跳到主要內容

臺灣博碩士論文加值系統

(34.204.180.223) 您好!臺灣時間:2021/08/05 23:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳威丞
研究生(外文):CHEN, WEI-CHENG
論文名稱:以機械及熱活化整合程序利用環保碳源結合 回收二氧化矽製備碳化矽之研究
論文名稱(外文):Preparation of Silicon Carbide from ECO-Carbon Black and Recycling Silicon Dioxide by Integrated Mechanical and Thermal Activation Process (IMTA)
指導教授:袁菁袁菁引用關係
指導教授(外文):YUAN, CHING
口試委員:連興隆蘇進成
口試委員(外文):LIEN, HSING-LUNGSU, CHEAN-CHENG
口試日期:2021-05-12
學位類別:碩士
校院名稱:國立高雄大學
系所名稱:土木與環境工程學系碩士班
學門:工程學門
學類:土木工程學類
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:246
中文關鍵詞:廢輪胎廢壓模膠廢稻稈機械及熱活化整合程序碳黑二氧化矽碳化矽碳化矽晶鬚經濟分析市場可行性
外文關鍵詞:Waste tireWaste assembly compoundsWaste rice strawIMTA ProcessCarbon blackSilicon dioxideSilicon carbideSilicon carbide whiskerEconomic AnalysisMarket feasibility
相關次數:
  • 被引用被引用:0
  • 點閱點閱:35
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
第一章 緒論 1
1.1研究緣起 1
1.2研究目的 3
1.3研究內容 3
第二章 文獻回顧 5
2.1回收廢料介紹 5
2.1.1碳黑介紹 5
2.1.2光電業原料介紹-壓模膠 7
2.1.3農業原料介紹-稻稈 7
2.2碳化矽之介紹 8
2.2.1碳化矽簡介 8
2.2.2碳化矽分類 10
2.2.3碳化矽應用 12
2.2.4碳化矽晶鬚 14
2.3碳化矽製備技術 18
2.3.1艾其遜法(Acheson process) 19
2.3.2物理氣相傳輸法(Physical Vapor Transport method, PVT) 20
2.3.3化學氣相沉積法(chemical vapor deposition,CVD) 21
2.3.4碳熱還原法(Carbothermic reaction) 21
2.3.5機械及熱活化整合程序(Integrated Mechanical and Thermal Activation Process, IMTA process) 22
2.3.6製備方法比較 23
2.4碳化矽合成原理 24
2.4.1碳與二氧化矽反應之熱力學分析 24
2.4.2碳與矽反應之熱力學分析 27
2.4.3碳化矽晶鬚生長機制 31
2.5碳化矽製備條件 33
2.5.1反應溫度 33
2.5.2反應時間 35
37
2.5.3碳矽源莫爾數比 37
2.5.4球磨參數 39
2.5.4.1球磨珠與粉末重量比 39
2.5.4.2球磨時間 39
2.5.4.3球磨轉速 41
2.5.5氣體參數 41
‌2.6碳化矽純化技術 43
2.7碳化矽分離技術 44
2.7.1碳化矽分選 44
2.7.2碳化矽晶鬚分離 45
2.8以回收原料製備碳化矽之技術 46
2.8.1回收碳源製備碳化矽 46
2.8.2回收生物質製備碳化矽 49
2.9田口式方法設計 52
2.9.1設計原理 52
2.9.2田口式方法優缺點 53
2.9.3直交實驗設計 53
第三章 研究方法 55
3.1研究架構 55
3.2實驗儀器及材料 57
3.2.1實驗材料 57
3.2.2實驗儀器與設備 57
3.3碳源/矽源材料及前處理 58
3.3.1碳元素分析 58
3.3.2固定碳分析 59
3.3.3稻稈二氧化矽萃取 59
3.3.4表面二氧化矽分析 60
3.4碳化矽合成方法 60
3.4.1球磨步驟 61
3.4.2碳熱還原程序 62
3.4.3碳化矽純化程序 62
3.4.3.1去除未反應碳 63
3.4.3.2去除未反應二氧化矽 63
3.4.3.3去除未反應矽 64
3.4.3.4去除金屬離子 65
3.5碳化矽特性分析 65
3.5.1表面形貌分析 65
3.5.2比表面積分析 66
3.5.3晶相分析 66
3.5.4官能基分析 66
3.5.5平均粒徑分析 66
3.5.6碳化矽純度分析 67
3.5.6.1試樣製備 67
3.5.6.2總碳量之測定 67
3.5.6.3游離碳之測定 69
3.5.6.4碳化矽之定量法 69
3.6市場應用分析 70
3.6.1輪胎磨擦力指標 70
3.6.2抗拉強度測定技術 70
3.6.3應力應變測定技術 71
3.6.4黏度測定技術 71
3.7技術可行性實驗規劃 71
3.8製程效能實驗規劃 71
3.9田口式方法實驗規劃 72
3.10光電矽源製備碳化矽之實驗參數探討 73
3.11農業矽源製備碳化矽之實驗參數探討 74
3.12碳矽源組合製備碳化矽之差異探討 74
第四章 結果與討論 77
4.1回收材料特性分析 77
4.1.1碳黑材料 77
4.1.1.1碳黑特性 77
4.1.1.2碳源表面分析 79
4.1.1.3碳源晶格特性分析 81
4.1.1.4碳源官能基分析 82
4.1.2二氧化矽材料 83
4.1.2.1光電二氧化矽特性 84
4.1.2.2農業二氧化矽特性 84
4.1.2.3矽源表面分析 85
4.1.2.4矽源晶格特性分析 86
4.1.2.5矽源官能基分析 87
4.2製程效能分析實驗 87
4.2.1標準材料實驗 87
4.2.1.1碳化矽成品之晶格特性分析 89
4.2.1.2碳化矽成品之表面形貌分析 89
4.2.2分階段效能試驗 90
4.2.2.1球磨技術對碳化矽影響 90
4.2.2.2純化程序對碳化矽影響 91
4.2.2.3單一/複合酸對碳化矽影響 92
4.2.3田口式實驗 96
4.2.3.1表面特性分析結果 96
4.2.3.2晶格特性分析 98
4.2.3.3官能基分析 99
4.2.3.4碳化矽最佳製備參數分析 101
4.2.3.5因子反應圖結果 102
4.2.3.6 最佳參數結果及品質相關性 106
4.2.3.7實驗小結 108
4.3光電矽源製備碳化矽實驗 109
4.3.1.晶格特性分析 109
4.3.2官能基分析 112
4.3.3碳化矽純度及產率分析 113
4.3.4表面特性影響 114
4.3.5碳化矽晶鬚類型分析 118
4.3.6實驗小結 119
4.4農業矽源製備碳化矽實驗 120
4.4.1晶格特性分析 120
4.4.2官能基分析 125
4.4.3表面形貌分析 128
4.4.4重量損失率及外觀差異 132
4.4.5碳化矽雜質分析 134
4.4.6實驗小結 136
4.5材料差異比較 136
4.5.1製程損失率評估 136
4.5.2純度與產率比較 139
4.5.3碳化矽粒徑分布 144
4.5.4碳/矽源改變影響 146
4.5.5實驗參數影響 147
4.5.6成品規格比較 148
4.5.7小結 148
4.6經濟分析 150
4.6.1光電矽源製備碳化矽經濟效益評估 150
4.6.1.1設備建置成本 150
4.6.1.2實驗操作成本 152
4.6.2農業矽源製備碳化矽經濟效益評估 159
4.6.2.1設備建置成本 159
4.6.2.2實驗操作成本 159
4.6.3產業測試分析結果 162
4.6.3.1丁苯橡膠(SBR)介紹 169
4.6.3.2 SBR分類項目 169
4.6.3.3 輪胎橡膠抓地力指標 170
4.6.3.4碳化矽添加測試配方SBR結果 171
4.6.3.5碳化矽添加實際配方SBR結果 172
第五章 結論與建議 175
5.1結論 175
5.2建議 180
參考文獻 182

涂政翔(2008)。多壁奈米碳管/聚氨酯發泡複合材料之隔振性能研究。國立屏東科技大學機械工程系所碩士論文,屏東縣。
代智傑(2008)。β-SiC微粉的分級與純化工藝研究。西安科技大學材料學碩士論文,陝西省西安市。
唐力原(1996)。廢輪胎於氮+氧中熱分解反應動力參數之探討。國立中山大學環境工程研究所碩士論文,高雄市。
劉舜惠(2011)。廢輪胎熱裂解回收碳黑再製高性能碳材製程之研究。國立高雄應用科技大學工業工程與管理系碩士論文,高雄市。
李珣琦、謝雅敏、陳偉聖(2014)。利用浮選技術分離矽泥之研究。工業污染防治技術文章,經濟部工業局。
呂英治、洪敏雄,(1992)。碳化矽鬚晶的製成及性質。中華民國陶業研究學會會刊,第 11 卷,第 1 期,第 4~21 頁。
林勲佑(2004)。資源再利用粉狀活性碳吸附氣相氯化汞之研究。國立中山大學環境工程研究所博士論文,高雄市。
林世挺(2005)。熱老化對橡膠材料疲勞壽命之影響。國立成功大學土木工程學系碩博士班碩士論文,台南市。
林博文,(1994),碳化矽及其他碳化物。陶瓷技術手冊(下),經濟部技術處發行,第 12 章,第 745~776 頁。
農業生產數據(2014-2018)。農業統計年報,行政院農委會。
鄭博仁(2001)。添加碳黑對碳/碳複合材料機械及磨耗性質之影響。國立成功大學材料科學及工程學系碩士論文,台南市。
莊禮帆(2008)。運用田口方法於迴轉成型塑膠發泡製程之最佳化設計。大葉大學工業工程與科技管理學系碩士班碩士論文,彰化縣。
應回收廢棄物(廢輪胎類)回收量資料.(2013-17)。政府資料開放平台。
吳俊欣(2000)。都市垃圾焚化爐排氣中含汞污染物之採樣與分析暨廢輪胎熱裂解製備粉狀活性碳對氯化汞蒸氣之吸附效能測試。國立中山大學環境工程研究所碩士論文,高雄市。
ASTM standard. (1998). Standard test method for ash in the analysis sample of coal and coke from coal.
Abderrazak, H., & Hadj Hmi, E. S. B. (2011). Silicon Carbide: Synthesis and Properties. Properties and Applications of Silicon Carbide.
Alweendo, S.T., Johnson, O.T., Shongwe, M.B., Kavishe, F.P.L. and Borode, J.O. (2019). Synthesis, Optimization and Characterization of Silicon Carbide (SiC) from Rice Husk. Procedia Manufacturing, 35, 962–967.
Abdellaoui M., Gaffet E., (1994), A mathematical and experimental dynamical phase diagram for ball-milled Ni10Zr7, Journal of Alloys and Compounds, 209, 1-2, 351-361.
Abdellaoui M., Gaffet E., (1995), The physics of mechanical alloying in a planetary ball mill: Mathematical treatment , Acta Metallurgica et Materialia, 43, (3), 1087-1098.
Akiyana, M., Yamamoto. M. (1991).Silicon carbide whiskers (Tokawhiskers) and their application, Silicon Carbide Ceramics-2, Elsevier Science Publishers LTD., 117~138.
Andrievskii, R.. (2009). Synthesis, structure and properties of nanosized silicon carbide. Reviews on Advanced Materials Science. 22. 1-20.
An, Z., Xue, J., Cao, H., Zhu, C., & Wang, H. (2019). A facile synthesis of silicon carbide nanoparticles with high specific surface area by using corn cob. Advanced Powder Technology, 30(1), 164–169.‌
Barth S., Ramirez F. H., Holmes J. D., Rodriguez A. R., (2010), Synthesis and applications of one-dimensional semiconductors, Prog. Mater Sci., 55, 563-627
Beaumont GP (1991). Reduction in airborne silicon carbide whiskers by process improvements. Appl Silicon carbide 307 Occup Environ Hyg, 6(7):598–603.
Babić, B., Bučevac, D., Radosavljević-Mihajlović, A., Došen, A., Zagorac, J., Pantić, J., & Matović, B. (2012). New manufacturing process for nanometric SiC. Journal of the European Ceramic Society, 32(9), 1901–1906. https://doi.org/10.1016/j.jeurceramsoc.2011.08.023
B.K Parekh, W.M. Goldberger, (1981). Recovery of silicon carbide whiskers from coked, converted rice hulls by liquid–liquid separation. U.S. Patent No. 4,249,700
B.K. Parekh, W.M. Goldberger, (1981). Recovery ofsilicon carbide whiskersfrom coked, converted rice hulls by froth flotation. U.S. Patent No. 4,293,099
Butyagin, P. Y. (1986). Mechanochemical reactions of solids with gases. Reactivity of Solids, 1(4), 345–359.
Boudard D, Forest V, Pourchez J, Boumahdi N, Tomatis M, Fubini B, et al. (2014). In vitro cellular responses to silicon carbide particles manufactured through the Acheson process: impact of physico-chemical features on pro-inflammatory and pro-oxidative effects. Toxicol In Vitro, 28(5):856–65.
Chaira, D., Mishra, B. K., & Sangal, S. (2007). Synthesis and characterization of silicon carbide by reaction milling in a dual-drive planetary mill. Mater. Sci. Eng., A, 460–461, 111–120.
Cui, H.-S & Zheng, Y. & Liu, X.-E & Yang, S.-M & Tian, G.-L & Ma, J.-F. (2017). Research Progress on Preparation for Biomass-based SiC Ceramic. Cailiao Gongcheng/Journal of Materials Engineering. 45. 115-122.
Chiew, Y. L., & Cheong, K. Y. (2011). A review on the synthesis of SiC from plant-based biomasses. Mater. Sci. Eng., B, 176(13), 951–964.
Ciora, R. J., Fayyaz, B., Liu, P. K. T., Suwanmethanond, V., Mallada, R., Sahimi, M., & Tsotsis, T. T. (2004). Preparation and reactive applications of nanoporous silicon carbide membranes. Chem. Eng. Sci., 59(22–23), 4957–4965.
Chen, J., Ding, L., Xin, L., Zeng, F. and Chen, J. (2017). Thermochemistry and growth mechanism of SiC nanowires. Journal of Solid State Chemistry, 253, 282–286.
Chen, J., Wu, R. and Pan, Y. (2010). Synthesis of the Tube-Brush-Shaped SiC Nanowire Array on Carbon Fiber and Its Photoluminescence Properties. Journal of Nanoscience and Nanotechnology, 10(10), 6550–6555.
Chen, J., Liao, X., Wang, M., Liu, Z., Zhang, J., Ding, L., Gao, L. and Li, Y. (2015). Highly flexible, nonflammable and free-standing SiC nanowire paper. Nanoscale, 7(14), 6374–6379.
Chen, J., Pan, Y. and Wu, R. (2010). Growth mechanism of twinned SiC nanowires synthesized by a simple thermal evaporation method. Physica E: Low-dimensional Systems and Nanostructures, 42(9), 2335–2340.
Chen, S., Li, W., Li, X. and Yang, W. (2019). One-dimensional SiC nanostructures: Designed growth, properties, and applications. Progress in Materials Science, 104, 138–214.
Cheng TW, Hsu CW (2006). A study of silicon carbide synthesis from waste serpentine. Chemosphere, 64(3):510–4.
Dai, D., Zhang, N., Zhang, W., & Fan, J. (2012). Highly bright tunable blue-violet photoluminescence in SiC nanocrystal-sodium dodecyl sulfonate crosslinked network. Nanoscale, 4(10), 3044–3046.
Du Preez, S. P., Beukes, J. P., van Zyl, P. G., Tangstad, M., & Tiedt, L. R. (2018). Silicon Carbide Formation Enhanced by In-Situ-Formed Silicon Nitride: An Approach to Capture Thermal Energy of CO-Rich Off-Gas Combustion. Metallurgical and Materials Transactions B, 49(6), 3151–3163.
Dos Santos, M. A. P., & Costa, C. A. (2006). Comminution of silicon carbide powder in a planetary mill. Powder Technology, 169(2), 84–88.
Dhage, S., Lee, H.-C., Hassan, M. S., Akhtar, M. S., Kim, C.-Y., Sohn, J. M., Yang, O.-B. (2009). Formation of SiC nanowhiskers by carbothermic reduction of silica with activated carbon. Mater. Lett., 63(2), 174–176.
Dong, Z., Meng, J., Zhu, H., Yuan, G., Cong, Y., Zhang, J., Li, X. and Westwood, A. (2017). Synthesis of SiC nanowires via catalyst-free pyrolysis of silicon-containing carbon materials derived from a hybrid precursor. Ceramics International, 43(14), 11006–11014.
Dufresne A, Perrault G, Sébastien P, Adnot A, Baril M (1987b). Morphology and surface characteristics of particulates from silicon carbide industries. Am Ind Hyg Assoc J, 48(8):718–29.
Dong, H., Fang, Z., Yang, T., Yu, Y., Wang, D., Chou, K.-C., & Hou, X. (2016). Single crystalline 3C-SiC whiskers used for electrochemical detection of nitrite under neutral condition. Ionics, 22(8), 1493–1500.
Dhiman, R., Johnson, E., & Morgen, P. (2011). Growth of SiC nanowhiskers from wooden precursors, separation, and characterization. Ceramics International, 37(8), 3759–3764. ‌
E. G. Acheson. (1895). Production of artificial crystalline carbonaceous materials. U.S. Patent No. 11,473.
Egelja, Adela & Gulicovski, Jelena & Devecerski, Aleksandar & Ninić, Marina & Radosavljevic-Mihajlovic, Ana & Matovic, Branko. (2008). Preparation of biomorphic SiC ceramics. Science of Sintering, 40.
Fallahian S.R., S.R, Karamian, E., & Monshi, A. (2011). SEM and TEM studies of Β-SiC nano-whiskers microstructures produced at different temperatures. Materiały Ceramiczne, 63(2) 256–260.
F.H. Froes, J.J. de Barbadillo, (1990).Structural Applications of Mechanical Alloying, ASM International, Metals Park, OH.
Gabriel, G., Erill, I., Caro, J., Gómez, R., Riera, D., Villa, R., & Godignon, P. (2007). Manufacturing and full characterization of silicon carbide-based multi-sensor micro-probes for biomedical applications. Microelectron. J., 38(3), 406–415.
Gunnæs AE, Olsen A, Skogstad A, Bye E (2005). Morphology and structure of airborne-SiC fibres produced during the industrial production of non-fibrous silicon carbide. J Mater Sci, 40(22):6011–7.
Guo, X., Zhu, L., Li, W., & Yang, H. (2013). Preparation of SiC powders by carbothermal reduction with bamboo charcoal as renewable carbon source. Journal of Advanced Ceramics, 2(2), 128–134.
Ghosh, B., & Pradhan, S. K. (2009). Microstructural characterization of nanocrystalline SiC synthesized by high-energy ball-milling. Journal of Alloys and Compounds, 486(1-2), 480–485.
Galvagno, S., Portofino, S., Casciaro, G., Casu, S., d’Aquino, L., Martino, M., Bezzi, G. (2007). Synthesis of beta silicon carbide powders from biomass gasification residue. J. Mater. Sci. Lett., 42(16), 6878–6886.
Gao, S., Jiang, S., Wang, S., Cui, X. and Xing, P. (2020). Recycle of silicon slurry cutting waste to prepare high purity SiC by salt-assisted carbothermic reduction. Journal of Cleaner Production, 272, p.122566.
Gammon, P.M., Chan, C.W., Li, F., Gity, F., Trajkovic, T., Pathirana, V., Flandre, D. and Kilchytska, V. (2018). Development, characterisation and simulation of wafer bonded Si-on-SiC substrates. Materials Science in Semiconductor Processing, 78, 69–74.
Gorthy, P., & G., M. P. (2004). Production of Silicon Carbide from Rice Husks. J. Am. Ceram. Soc., 82(6), 1393–1400
Fecht, H. J., Hellstern, E., Fu, Z., & Johnson, W. L. (1990). Nanocrystalline metals prepared by high-energy ball milling. Metallurgical Transactions A, 21(9), 2333–2337.
Hua, Y., Bai, S., Wan, H., Chen, X., Hu, T., & Gong, J. (2018). Research on controllable synthesis of silicon carbide whiskers and particles on graphite by chemical vapor reaction. J. Mater. Sci. Lett., 54(3), 2016–2024.
Hu, P., Pan, R., Dong, S., Jin, K., & Zhang, X. (2016). Several millimeters long SiC–SiOx nanowires synthesized by carbon black and silica sol. Ceramics International, 42(2), 3625–3630.
Hu, L., Zou, Y., Li, C.-H., Liu, J.-A., & Shi, Y.-S. (2020). Preparation of SiC nanowires on graphite paper with silicon powder. Materials Letters, 269, 127444.
Hossain, S. T., Johra, F. T., & Jung, W.-G. (2018). Fabrication of Silicon Carbide from Recycled Silicon Wafer Cutting Sludge and Its Purification. Applied Sciences, 8(10), 1841.
International Agency For Research On Cancer Working Group On The Evaluation of The Carcinogenic Risks To Humans and Weltgesundheitsorganisation (2010). IARC monographs on the evaluation of carcinogenic risks to humans, Carbon black, titanium dioxide, and talc, volume 93,
Jia, S. & Gu, W. & Chen, H. & Liu, F.. (2014). Silicon carbide whiskers synthesized with rice straw and silicon powders, 43, 76-79.
Károly, Z., Mohai, I., Klébert, S., Keszler, A., Sajó, I. E., & Szépvölgyi, J. (2011). Synthesis of SiC powder by RF plasma technique. Powder Technology, 214(3), 300–305.
Kychkin, A. A., Anan’eva, E. S., Таnkоva, K. I., Kychkin, A. K., & Тuisov, A. G. (2019). Influence of ultrafine silicon carbide powders on the properties of epoxy resin. Procedia Structural Integrity, 20, 185–18
Kackar, R.N. (1989). Taguchi’s Quality Philosophy: Analysis and Commentary. Quality Control, Robust Design, and the Taguchi Method, 3–21.
K. Niwano, (1999), Properties and application of SiC whiskers, Silicon Carbide Ceramics-2, Elsevier Science Publishers LTD.
Kordina O, Saddow SE (2006). Chapter 1: Silicon carbide overview. In: Saddow SE, Argawal A, editors. Semiconductor materials and devices series. Advances in silicon carbide processing and applications, 1–27.
Kharatyan, S. L., & Nersisyan, H. H. (2001). Chemically Activated SHS in Synthesis of Refractory Carbide Powders. Key Eng. Mater., 217, 83–92.
Kocaman, E. and Çalışkan, F. (2020). Ultra-fine beta SiC nanowires Isothermally converted from high activated silica by Carbothermic Reduction and Carburization at low temperature. Materials Chemistry and Physics, 256, p.123716.
Kleinová, A., Huran, J., Sasinková, V., Perný, M., Šály, V. and Packa, J. (2015). FTIR spectroscopy of silicon carbide thin films prepared by PECVD technology for solar cell application. Reliability of Photovoltaic Cells, Modules, Components, and Systems VIII.
Laudon, M., Romanowicz, B., Techconnect World Innovation Conference And Expo, & Techconnect. (2016). Fourier Transform Infrared Spectroscopy of Silicon Carbide Nanowires. TechConnect briefs 2016. Vol. 3. ‌
Li, X., Zhang, G., Tronstad, R., & Ostrovski, O. (2016). Synthesis of SiC whiskers by VLS and VS process. Ceram. Int., 42(5), 5668–5676.
Li, H.J. & Li, Zhenjiang & Meng, A.L. & Li, K.Z. & Zhang, X.N. & Xu, Y.P.. (2003). SiC Nanowire Networks. J. Alloys Compd.. 352, 279-282.
Li, J., Shirai, T., & Fuji, M. (2013). Rapid carbothermal synthesis of nanostructured silicon carbide particles and whiskers from rice husk by microwave heating method. Advanced Powder Technology, 24(5), 838–843.
LI Z., CAO Q., HUANG Y., LI G., ZHANG W.(2009) Preparation of carbon-enriched β-sic nano-powders by the sol–gel and carbothermal methods. Journal of The Chinese Ceramic Society. Vol. 37, No. 6.
Li, Cheng & XIE, Ruobing & WANG, Mouhua & SUN, Baoxing & Lei, Guanhong & Huang, Qing & LI, Jianjian & Zhu, Yongqi & LIU, Renduo & Lei, Qi. (2019). Crystalline structure in SiC fibers driven by pyrolysis temperature and time. Journal of the Ceramic Society of Japan. 127. 117-122. 10.2109.18151.
Lao, X., Xu, X., Jiang, W., Liang, J., & Miao, L. (2021). Influences of Al metal and Al–Si alloys on in-situ synthesis of SiC nanowhiskers in porous Al2O3–SiC composites obtained by carbothermal reduction. Journal of Alloys and Compounds, 854, 157182.
Lee, J.-S., Byeun, Y.-K., Lee, S.-H., & Choi, S.-C. (2008). In situ growth of SiC nanowires by carbothermal reduction using a mixture of low-purity SiO2 and carbon. Journal of Alloys and Compounds, 456(1-2), 257–263.
Lin, I. J., & Nadiv, S. (1979). Review of the phase transformation and synthesis of inorganic solids obtained by mechanical treatment (mechanochemical reactions). Mater. Sci. Eng., A, 39(2), 193–209.
Ledoux, M. J., Hantzer, S., Huu, C. P., Guille, J., & Desaneaux, M.-P. (1988). New synthesis and uses of high-specific-surface SiC as a catalytic support that is chemically inert and has high thermal resistance. Journal of Catalysis, 114(1), 176–185.
Liang, C. ., Meng, G. ., Zhang, L. ., Wu, Y. ., & Cui, Z. (2000). Large-scale synthesis of β-SiC nanowires by using mesoporous silica embedded with Fe nanoparticles. Chem. Phys. Lett., 329(3–4), 323–328.
Longkullabutra, H., Nhuapeng, W., & Thamjaree, W. (2012). Large-scale: Synthesis, microstructure, and FT-IR property of SiC nanowires. Current Applied Physics, 12, S112–S115.
Mansour, N.A.L. & Hanna, S.B.. (1979). Silicon Carbide and Nitride from Rice Hulls II—Effect of Iron on the Formation of SiC. Transactions and Journal of the British Ceramic Society, 78, 132-136.
Meng, G. ., Cui, Z., Zhang, L. ., & Phillipp, F. (2000). Growth and characterization of nanostructured β-SiC via carbothermal reduction of SiO2 xerogels containing carbon nanoparticles. J. Cryst. Growth, 209(4), 801–806.
Mojarad, B.S., Nourbakhsh, A., Kahrizsangi, R.E., Masoud, M. and MacKenzie, K.J.D. (2015). Synthesis of nanostructured SiC by magnesiothermal reduction of silica from zeolite ZSM-5 and carbon: The effect of carbons from different sources. Ceramics International, 41(4), 5287–5293.
Mohd Sohor, M. A. H., Mustapha, M., & Chandra Kurnia, J. (2017). Silicon carbide- from synthesis to application: a review. MATEC Web of Conferences, 131, 04003.
Narciso-Romero, F. J., & Rodriguez-Reinoso, F. (1996). Synthesis of SiC from rice husks catalysed by iron, cobalt or nickel. J. Mater. Sci. Lett., 31(3), 779–784.
Nader, M., Aldinger, F., & Hoffmann, M. J. (1999). J. Mater. Sci. Lett., 34(6), 1197–1204.
Nam, K.-H., Hwa Chae, K., Choi, J.-H., Jeon, K.-J., & Park, C.-M. (2021). Superior carbon black: High-performance anode and conducting additive for rechargeable Li- and Na-ion batteries. Chemical Engineering Journal, 129242.
Nakabayashi, N., & Takarada, K. (1992). Effect of HEMA on bonding to dentin. Dent. Mater. Official Publication of the Academy of Dental Materials, 8(2), 125–130.
Nandiyanto, A. B. D., Rahman, T., Fadhlulloh, M. A., Abdullah, A. G., Hamidah, I., & Mulyanti, B. (2016). Synthesis of silica particles from rice straw waste using a simple extraction method. IOP Conference Series: Materials Science and Engineering, 128, 012040. ‌
Ortiz, A. L., Muñoz-Bernabé, A., Borrero-López, O., Domı́nguez-Rodrı́guez, A., Guiberteau, F., & Padture, N. P. (2004). Effect of sintering atmosphere on the mechanical properties of liquid-phase-sintered SiC. J. Eur. Ceram. Soc., 24(10–11), 3245–3249.
Oh, S.-M., Park, J., Yang, J., Oh, Y.-G., & Yi, K.-W. (2021). Image processing for analysis of carbon black pellet size distribution during pelletizing. Measurement, 174, 108963.
Ortega‐Trigueros, A., Narciso, J., & Caccia, M. (2020). Synthesis of high‐surface area mesoporous SiC with hierarchical porosity for use as catalyst support. Journal of the American Ceramic Society, 103(10), 5966–5977.
Philip G. (2015). Silicon Carbide Technology. NASA Glenn Research Center.
Panda, P.K., Mariappan, L. and Kannan, T.S. (1999). The effect of various reaction parameters on carbothermal reduction of kaolinite. Ceramics International, 25(5), 467–473. ‌
P. Somasundarn, K.P.A. Padmanabhan, (1981). Recovery of silicon carbide whiskers from coked, converted rice hulls by selective flocculation-liquid extraction. U.S. Patent No. 4,256,571.
Rajarao, R., Ferreira, R., Sadi, S. H. F., Khanna, R., & Sahajwalla, V. (2014). Synthesis of silicon carbide nanoparticles by using electronic waste as a carbon source. Mater. Lett., 120, 65–68.
Rödelsperger K, Brückel B (2006). The carcinogenicity of WHO fibers of silicon carbide: SiC whiskers compared to cleavage fragments of granular SiC. Inhal Toxicol, 18(9):623–31.
Schwetk K. A., Werheit H., Nold E., (2003), Sintered and monocrystalline black and green silicon carbide: Chemical compositions and optical properties, Ceramic Forum International, 80 (12).
Siheng, G., Xianjuan, D., Xuan, X. and Yong, X. (2020). Effect of ball milling speed and sintering temperature on microstructure and properties of TiAl alloy prepared by powder metallurgy. Procedia Manufacturing, 50, 355–361.
Shcherban, N. D. (2017). Review on synthesis, structure, physical and chemical properties and functional characteristics of porous silicon carbide. Journal of Industrial and Engineering Chemistry, 50, 15–28. ‌
Serdiuk, T., Alekseev, S. A., Lysenko, V., Skryshevsky, V. A., & Géloën, A. (2012). Charge-driven selective localization of fluorescent nanoparticles in live cells. Nanotechnology, 23(31), 315101.
Sherif El-Eskandarany, M., Sumiyama, K., & Suzuki, K. (1995). Mechanical solid state reaction for synthesis of β–SiC powders. J. Mater. Res., 10(3), 659–667.
Shaffer PTB (1969). A review of the structure of silicon carbide. Acta Crystallogr B, 25(3):477–88.
Suri, J., Shaw, L.L. and Zawrah, M.F. (2011). Synthesis of carbon-free Si3N4/SiC nanopowders using silica fume. Ceramics International, 37(8), 3477–3487.
Singh, S. K., Mohanty, B. C., & Basu, S. (2002). Synthesis of SiC from rice husk in a plasma reactor. Bull. Mater. Sci., 25(6), 561–563.
Song, Bozhen & Lu, Yanfei & Wei, Shengnan & Fan, Bingbing & Zhang, Xinyue & Zhang, Rui. (2018). Investigation on the Growth Mechanism of SiC Whiskers during Microwave Synthesis. PCCP. 20. 10.1039
Song, N., Zhang, H., Liu, H., & Fang, J. (2017). Effects of SiC whiskers on the mechanical properties and microstructure of SiC ceramics by reactive sintering. Ceramics International, 43(9), 6786–6790.
Sharma NK, Williams WS, Zangvil A (1984). Formation and structure of silicon carbide whiskers from rice hulls. J Am Ceram Soc, 67(11), 715–20.
Somasundaran, P. , & Ananthapadmanabhan, K. P. . (1981). Recovery of silicon carbide whiskers from coked, converted rice hulls by selectiveflocculation-liquid extraction. U.S. Patent No. 4,256,571
U. Schubert and N. Hüsing, (2012), Synthesis of Inorganic Materials, Berlin: Wiley-VCH, 17-22.
Urrego-Yepes, W., Cardona-Uribe, N., Vargas-Isaza, C. A., & Martínez, J. D. (2021). Incorporating the recovered carbon black produced in an industrial-scale waste tire pyrolysis plant into a natural rubber formulation. Journal of Environmental Management, 287, 112292.
Volante, M., Fubini, B., Giamello, E., & Bolis, V. (1989). Reactivity induced by grinding in silicon nitride. J. Mater. Sci. Lett., 8(9), 1076–1078.
Watari, Koji. (2001). High Thermal Conductivity Non–Oxide Ceramics. Journal of the Ceramic Society of Japan, 109, S7-S16.
Weimer, A. W., Nilsen, K. J., Cochran, G. A., & Roach, R. P. (1993). Kinetics of carbothermal reduction synthesis of beta silicon carbide. AlChE J., 39(3), 493–503.
Wang, H., Bi, Y., Zhou, N., & Zhang, H. (2016). Preparation and strength of SiC refractories with in situ β-SiC whiskers as bonding phase. Ceramics International, 42(1), 727–733.
Wang, D., Xue, C., Bai, H., & Jiang, N. (2015). Silicon carbide nanowires grown on graphene sheets. Ceramics International, 41(4), 5473–5477.
Wang, Zhao & Dai, Xiao-Yuan & Xu, Shao-Peng & Xu, Man. (2017). Preparation of SiC Powders by Carbonthemal Reduction Method at Low Temperature. MATEC Web of Conferences. 114. 02015.
Wang, J., Zhang, Y., Li, J., Zhang, H., Song, S., & Zhang, S. (2017). Catalytic effect of cobalt on microwave synthesis of β-SiC powder. Powder Technology, 317, 209–215. ‌
Wei, B., Zhou, J., Yao, Z., Haidry, A. A., Qian, K., Lin, H., Guo, X., & Chen, W. (2020). Excellent microwave absorption property of nano-Ni coated hollow silicon carbide core-shell spheres. Applied Surface Science, 508, 145261.
Wu, I-Feng., & Liao, Y.-C. (2021). A chemical milling process to produce water-based inkjet printing ink from waste tire carbon blacks. Waste Management, 122, 64–70.
‌Wright NG (2006). Silicon carbide. In: Kirk-Othmer Encyclopedia of Chemical Technology. In Kirk‐Othmer Encyclopedia of Chemical Technology, (Ed.), 524–2546.
Wypych, G. (2016). FILLERS – ORIGIN, CHEMICAL COMPOSITION, PROPERTIES, AND MORPHOLOGY. Handbook of Fillers, 13–266.
W.J. Xu, Y. Xu, X.Y. Sun, Y.Q. Liu, D. Wu, Y.H. Sun. (2006). Fabrication of tower like β-SiC by sol-gel and carbothermal reduction processing. New Carbon Mater, 21 , 167–170
Xi G, Yu S, Zhang R, Zhang M, Ma D, Qian Y.(2005). Crystalline Silicon Carbide Nanoparticles Encapsulated in Branched Wavelike Carbon Nanotubes:  Synthesis and Optical Properties J. Phys. Chem. B, 109 .27 13200-13204
Xue, C., Gao, H., & Hu, G. (2020). Viscoelastic and fatigue properties of graphene and carbon black hybrid structure filled natural rubber composites under alternating loading. Construction and Building Materials, 265, 120299.
Yang, Y., Yang, K., Lin, Z.-M., & Li, J.-T. (2007). Mechanical-activation-assisted combustion synthesis of SiC. Mater. Lett., 61(3), 671–676.
Yakimova, R., Vasiliauskas, R., Eriksson, J., & Syväjärvi, M. (2012). Progress in 3C-SiC Growth and Novel Applications. Materials Science Forum, 711, 3–10.
Youm, M.-R., Park, S.-W., Kim, Y.-W., Youm, M.-R., Park, S.-W., & Kim, Y.-W. (2013). Effect of the C/Si Molar Ratio on the Characteristics of β-SiC Powders Synthesized from TEOS and Phenol Resin. J. Korean Ceram. Soc., 50(1), 31.
Yakimova, R., Vasiliauskas, R., Eriksson, J., & Syväjärvi, M. (2012). Progress in 3C-SiC Growth and Novel Applications. Materials Science Forum, 711, 3–10.
Zawrah, M. F., Zayed, M. A., & Ali, M. R. K. (2012). Synthesis and characterization of SiC and SiC/Si3N4 composite nano powders from waste material. J. Hazard. Mater., 227–228, 250–256.
Zhang, H., Ding, W., He, K., & Li, M. (2010). Synthesis and Characterization of Crystalline Silicon Carbide Nanoribbons. Nanoscale Research Letters, 5(8), 1264–1271.
Zhou, X., Wang, N., Lai, H., Peng, H., Bello, I., Wong, N., … Lee, S. (1999). beta-SiC nanorods synthesized by hot filament chemical vapor deposition. Appl. Phys. Lett., 74(26), 3942.
Zhang, X., Huang, X., Wen, G., Geng, X., Zhu, J., Zhang, T., & Bai, H. (2010). Novel SiOC nanocomposites for high-yield preparation of ultra-large-scale SiC nanowires. Nanotechnology, 21(38), 385601.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top