跳到主要內容

臺灣博碩士論文加值系統

(34.204.181.91) 您好!臺灣時間:2023/10/05 03:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張智韶
研究生(外文):CHANG,CHIH-CHAO
論文名稱:一個使用遺傳演算法套用於臺指選擇權之交易模型研究
論文名稱(外文):A Study of Taiwan Stock Exchange Capitalization Weighted Stock Index (TAIEX) Options Trading Models Using Genetic Algorithms
指導教授:黃建峯黃建峯引用關係
指導教授(外文):HUANG,CHIEN-FENG
口試委員:張志向陳志忠
口試委員(外文):CHANG,CHIH-HSIANGCHEN,CHI-CHUNG
口試日期:2021-09-15
學位類別:碩士
校院名稱:國立高雄大學
系所名稱:資訊工程學系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2021
畢業學年度:110
語文別:中文
論文頁數:51
中文關鍵詞:遺傳演算法人工智慧衍生性金融商品臺指選擇權交易策略
外文關鍵詞:genetic algorithmsfinancial derivativesTAIEX Optionstrading strategies
相關次數:
  • 被引用被引用:1
  • 點閱點閱:100
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究使用了遺傳演算法,在不考慮選擇權波動率的情況下,透過基因編碼演化的機器學習方式,以發掘臺指選擇權這項衍生性金融商品的交易策略,並使用時間交叉驗證的方式來證明使用遺傳演算法這個人工智慧方式所訓練出來的交易模型確實可以在臺指選擇權這項衍生性金融商品上得到不錯的獲利效果,透過此研究我們希望能更進一步推動AI於金融投資領域的進展。
In this study, Genetic Algorithm (GA) was employed to search for effective trading strategies of financial derivatives such as Taiwan Stock Exchange Capitalization Weighted Stock Index (TAIEX) Options. Without considering the volatility of the options, through the GA we intend to investigate how the trading strategies developed by the GA are able to achieve much higher profits on TAIEX Options compared with the buy-and-hold strategy. We provide several ways to examine the experimental results, including temporal validation, cumulative return performance on investment, as well as confusion matrix. These examinations indeed demonstrate that the GA-based methodology is effective and we expect the proposed methodology to advance the current state of artificial intelligence in the application of investment.
摘要
致謝
圖目錄
表目錄
1. 導論
1.1 研究背景
1.2 研究目的
2. 文獻探討
2.1 臺指選擇權相關文獻
2.2 選擇權介紹
2.3 選擇權類型
2.4 選擇權報價方式
2.5 選擇權的價內、價外
2.6 選擇權的損益計算
2.7 Black-Sholes 選擇權評價公式
2.8 人工智慧相關文獻
2.9 遺傳演算法與衍生性金融商品之相關研究文獻
3 研究方法
3.1 資料來源
3.2 遺傳演算法
3.2 改良型的基因編碼方式
3.3 適應性函數
3.4 研究結果
3.5 計算適應函數值並進行選擇及淘汰
3.6 交配
3.7 突變
4. 時間驗證
4.1 時間驗證法
4.2 演算法迭代設定
4.3 驗證結果
5. 結論與建議
6. 參考文獻
附錄A

[1]Christensen, B. J. and Prabhala N. R. (1998), “The relation between implied and realized volatility”, Journal of Financial Economics, vol. 50, issue 2, pp. 125–150.

[2]莊益源、張鐘霖、王祝三(2003)。波動率模型預測能力的比較-以臺指選擇權為例。台灣金融財務季刊,第4卷,第2期:41-63頁。

[3]姚伊蔚(2015)。波動性預測與未來股價預測比較-以臺指選擇權為例。臺灣大學財務金融研究所碩士論文。

[4]C. F. Huang, “A hybrid stock selection model using genetic algorithms and support vector regression”, Applied Soft Computing Journal, vol. 12, no. 2, pp. 807–818, 2012.

[5]廖四郎、王昭文(2019)。期貨與選擇權(第五版修訂,206-208頁)。臺北市:新陸書局股份有限公司。

[6]吳嘉欽(2013)。期貨與選擇權操作實務與技巧(114-115頁)。臺北市:財團法人台灣金融研訓院

[7]張傳章、謝佩芳(2016)。台灣選擇權市場交易活動之實證研究。經濟論文叢刊,第44卷,第1期:57-75頁。

[8]Black, Fischer and Scholes, M. (1973), “The Pricing of Options and Corporate Liabilities”, Journal of Political Economy, vol. 81, no.3, pp. 637–654.

[9]Merton, R. C. (1973), “Theory of Rational Option Pricing”, The Bell Journal of Economics and Management Science vol. 4, no. 1, pp. 141 – 183.

[10]Macbeth, J. D., Merville, L. J. (1979), “An Empirical Examination of the Black-Scholes Call Option Pricing Model”, The Journal of FINANCE vol. 34, issue 5, pp. 1173–1186.

[11]Bates, D. S. (2003), “Empirical option pricing: a retrospection”, Journal of Econometrics vol. 116, issue 1–2, pp. 387 – 404.


[12]Zakamouline, V. I. (2006) “European option pricing and hedging with both fixed and proportional transaction costs”, Journal of Economic Dynamic and Control vol. 30, issue 1, pp. 1–25.

[13]黃健喬(2005)。擇權定價與行為分析之探討 - Black and Scholes模型和隨機波動模型之應用。東海大學經濟所碩士論文。

[14]周恆志、杜玉振(2005)。臺指選擇權市場之套利效率(Arbitrage Efficiency Tests of the TAIEX Index Option Market)。Journal of Management & Systems, vol. 12, no. 3, pp. 1-26.

[15]許溪南、何怡滿、許羽呈(2012)。臺指選擇權以期報酬率之探討。證券市場發展季刊,第24卷,第2期:179–214頁。

[16]許溪南、何怡滿、張瓊如(2012)。KD與MA技術指標在避險時機之應用:以臺指選擇權為例。輔仁管理評論,第19卷,第1期:27-46頁。

[17]Huang, C.-F., and Li, H.-C. (2017), “An Evolutionary Method for Financial Forecasting in Microscopic High-Speed Trading Environment”, Computational Intelligence and Neuroscience, vol. 2017, Article ID 9580815, 18 pages.

[18]Tsang, E., Yung P. and Li, J. (2004), “EDDIE automation, a decision support tool for financial forecasting, “Decision Support Systems”, vol. 37, no. 4, pp. 559–565.

[19]Huang, C.-F., Hsu, C.-J., Chen, C.-C., Chang, B. R. and Li, C.-A. (2015) “An intelligent model for pairs trading using genetic algorithms,” Computational Intelligence and Neuroscience, vol.2015, Article ID 939606, 10 pages.

[20]Bernardo, D., Hagras, H. and Tsang, E. (2013) “A Genetic type-2 fuzzy logic based system for financial applications modelling and prediction,” in Proceedings of the IEEE International Conferenceon Fuzzy Systems (FUZZ-IEEE ’13), pp. 1–8, Hyderabad, India.

[21]Parracho, P., Neves, R. and Horta, N.(2011), “Trading with optimized uptrend and downtrend pattern templates using a genetic Computational Intelligence and Neuro science algorithm kernel” in Proceedings of the IEEE Congress of Evolutionary Computation (CEC ’11), pp. 1895–1901.


[22]Araújo, R. d. A. and Ferreira, T. A. E. (2013), “A Morphological Rank Linear evolutionary method for stock market prediction,” Information Sciences, vol. 237, pp. 3–17.


[23]Armano, G., Marchesi, M., Murru, A. (2005), “A hybrid genetic-neural architecture for stock indexes forecasting,” Information Sciences vol. 170, issue 1, pp. 3–33.

[24]Gupta, P., Mehlawat, M. K. and Mittal, G. (2012), “Asset portfolio optimization using support vector machines and real coded genetic algorithm,” Journal of Global Optimization, vol. 53, no.2, pp. 297–315.

[25]Rankovic, V. , Drenovak, M. , Stojanovic, B. , Kalinic, Z. and Arsovski, Z. (2014), “The mean-value at risk static portfolio optimization using genetic algorithm,” Computer Science and Information Systems, vol. 11, no. 1, pp. 89–109.

[26]Tymerski, R., Greenwood, G., and Sills, D. (2016), “Equity Option Strategy Discovery and Optimization Using a Memetic Algorithm,” Artificial Life and Computational Intelligence, pp. 25-38.

[27]Constantine, D. M., Tymerski, R., Greenwood, G. (2020), “Differential Evolution Optimization of the Broken Wing Butterfly Option Strategy,” Technology and Investment 11(03), pp. 23-45.

[28]Holland, J. H. (1975), “Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence,” University of Michigan Press, Ann Arbor.

[29]Cochen, G. and Cabiri, E. (2015), “Can technical oscillators outperform the buy and hold strategy?” Applied Economics, vol. 47(30), pp. 3189-3197.

[30]余尚武、郭至軒(2004)。The Application of Genetic Algorithm and Fuzzy Theory to Investment Strategies of Taiwan Stock Index Futures。Web Journal of Chinese Management Review, vol. 7, no. 2.

[31]林奇炫(2017)。一個關於高頻交易之財務預測模型強健性的比較性研究。高雄大學資訊工程研究所碩士論文。


[32]Goldberg, D. E. and Deb, K. (1991). “Comparative Analysis of Selection Schemes Used in Genetic Algorithms,” Foundation of Genetic Algorithms, pp,. 69-93.

[33]De Jong, K. A., Spears, W. M. and Gordon, D. A. (1993), “Using Genetic Algorithms for Concept Learning,” Machine Learning, 13, 161-188, 1993.

電子全文 電子全文(網際網路公開日期:20261122)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊