium (VI) by pyrite in dilute aqueous solutions. Sep. Purif. Technol. 63, 191-199.
Liu, L.W., Li, W., Song, W.P. and Guo, M.X. (2018) Remediation techniques for heavy metal-contaminated soils: Principles and applicability. Sci. Total Environ. 633, 206-219.
López-Vizcaíno, R., Risco, C., Isidro, J., Rodrigo, S., Saez, C., Canizares, P., Navarro, V. and Rodrigo, M.A. (2017) Scale-up of the electrokinetic fence technology for the removal of pesticides. Part II: Does size matter for removal of herbicides? Chemosphere. 166, 549-555.
López-Vizcaíno, R., Yustres, A., Sáez, C., Cañizares, P., Asensio, L., Navarro, V. and Rodrigo, M.A. (2019) Techno-economic analysis of the scale-up process of electrochemically-assisted soil remediation, J. Environ. Manage. 231, 570-575.
Lu, Q. (2020) Insights into the remediation of cadmium-pyrene co-contaminated soil by electrokinetic and the influence factors. Chemosphere. 254. 126861.
Luo, Y.S., Hsieh, N.H., Soldatow, V.Y., Chiu, W.A. and Rusyn, I. (2018) Comparative analysis of metabolism of trichloroethylene and tetrachloroethylene among mouse tissues and strains. Toxicology. 409, 33-43.
Mandal, S., Pu, S., He, L.L., Ma, H. and Hou, D. (2020) Biochar induced modification of graphene oxide & nZVI and its impact on immobilization of toxic copper in soil. Environ. Pollut. 259, 113,851.
Nabinger, D.D., Altenhofen, S., Bitencourt, P.E.R., Roesler, L., Nery, L.R., Leite, C.E., Vianna, M.R.M.R. and Bonan, C.D. (2018) Nickel exposure alters behavioral parameters in larval and adult zebrafish. Sci. Total Environ. 624, 1623-1633.
Nelson, D. W. and Sommers, L. E. (1986) Total carbon, organic carbon, and organic matter. In Methods of soil analysis, Part 2, 539-579, American Society of Agronomy, Wisconsin.
Nguyen, T.N., Nguyen, M.N., McNamara, M., Dultz, S., Meharg, A. and Nguyen, V.T. (2019) Encapsulation of lead in rice phytoliths as a possible pollutant source in paddy soils. Environ. Exp. Bot. 162, 58-66.
Novillo, O., Pertusa, J.F. and Tomas, J. (2017) Exploring the presence of pollutants at sea: Monitoring heavy metals and pesticides in loggerhead turtles (Caretta caretta) from the western Mediterranean. Sci. Total Environ. 598, 1130-1139.
Nzila, A. (2013) Update on the cometabolism of organic pollutants by bacteria. Environ. Pollut. 178, 474-482.
Pariente, S., Helena, Z., Eyal, S., Anatoly, F.G. and Michal, Z. (2019) Road side effect on lead content in sandy soil. Catena. 174, 301-307.
Popescu, M., Rosales, E., Sandu, C., Meijide, J., Pazos, M., Lazar, G. and Angeles, S. (2017) Soil flushing and simultaneous degradation of organic pollutants in soils by electrokinetic-Fenton treatment. Process. Saf. Environ. 108, 99-107.
Pure Earth. (2016) World’s Worst Pollution Problems. The Toxics Beneath Our Feet.
Rahman, Z. (2020) An overview on heavy metal resistant microorganisms for simultaneous treatment of multiple chemical pollutants at co-contaminated sites, and their multipurpose application. J. Hazard. Mater. 396, 122682.
Ramadan B. S., Sari, G.L., Rosmalina, R T., Effendi, A.J. and Hadrah. (2018) An overview of electrokinetic soil flushing and its effect on bioremediation of hydrocarbon contaminated soil. J. Environ. Manage. 218, 309-321.
Reddy, K.R. and Parupudi, U.S. (1997) Removal of chromium, nickel and cadmium from clays by in-situ electrokinetic remediation. J. Soil Contam. 6, 391-407.
Reddy, V.A., Solanki, C.H., Kumar, S., Reddy, K.R. and Du, Y.J. (2019) New ternary blend limestone calcined clay cement for solidification/stabilization of zinc contaminated soil. Chemosphere. 235, 308-315.
Ren, W., Zhou, Z., Zhu, Y., Jiang, L.M., Wei, H., Niu, T., Fu, P. and Qiu, Z. (2015) Effect of sulfate radical oxidation on disintegration of waste activated sludge. Int. Biodeter. Biodegr. 104, 384-390.
Ribeiro, J.P., Marques, C.C., Portugal, I. and Nunes, M.I. (2020) Fenton processes for AOX removal from a kraft pulp bleaching industrial wastewater: Optimisation of operating conditions and cost assessment. J. Environ. Chem. Eng. 8, 104032.
Rodrigo, S., Sáez, C., Navarro, V., Cañizares, P. and Rodrigo, M.A. (2018a) Are electrochemical fences effective in the retention of pollution? Sep. Purif. Technol. 201, 19-24.
Rodrigo, S., Sáez, C., Cañizares, P. and Rodrigo, M.A. (2018b) Reversible electrokinetic adsorption barriers for the removal of organochlorine herbicide from spiked soils. Sci. Total Environ. 640-641, 629-636.
Romero, D., Barcala, E., Maria-Dolores, E. and Munoz, P. (2020) European eels and heavy metals from the Mar Menor lagoon (SE Spain). Mar. Pollut. Bull. 158, 111368.
Rouhou, M.C. and Haddad, S. (2014) Modulation of trichloroethylene in vitrometabolism by different drugs in human. Toxicol. In. Vitro. 28, 732-741.
Sajad, M.A., Khan, M.S., Bahadur, S., Naeem, A., Ali, H., Batool, F., Shuaib, M., Khan, M.A.S. and Batool, S. (2019) Evaluation of chromium phytoremediation potential of some plant species of Dir Lower, Khyber Pakhtunkhwa, Pakistan. Acta Ecologica Sinica. 19, 8-15.
Sanchez, V., Lopez-Bellido, F.J., Rodrigo, M.A., Fernandez, F.J. and Rodriguez, L. (2020) A mesocosm study of electrokinetic-assisted phytoremediation of atrazine-polluted soils. Sep. Purif. Technol. 233, 116044.
Saini, A., Bekele, D.N., Chadalavada, S., Fang, C. and Naidu, R. (2020) A review of electrokinetically enhanced bioremediation technologies for PHs. J. Environ. Sci. 88, 31-45.
Salas, L.A., Gracia-Lavedan, E., Goñi, F., Moreno, V. and Villanueva, C.M. (2014) Use of urinary trichloroacetic acid as an exposure biomarker of disinfection by-products in cancer studies. Environ. Res. 135, 276-284.
Scott, C.S. and Jinot, J. (2011) Trichloroethylene and Cancer: Systematic and Quantitative Review of Epidemiologic Evidence for Identifying Hazards. Int. J. Env. Res. Pub. He. 8, 4238-4272.
Shan, A., Farooq, U., Lyu, S., Zaman, W.Q., Abbas, Z., Ali, M., Idrees, A., Tang, P., Li, M., Sun, Y. and Sui, Q. (2020) Efficient removal of trichloroethylene in surfactant amended solution by nano Fe0-Nickel bimetallic composite activated sodium persulfate process. Chem. Eng. J. 386, 123995.
Speer, R.M., Wise, S.S., Croom-Perez, T.J., Aboueissa, A.M., Martin-Bras, M., Barandiaran, M., Bermudez, E. and Wise, J.P.S. (2019) A comparison of particulate hexavalent chromium cytotoxicity and genotoxicity in human and leatherback sea turtle lung cells from a one environmental health perspective. Toxicol. Appl. Pharm. 376, 70-81.
Srithongkul, C., Krongchai, C., Santasup, C. and Kittiwachana, S. (2020) An investigation of the effect of operational conditions on a sequential extraction procedure for arsenic in soil in Thailand. Chemosphere. 242, 125,230.
Sun, Y.M., Alpuche-Aviles, M., Bard, A.J., Zhou, J.P. and White, J.W. (2009) Preparation and characterization of Pd-Ti electrocatalyst on carbon supports for oxygen reduction. J. Nanosci. Nanotechino. 9, 1281-1286.
Tessier, A., Campbell, P. G. C. and Bisson, M. (1979) Sequential Extraction Procedure for the Speciation of Particulate Trace Metals. Anal. Chem. 51, 844-851.
Tripathi, N., Choppala, G., Singh, R.S. and Hills, C.D. (2018) Impact of modified chitosan on pore water bioavailability of zinc in contaminated soils. J. Geochem. Explor. 186, 94-99.
Thinh, N.V., Osanai, Y., Adachi, T., Vuong, B.T.S., Kitano, l., Chung, N.T. and Thai, P.K. (2021) Removal of lead and other toxic metals in heavily contaminated soil using biodegradable chelators: GLDA, citric acid and ascorbic acid. Chemosphere. 263, 127912.
United States Environmental Protection Agency (2016) Health Effects Assessment Summary Tables (HEAST). Washington, DC, U.S.A.
Vocciante, M., Caretta, A., Bua, L., Bagatin, R. and Ferro, S. (2016) Enhancements in ElectroKinetic Remediation Technology: Environmental assessment in comparison with other configurations and consolidated solutions. Chem. Eng. J. 289, 123-134.
Wada, T., Iwasaki, K., Minobe, Y., Wada, M., Imai, S. and Ishii, S. (2017) Proposal of a flow scheme for the chemical-form-based quantitative analysis of chlorine compounds in pulp for sanitary products and verification of safety. Regua. Toxicol. Pharm. 91, 109-116.
Wang, G., Pan, X., Zhang, S., Zhong, Q., Zhou, W., Zhang, X., Wu, J., Vijver, M.G. and Peijnenburg, W.J.G.M. (2020) Remediation of heavy metal contaminated soil by biodegradable chelator-induced washing: Efficiencies and mechanisms. Environ. Res. 186, 109554.
Wang, J. and Wang, S. (2018) Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants. Chem. Eng. J. 334, 1502-1517.
Wang, G., Xia, X., Yang, J., Tariq, M., Zhao, J., Zhang, M., Huang, K., Lin, K. and Zhang, W. (2020) Exploring the bioavailability of nickel in a soil system: Physiological and histopathological toxicity study to the earthworms (Eisenia fetida). J. Hazard. Mater. 383, 121119.
Wild, C.P. (2014) Encyclopedia of Toxicology, International Agency for Research on Cancer, Lyon, France.
Wang, Y., Shao, Z. and Yi, X. (2020) Novel Fenton-biological combined process at neutral pH by virtue of endogenous acidification and fungal degradation: Performance and cost analysis in the lab-scale study. Chem. Eng. J. 399, 125745.
Xu, S., Zhang, L., Zhao, J., Cheng, J., Yu, Q., Zhang, S., Zhao, J. and Qiu, X. (2020) Remediation of chromium-contaminated soil using delaminated layered double hydroxides with different divalent metals. Chemosphere. 254, 126879.
Xu, J., Lv, X., Li, J., Li, Y., Shen, L., Zhou, H. and Xu, X. (2012) Simultaneous adsorption and dechlorination of 2,4-dichlorophenol by Pd/Fe nanoparticles with multi-walled carbon nanotube support. J. Hazard. Mater. 225-226, 36-45.
Yan, D.Y.S. and Lo, I.M.C. (2012) Pyrophosphate coupling with chelant-enhanced soil flushing of field contaminated soils for heavy metal extraction. J. Hazard. Mater. 199-200, 51-57.
Yang, X., Zhang, C., Liu, F. and Tang, J. (2021) Groundwater geochemical constituents controlling the reductive dechlorination of TCE by nZVI: Evidence from diverse anaerobic corrosion mechanisms of nZVI. Chemosphere. 262, 127707.
Yeung, A.T. (2011) Milestone developments, myths, and future directions of electrokinetic remediation. Sep. Purif. Technol. 79, 124-132.
Yeung, A.T. and Hsu, C. (1996) EDTA-Enhanced Electrokinetic Extraction of Lead. J. Geotech. Eng-ASCE. 122, 666-673.
Yuan, B., Chen, Y. and Fu, M.L. (2012) Degradation efficiencies and mechanisms of trichloroethylene (TCE) by controlled-release permanganate (CRP) oxidation. Chem. Eng. J. 192, 276-283.
Yoo, J.C., Lee, C., Lee, J.S. and Baek, K. (2017) Simultaneous application of chemical oxidation and extraction processes is effective at remediating soil Co-contaminated with petroleum and heavy metals. J. Environ. Manage. 186(2), 314-319.
Zhang, H. and Reynolds, M. (2019) Cadmium exposure in living organisms: A short review. Sci. Total Environ. 678, 761-767.
Zhang, Z., Guo, G., Zhao, H. and Wu, D. (2020) Partitioning, leachability, and speciation of chromium in the size-fractions of soil contaminated by chromate production. Chemosphere. 128308.
Zhou, D.M., Deng, C.F., Cang, L. and Alshawabkeh, A.N. (2004) Electrokinetic remediation of a Cu contaminated red soil by conditioning catholyte pH with different enhancing chemical reagents. Chemosphere. 56, 267-273.
Zhou, D.M., Deng, C.F., Cang, L. and Alshawabkeh, A.N. (2005) Electrokinetic remediation of a Cu-Zn contaminated red soil by controlling the voltage and conditioning catholyte pH. Chemosphere. 61, 519-527.
Zhou H., Meng, A., Long, Y., Li, Q. and Zhang, Y. (2014) An overview of characteristics of municipal solid waste fuel in China: Physical, chemical composition and heating value. Adv. Mater Res-Switz. 36, 107-122.
Zhou, J., Chen, L.H., Peng, L., Luo, S. and Zeng, Q.R. (2020) Phytoremediation of heavy metals under an oil crop rotation and treatment of biochar from contaminated biomass for safe use. Chemosphere. 247, 125856.
Zhou, Z., Liu, X., Sun, K., Lin, C.Y., Ma, J., He, M.C. and Ouyang, W. (2019) Persulfate-based advanced oxidation processes (AOPs) for organic contaminated soil remediation: A review. Chem. Eng. J. 372, 836-851.
Zhou, W., Yin, B.C. and Ye, B.C. (2017) Highly sensitive surface-enhanced Raman scattering detection of hexavalent chromium based on hollow sea urchin-like TiO2@Ag nanoparticle substrate. Biosens. Bioelectron. 87, 187-194.
Zhu, Y.G., Yoshinaga, M., Zhao, F.J. and Rosen, B.P. (2014) Earth Abides Arsenic Biotransformations. Earth Planet. Sc. Lett. 42, 443-467.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊