(3.239.56.184) 您好!臺灣時間:2021/05/13 12:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:趙長威
研究生(外文):CHAO,CHANG-WEI
論文名稱:利用真空壓鑄系統製備無鉛焊錫合金奈米線之研究與分析
論文名稱(外文):Research and Analysis on Preparation of Lead-Free Solder Alloy Nanowires by Hydraulic Vacuum Injection Method
指導教授:洪千萬陳建仲陳建仲引用關係
指導教授(外文):HUN,CHIEN-WANCHEN,CHIEN-CHON
口試委員:陳志遠陳建仲洪千萬
口試委員(外文):CHEN,CHIH-YUANCHEN,CHIEN-CHONHUN,CHIEN-WAN
口試日期:2020-10-28
學位類別:碩士
校院名稱:國立聯合大學
系所名稱:機械工程學系碩士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:109
語文別:中文
論文頁數:104
中文關鍵詞:無鉛銲錫陽極氧化鋁模板真空壓鑄模具
外文關鍵詞:lead-free solderanodic aluminum oxidevacuum hydraulic Mold
相關次數:
  • 被引用被引用:0
  • 點閱點閱:32
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
一維奈米結構材研究與日俱增,許多不同製造奈米線的方法已被研究開發,但常受限於製程繁瑣以及儀器設備昂貴,且製程時間甚長,相對地使量產與成本上受到了限制,本研究提供了一便利且完整製作合金奈米線的方法,包括真空腔體的設計、氧化鋁奈米模板的製作與奈米線真空壓鑄方法等,利用本篇論文的製作方法可以以簡單、快速、穩定且低成本的方式製造出高密度的奈米線。隨著科技業的發展,精密電子元件的焊接需要尺寸更小的焊接材料,將奈米技術應用於電子封裝可被視為微電子技術中的一種可能方法,其中,無鉛焊錫例如Sn - 3.0 wt.%Ag - 0.5 wt. %Cu (SAC305)合金具有良好的潤濕性與機械性質,是微電子設備中連接的常用焊料,本研究利用草酸對5N(99.999%)純鋁進行陽極處理,製作出孔徑約為80 nm、厚度為100 μm、孔密度為1010 孔/cm2 的陽極氧化鋁模板,並透過真空壓鑄法將無鉛焊錫合金熔液壓鑄至具有奈米管結構的陽極氧化鋁模板內,待熔液凝固後可形成無鉛焊錫合金奈米線,透過SEM觀察製作出之無鉛焊錫合金奈米線填充率皆可達90%以上,而持壓時間及製程溫度將影響合金奈米線的型態,透過EDS確認壓鑄前後SAC305塊材、奈米線陣列的元素化合比均保持固定,並擁有相近的元素分佈,且未有其他元素混入奈米線內。
One-dimensional nano-structure materials for example, nanowires are interesting in the research and is increasing day by day. The manufacturing methods and processes of nanowires have been developed, however, the high cost and complex processes has relatively affected mass production. In order to develop an efficient process to fabricate nanowires, this research provides a convenient method of making alloy nanowires, the method including designed of vacuum chambers, fabricated nano-template of anodic aluminum oxide, and nanowires formation by the vacuum hydraulic injection process. There are advantages of fast mass production, low cost, and high quality of nanowires formation by injection metal melt into nana-template. The applications of nanotechnology to electronic packaging can be regarded as a possible method in microelectronics technology. Among them, lead-free solder such as Sn-3.0 wt .%Ag-0.5 wt. %Cu (SAC305) alloy has good wettability and mechanical properties which solder is always required using for connection in microelectronic devices. In this theses, first, an anodic aluminum oxide templates with pore diameter of 80 nm, film thickness of 100 μm, and pore density of 1010 pore/cm2 were fabricated by anodization process on a pure aluminum sheet. Second, lead-free solder alloy melt was injected in the nano-template and then solidified to lead-free solder alloy nanowires. The nanowires microstructure and composition were observer and detected by SEM and EDS.
致 謝 I
摘 要 II
Abstract III
目 錄 IV
表目錄 VII
圖目錄 VIII
第一章 前言 1
第二章 文獻回顧 4
2-1無鉛銲錫合金發展 4
2-1-2無鉛銲錫之性質特性需求 5
2-1-3 常用無鉛銲錫之種類 10
2-2 奈米材料 16
2-2-1 奈米線的製備 17
2-3陽極氧化鋁(AAO) 28
2-3-1 陽極氧化鋁之成長條件 30

第三章 實驗方法 37
3-1 陽極氧化鋁奈米模板製作 37
3-2 真空壓鑄法製作無鉛銲錫合金奈米線 40
3-3 SAC305合金奈米線量測與分析 42
3-3-1 掃描式電子顯微鏡 42
3-3-2 能量散射光譜儀 43
第四章 結果與討論 44
4-1電解拋光及陽極氧化鋁模具設計與製作 44
4-2 5N純鋁電解拋光 49
4-3 陽極處理反應槽系統設計設計與製作 52
4-4 陽極氧化鋁奈米模板顯微結構 55
4-5 真空壓鑄腔體設計與製作 60
4-6合金奈米線之成形機制 65
4-7 合金奈米線提取 72
4-8量測與分析 74
4-8-1 SCA305塊材成份分析 74
4-8-2 奈米線成份分析 77
第五章 結論與未來展望 78
5-1 結論 78
5-2 未來展望 79
參考文獻 80


[1]Atalay, F. E., et al. "Nanowires of lead-free solder alloy SnCuAg." Journal of Nanomaterials 2011.
[2]P. T. Vianco and D. R. Frear,“ Issues in the Replacement of Lead- BearingSoldering”,JOM,Vol.45,No.7,1993,pp.14-19
[3]R.R.Tummala,Fundamentals of Microsystems Packaging, McGRAW-HILL, Chap. 21, p. 856, 2001.
[4]R.R.Tummala,E.J.Rymaszewski and A. G. Klopfenstein,Microelectronics packaging handbook, Chapman, New York, 1997.
[5]Minges, Merrill L. Electronic materials handbook: packaging. Vol. 1. Asm International, 1989.
[6]Abtew, Mulugeta, and Guna Selvaduray. "Lead-free solders in microelectronics." Materials Science and Engineering: R: Reports 27.5-6 (2000): 95-141.
[7]Simon Green, Deborah Lea and Christopher Hunt, NPL Report CMMT(A)213, pp.1-10, (Aug. 1999).
[8]P. Cox and G. Drys, “Directive 2011/65/EU of the European Parliament and of the Council of 8 June 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment,” Official Journal of the European Union, 2011.
[9]K. Jung and H. Conrad, “Microstructure coarsening during static annealing of 60Sn40Pb solder joints: I stereology”, J. Electron. Mater., Vol. 30, p. 1294, 2001.
[10]游善溥,“錫鋅系無鉛銲錫與銅基材間附著性與界面反應之研究”,博士論文,成功大學材料科學及工程學系,第一章,2000
[11]J. London and D.W. Ashall, Brazing Soldering, Vol. 10(17-20), p. 23, 1986.
[12]Y. kariya, Y. Hirata, M. Otsuka, “Effect of thermal cycles on the mechanical strength of quad flat pack leads/Sn-3.5Ag-X(X=Bi and Cu) solder joints”, Journal of Electronic Materials, Vol.28, No.11, pp.1263-1269, May 1999.
[13]Rudolf Strauss,“ Surface Mount Technology ” Butterworth-Heinemann Ltd.,1994
[14]C.Y. Huang, K. Srihari, A.J. McLenaghan, and G.R. Westby, “Fluxactivity evolution using the wetting balance”, IEEE/CPMT, Int’lElectron. Manufact. Tech. Symposium, p. 344, 1995.
[15]B. Nicholson and D. Bloomfield, Soldering & Surface Mount Technology,Vol.10, p. 23, 1992.
[16]Hung, Fei-Yi, et al. "A study of the thin film on the surface of Sn–3.5 Ag/Sn–3.5 Ag–2.0 Cu lead-free alloy." Journal of alloys and compounds 415.1-2 (2006): 85-92.
[17][J]. Journal of Alloys and Compounds , 2006 ,415 (1 -2): 85-92.
[18]Abtewa M, Selvaduray G. Lead-free Solders in Microelectronics [J]. Materials Science and Engineering: R,2000 ,27 (2):95-141.
[19]Chen X, Hu A, Li M , et αl. Study on the properties of Sn-9Zn-xCr lead-free solder [J]. Journal of Alloys and Compounds,2008 ,460(1-2) :478-484.
[20]Hsiung, C. K., et al. "Solder bump oxidation prevention by fabricating thermal oxidation barrier layer of wafer level process." 2007 International Microsystems, Packaging, Assembly and Circuits Technology. IEEE, 2007.
[21]National Institute of Standards and Technology (NIST).
[22]T.A. Powers, T.J. Singler, and J.A. Clum, “Role of tin content in the wetting of Cu and Au by tin-bismuth solders”, Journal of Electronic Materials, Vol.23, pp.773-778, 1994
[23]W.J. Tomlinson, and I. Collier, “The mechanical properties and microstructures of copper and brass joints soldered with eutectic tin-bismuth solder”, Journal of Materials Science, Vol. 22, pp.1835-1839, 1987.
[24]W. Allen, and J. Perepezko, “Constitution of the Tin-Antimony system”, Scripta Metallurgica et Materialia, Vol. 24, pp.2215-2220, 1990
[25]M. McCormack, and S. Jin, “Progress in the design of new lead-free solder alloys”, JOM, July, pp.36, 1993.
[26]Hsu, Hsiu-feng, and Sinn-wen Chen. "Phase equilibria of the Sn–Ag–Ni ternary system and interfacial reactions at the Sn–Ag/Ni joints." Acta materialia 52.9 (2004): 2541-2547.
[27]O. C. Cui,X. J. Liu,Y. Inohana,S. Ishihara,H. Ohtani,R. Kainuma, and K. Ishida,Journal of Electronic Materials,Vol.29,No.10,2000, pp.1113-1121
[28]K. N. Tu,“ Cu/Sn Interface Reactions : thin-film case versus bulk case”,Materials Chemistry and Physics,1996, pp.217-223
[29]Simon Green, Deborah Lea and Christopher Hunt, NPL Report CMMT(A)213, pp.1-10,(Aug. 1999).
[30]N. Saunders and A. P. Miodownik, Bulletin of Alloy Phase Diagrams, Vol. 11(3), pp. 278-287, (1990)
[31]C.K. Shin, Y.J. Baik, and J.Y. Huh, “Effects of microstructural evolution and intermetallic layer growth on shear strength of ball-gridarray Sn-Cu solder joints”, Journal of Electronic Materials, Vol.30, pp.1323, 2001.
[32]Lee, T. Y., et al. "Morphology, kinetics, and thermodynamics of solid-state aging of eutectic SnPb and Pb-free solders (Sn–3.5 Ag, Sn–3.8 Ag–0.7 Cu and Sn–0.7 Cu) on Cu." Journal of Materials Research 17.2 (2002): 291-301.
[33]I. Karakaya and W. T. Thompson, Binary Alloy Phase Diagrams, 1, pp. 94-97(1991).
[34]N. C. Lee,“ Getting Ready for Lead-Free Solders”,Soldering & Surface Mount Technology,No.26,July 1997,p.65
[35]V.I. Igoshev, and J.I. Kleiman, “Creep phenomena in lead-free solders”, Journal of Electronic Materials, Vol.29, pp.244-250, 2000.
[36]M. M Cormack and S. Jin,“New,Lead-Free SolderS”,Journal of Electronic Materials,Vol.23,No.7,1994,p.635
[37]Karakaya and W. T. Thompson , “ ASM Handbook,Vol.3 : Alloy Phase Diagrams ”,ed. By H. Baker and H. Okamoto,ASM Internatio- nal,Materials Park,Ohio,1992,pp.2-335
[38]Kang, Sung K., and Amit K. Sarkhel. "Lead (Pb)-free solders for electronic packaging." Journal of Electronic Materials 23.8 (1994): 701-707.
[39]J. W. morris,J. L. Freer Goldstein and Z. Mei,JOM,Vol.45,No.7, July 1993,pp.25-27
[40]J. L. Freer and J. W. Morris,“Microstructure and Creep of Eutectic Indium/Tin on Copper and Nikel Substrates ”,Journal of Electronic Materials,Vol.21,No.6, 1992,pp.647-652
[41]Kattner, Ursula R. "Phase diagrams for lead-free solder alloys." Jom 54.12 (2002): 45-51.
[42]Ed. T. Lyman,H. E. Bouer,W. J. Carnes,“Maters Handbook Vol.8 Metallography Structures and PhaseDigrams” ,pp. 256.
[43]C. M. Miller, I. E. Anderson, and J. F. Smith, “A viable Tin-Lead solder substitute: Sn-Ag-Cu”, Journal of Electronic Materials, Vol.23, pp.595-601, 1994.
[44]M. Muller, S. Wiese, and K.J. Wolter, “Influence of Cooling Rate and Composition on the Solidification of SnAgCu Solders,” Electronics Systemintegration Technology Conference, Vol. 2, 2006, pp. 1303-1311.
[45]K.Kim, S. Huh, and K. Suganuma, “Effects of Cooling Speed on Microstructure and Tensile Properties of Sn-Ag-Cu Alloys,” Materials Science and Engineering: A, Vol. 333(1-2) , 2002, pp. 106-114.
[46]Sundelin, Janne J., et al. "Mechanical and microstructural properties of SnAgCu solder joints." Materials Science and Engineering: A 420.1-2 (2006): 55-62.
[47]A. Hirose,H. Yanagawa,E. Ide and K. F. Kobayashi,“Joint Strength and Interfacial Microstructure between Sn-Ag-Cu and Sn-Zn-Bi Advanced Solders and Cu Substrate”,Science and Technology of Materials,vol. 5,2004, pp. 267-276.
[48]S. L. Allen, M. R. Notis,R. R. Chromik and R. P. Vinci,“Microstructural Evolution in Lead-Free Solder Alloys: Part II. Directionally Solidified Sn-Ag-Cu, Sn-Cu and Sn-Ag”,Journal of Materials Research,vol. 19,2004,pp. 1425-1431.
[49]X. Deng,N. Chawla, K. K. Chawla and M. Koopman,“Deformation Behavior of (Cu,Ag)-Sn Intermetallics by Nanoindetation”,Actan Materialia,no. 52,2004,pp. 4291-4303.
[50]S. L. Allen,M. R. Notis,R. R. Chromik and R. P. Vinci,“Microstructural Evolution in Lead-Free Solder Alloys: Part I. Cast Sn-Ag-Cu eutectic”,Journal of Materials Research,vol. 19,2004,pp.1417-1424.
[51]C.E. Ho, R.Y. Tsai, Y.L. Lin, and C.R. Kao, “Effect of Cu concentration on the reactions between Sn-Ag-Cu solders and Ni”, Journal of Electronic Materials, Vol.31, pp.584-590, 2002.
[52]D. Jeon, S. Nieland, A. Ostmann, H. Reichl, and K.W. Paik, “A study on interfacial reactions between electroless Ni-P under bump metallization and 95.5Sn-4.0Ag-0.5Cu alloy”, Journal of Electronic Materials, Vol.32, pp.548-557, 2003.
[53]郭福,無鉛釺焊技術與應用,科學出版社,中國,2005。
[54]Q. B.Wu, S. Ren, S. Z. Deng, J. Chen, and N. S. Xu J. Vac. Sci. Technol. B22(3),1282 2004
[55]Pai-Chun Chang, Zhiyong Fan, Wei-Yu Tseng, A. Rajagopal, and Jia G. Lu, “β-Ga2O3 nanowires: Synthesis, characterization,and p-channel field-effect transistor”, Appl. Phys. Lett., 87, (2005), pp.222102.
[56]Parijat Deb, Hogyoung Kim, Yexian Qin, Roya Lahiji, Mark Olive Ronald Reifenberger, and Timothy Sands, “GaN Nanorod Schottky and p-n Junction Diodes”, Nano Lett., 6, (2006), pp.2893-2898.
[57]Y. F. Mei, Z. M. Li, R. M. Chu, and Z. K. Tang, G. G. Siu, Ricky K. Y. Fu, and Paul K. Chu, W. W. Wu and K. W. Cheah Appl. Phys. Lett 86, 021111 2005
[58]Y. B. Tang, H. T. Cong, Z.G. Zhao, and H. M. Cheng Appl. Phys. Lett 86, 153104 2005
[59]Philip G. Collins, A. Zettl, Hiroshi Bando, Andreas Thess, and R. E. Smalley, “Nanotube Nanodevice”, Science, 278, (1997), pp.100-103.
[60]Kyung-Han Jung, Jong-won Yoon, Naoto Koshizaki and Young-Soo Kwon Jpn. J.Appl. Phys. 44, 7A 5300 2005
[61]Soo-Hwan Jeong and Kun-Hong Lee Jpn. J. Appl. Phys 8B, L1106 2004
[62]B.Y.Geng, X. W. Liu, X. W. Wei, S. W. Wang, and L. D. Zhang, “Low-Temperature Growth of β-Ga2O3 Nanobelts Through a Simple Thermochemical Route and Their Phonon Spectra Properties”, Appl. Phys. Lett., 87, (2005), pp.113101.
[63]Bingqiang Cao, Weiping Cai, Yue Li, Fengqiang Sun and Lide Zhang Nanotechnology 16 1734 2005
[64]Chi-Liang Kuo, Tz-Jun Kuo, and Michael H. Huang J. Appl. Chem. B 2005, 109 20115
[65]Hideki Masuda and Masahiro Satoh Jpn. J. Appl. Phys. 35 L126 1996
[66]Seung Min Park and Chang Hyun Bae, Woosung Nam, Sung Chan Park, and Jeong Sook Ha Appl. Phys. Lett 86 023104 2005
[67]S. Iijima, “Helical Microtubules of Graphitic Carbon”,Nature, 354, (1991), pp.56-58.
[68]Y.M. Wan, H.T. Lin, C.L. Sung, S.F. Hu, Appl. Phys. Lett. 2005, 87, 123506.
[69]G.F. Wang, T.J. Wang, X.Q. Feng, Appl. Phys. Lett. 2006, 89, 231923.
[70]Jiang, Y.; Zhang, W. J.; Jie, J. S., et al., Adv. Mater. 2006, 18, 1527-1532.
[71]Li, X. L., et al. "Alumina template-assisted electrodeposition of Bi2Te2. 7Se0. 3 nanowire arrays." Superlattices and Microstructures 47.6 (2010): 710-713.
[72]Sanmathi, C. S., et al. "Microstructure control on thermoelectric properties of Ca0. 96Sm0. 04MnO3 synthesised by co-precipitation technique." Materials Research Bulletin 45.5 (2010): 558-563..
[73]Liu, Aihua, et al. "Vanadium-oxide nanotubes: Synthesis and template-related electrochemical properties." Electrochemistry communications 9.7 (2007): 1766-1771..
[74]Jiao, Li-Fang, et al. "Synthesis of Cu0. 1-doped vanadium oxide nanotubes and their application as cathode materials for rechargeable magnesium batteries." Electrochemistry communications 8.6 (2006): 1041-1044.
[75]Wang, Y.; Cao, G., Electrochim. Acta, 51, (2006): 4865-4872.
[76]M. S. Sander, R. Gronsky, Y. M. Lin, and M. S. Dresselhaus, “Plasmon Excitation Modes in Nanowire Arrays”, J. Appl. Phys., 89, (2001), pp.2733-2736.
[77]Yiying Wu, and Peidong Yang, “Germanium/Carbon Core-Sheath Nanostructures”, Appl. Phys. Lett., 77, (2000), pp.43-45.
[78]S. Z. Chu, K. Wada, S. Inoue, S. I. Todoroki, Chem. Mater. 2002 14 266.
[79]M. S. Sander, M. J. Cote, W. Gu, B. M. Kile, C. P. Tripp, Adv. Mater.2004, 16, 18.
[80]Wu, Jih-Jen, and Sai-Chang Liu. "Catalyst-free growth and characterization of ZnO nanorods." The Journal of Physical Chemistry B 106.37 (2002): 9546-9551.
[81]Isabelle, R.; Marko, B.; Ulrich, S., et al., Sensors Actuat. B- Chem. 2005, 106, 730-735.
[82]Liu, J. F.; Wang, X.; Peng, Q., et al., Adv. Mater. 2005, 17, 764.
[83]Bakhteeva, Y. A.; Podval’naya, N. V.; Volkov, V. L., Inorg. Mater. 2010, 46, 1112-1114.
[84]Grigorieva, A. V.; Badalyan, S. M.; Goodilin, E. A., et al., Eur. J. Inorg. Chem. 2010, 2010, 5247-5253
[85]Xiong, C. R.; Aliev, A. E.; Gnade, B., et al., Acs Nano 2008, 2, 293-301.
[86]Ji, S.; Zhao, Y.; Zhang, F., et al., J. Cryst. Growth 2010, 312, 282-286.
[87]V. Balzani, A. Credi, M. Venturi, Chem. Eur. J. 2002, 8, 5524.
[88]F. Burmeister, C. Schaffe, Adv. Mater. 1998, 10, 495.
[89]R. Notzel, Semicond. Sci. Technol. 1996, 11, 1365.
[90]K. E. Drexler, Engines of Creation, The Coming Era of Nanotechnology, AnchorPress, New York, 1986.
[91]Y. Yang, H. Chen, Y. Mei, J. Chen, X. Wu, and X. Bao, Solid State Commun., 123, 279 (2002).
[92]K. Nielsch, R. B. Wehrspohn, J. Barthel, J. Kirschner, U. Gösele, S. F. Fischer, and H. Kronmüller, Appl. Phys. Lett., 79, 1360 (2001).
[93]M. Zheng, L. Menon, H. Zeng, Y. Liu, S. Bandyopadhyay, R. D. Kirby, and D. J. Sellmyer, Phys. Rev. B, 62, 12282 (2000).
[94]G. J. Strijkers, J. H. J. Dalderop, M. A. A. Broeksteeg, H. J. M. Swagten, and W. J. M. de Jonge, J. Appl. Phys., 86, 5141 (1999).
[95]H. Cao, C. Tie, and Z. Xu, Appl. Phys. Lett., 78, 1592 (2001).
[96]G. S. Cheng, S. H. Chen, X. G. Zhu, Y. Q. Mao, L. D. Zhang, Mater. Sci. Eng., A, 286, 165 (2000).
[97]W. Kim, S. Park, J. Son, and H. Kim, Nanotechnology, 19, 045302 (2008).
[98]R. S. Wagner and W. C. Ellis, Appl. Phys. Lett. 4, 89-90 (1964)
[99]Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, H. Yan, Adv.Mater. 2003, 15, 353.,
[100]M. Gudiksen et al., J. Am. Chem. Soc., 122, 8801 (2000).
[101]Sears, G. W. "A growth mechanism for mercury whiskers." Acta metallurgica 3.4 (1955): 361-366.
[102]Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, H. Yan, Adv.Mater. 2003, 15, 353.
[103]Z. W. Pan, Z. R. Dai, and Z. L. Wang, Science 291, 1947 (2001).
[104]Z. L. Wang, Materials Today, 7 (6), 26 (2004).
[105]Hanrath, Tobias, and Brian A. Korgel. "Supercritical fluid–liquid–solid (SFLS) synthesis of Si and Ge nanowires seeded by colloidal metal nanocrystals." Advanced Materials 15.5 (2003): 437-440.
[106]N. Wang, Y. Cai a, R.Q. Zhang, Materials Science and Engineering R, 60, 1 (2008)
[107]Zu Rong, D.; Zheng Wei, P. and Wang, Z. L. "Novel nanostructuresof functional oxides synthesized by thermal evaporation." AdvancedFunctional Materials 2003, 13(1): 9-24.
[108]Michael H. Huang, Samuel Mao, Henning Feick, Haoquan Yan, Yiying Wu, Hannes Kind, Eicke Weber, Richard Russo, Peidong Yang, Science, 292, 1897, 2001
[109]Zu Rong Dai, Zheng Wei Pan, and Zhong L. Wang, Adv. Funct. Mater.,13, 9, 2003
[110]Dai, Ying, et al. "Synthesis and optical properties of tetrapod-like zinc oxide nanorods." Chemical Physics Letters 358.1-2 (2002): 83-86.
[111]Palasantzas, G., et al. "Fabrication of Co/Si nanowires by ultrahigh-vacuum scanning tunneling microscopy on hydrogen-passivated Si (100) surfaces." Journal of applied physics 85.3 (1999): 1907-1910.
[112] V. Schmidt, J. V. Wittemann, S. Senz, and U. Gosele, Adv. Mater. 21.25-26 (2009): 2681-2702
[113]Morales, Alfredo M., and Charles M. Lieber. "A laser ablation method for the synthesis of crystalline semiconductor nanowires." Science 279.5348 (1998): 208-211.
[114]Wagner, R. S. a. E., W.C., Vapor-Liquid-Solid mechanism of single crystal growth. Appl. Phys. Lett. 1964, 4(5), 89-90.
[115]Alfredo M. Morales and Charles M. Lieber, Science, 279, 208, 1998
[116]Y. F. Zhang, Y. H. Zhang, N. Wang, D. P. Yu, C. S. Lee, I. Bello, S. T. Lee, Appl. Phys. Lett., 72, 1835 (1998)
[117]Y. F. Zhang, Y. H. Tang, X. F. Duan, Y. Zhang, C. S. Lee, N. Wang, I. Bello, S. T. Lee, Chem. Phys. Lett., 323, 180 (2000)
[118]N. Wang, Y. Cai a, R.Q. Zhang, Materials Science and Engineering R, 60, 1 (2008)
[119]G.E. Thompson, G.C. Wood, Nature 1981, 290, 230.
[120]Ying, United States Patent, 2001 Patent No. 6231744.
[121]K. Ebihara, H. Takahashi, J. Met. Finish. Soc. Jap. 1983, 34,, 548.
[122]J. Li, C. Papadopoulos, Nature, 1999, 402, 253.
[123]S.Y. Chou, P.R. Krauess, J. Appl. Phys. 1996, 79, 6101.
[124]S.Y. Chou, P.R. Krauess, Scr. Metall. Mater. 1995, 33, 1537
[125]Lionel Vayssieres, Niclas Beermann, Sten-Eric Lindquist, and Anders Hagfeldt, Chem. Mater., 13, 233, 2001
[126]Zhi-ChaoMeng,Li-YinGao,Zhi-QuanLiu,Materials Characterization Volume 163, May 2020, 110278
[127]N.I. Kovtyukhov, B.R. Martin, Mater. Sci. Eng. C 2002, 19, 255.
[128]Y. Li, G. S. Cheng, and L. D. Zhang, J. Mater. Res. 15, 2305 (2000).
[129]Z. Wang and H.L. Li, Appl. Phys. A 74, 201 (2002).
[130]K. Nielsch, R. B. Wehrspohn, J. Barthel, J. Kirschner, U. Gösele, S. F. Fischer, and H. Kronmüller, Appl. Phys. Lett., 79, 1360 (2001).
[131]W. Zhang, W. Li, L. Zhang, S. Yao, Acta Phys. Chim. Sin., 22, 977 (2006).
[132]G. A. Gelves, Z. T. M. Murakami, M. J. Krantz, and J. A. Haber, J. Mater. Chem., 16, 3075 (2006).
[133]Z. Zhibo and Y.Y. Jackie, J. Mater. Res. 1998, 13, 1745
[134]A. Govyadinov, P. Mardilovich, Electrochem. Soc. Porceedings 2000, 28, 74.
[135]B. B. Lakshmi, P. K. Dorhout, and C. R. Martin, Chem. Mater. 9, 857 (1997).
[136]J. S.Beck, J. C.Vartuil, W. J.Roth, et al., J. Am.Chem. Soc. 1992, 114.
[137]R.V. Parthasarathy, K.L.N. Phani, C.R. Martin,Adv. Mater., 1995, 7, 896.
[138]C.C. Chen, C.G. Kuo, J.H. Chen, C.G. Chao, Jpn. J. of Appl. Phys. 2004, 43, 8354.
[139]C.C. Chen, C.G. Kuo, C.G. Chao, Jpn. J. Appl. Phys. 2005, 44, 1524.
[140]C.C. Chen, Y. Bisrat, Z.P. Luo, R.E. Schaak, C.G. Chao, D.C. Lagoudas, Nanotechnology 2006, 17, 367.
[141]J.H. Chen, C.G. Chao, J.C. Ou, T.F. Liu, Surface Science 2007, 601, 5142
[142]J.H. Chen, S.C. Lo, C.G. Chao, T.F. Liu, J. Nanosci. Nanotechnol. 2008, 8, 967.
[143]S.H. Chen, C.C. Chen, Z.P. Luo, C.G. Chao, Materials Letters 2009, 63, 1165.
[144]A.P. Alivisatos, Science 1996, 271, 933
[145]Bengough, G. D.; Stuart, J. M. Brit. Patent 223, 994, 1923
[146]Masuda, Hideki, and Kenji Fukuda. "Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina." science 268.5216 (1995): 1466-1468.
[147]Dmitri Routkevitch, Alexander N. Govyadinov, and Peter P. Mardilovich, MEMS., 2, 39 (2000).
[148]Li, F., Zhang, L. & Metzger, R. M. On the growth of highly ordered pores in anodized aluminium oxide. Chem. Mater. 10, 2470–2480 (1998)
[149]Masuda, H.; Hasegwa, F.; Ono, S. J. Electrochem. Soc. 1997, 144, L127
[150]Jessensky, O.; Muller, F.; Gösele, U. Appl. Phys. Lett. 1998, 72, 1173
[151]Li, A. P.; Muller, F.; Birner, A.; Nielsch, K.; Gosele, U. J. Appl. Phys. 1998, 84, 6023
[152]Li, J.; Moskovits, M.; Haslett, T. L. Chem. Mater. 1998, 10, 1963
[153]Li, J.; Papadopoulos, C.; Xu, J. M.; Moskovits, M. Appl. Phys. Lett. 1999, 75, 36733.
[154]Jeong, S. H.; Hwang, H. Y.; Lee, K. H.; Jeong, Y. S. Appl. Phys. Lett. 2001, 78, 2052
[155]Lee, J. S.; Suh, J. S. J. Appl. Phys. 2002, 92, 7519
[156]Martin, C. R. Chem. Mater. 1996, 8, 1739
[157]Nicewarner-Pena, S. R.; Freeman, R. G.; Reiss, B. D.; He, L.; Pena, D. J.; Walton, I. D.; Cromer, R.; Keating, C. D.; Natan, M. J. Science 2001, 294, 137
[158]Klein, J. D.; Herrick, R. D.; Palmer, D.; Sailor, M. J. Chem. Mater. 1993, 5, 902.
[159]Steinhart, M.; Wendorff, J. H.; Greiner, A.; Wehrspohn, R. B.; Nielsch, K.; Schilling, J.; Choi, J.; Gösele, U. Science. 2002, 296, 1997
[160]S. Kawai and R. Ueda, J. Electrochem. Soc. 122, 32 (1975).
[161]M. Shiraki, Y. Wakui, 1. Tokushima, N. Tsuya, IEEE Trans. Magn. MAG-21, 1465 (1985).
[162]M. Saito, M. Kirihara, T. Taniguchi, M. Miyagi, Appl. Phys. Lett. 55, 607 (1989)
[163]C. J. Miller and M. Majda, J. Am. Chern. Soc. 107, 3118 (1985).
[164]M. J. Tierney and C. R. Martin, J. Electrochem. Soc. 137, 3789 (1990).
[165]Yoshino and N. Baba, J. Chern. Soc. Jpn. 1983, 955 (1983).
[166]I. Mizuki, Y. Yamamoto, 1. Yoshino, N. Baba, J. Metal Surf. Finish. Soc. Jpn. 38, 561 (1987).
[167]Jessensky, O., F. Müller, and U. Gösele. "Self-organized formation of hexagonal pore arrays in anodic alumina." Applied physics letters 72.10 (1998): 1173-1175.
[168]G.E.J.Poinern,N.Ali,D.Fawcett:Materials,4(2011):487-526.
[169]Y. Li, L. Zhang, R. M. Metzger, “On the growth of highly ordered pores in anodized aluminum oxide,” Chem. Mater. 10 (1998) 2470.
[170]S. M. Sze, VLSI Technology, 2nd Edn., McGraw-Hill Book Company: NewYork (1998)
[171]Masuda, Hideki, and Masahiro Satoh. "Fabrication of gold nanodot array using anodic porous alumina as an evaporation mask." Japanese Journal of Applied Physics 35.1B (1996): L126.
[172]Li, A. P., F. Müller, and U. Gösele. "Polycrystalline and monocrystalline pore arrays with large interpore distance in anodic alumina." Electrochemical and Solid State Letters 3.3 (2000): 131.
[173]Diggle, J. Wn, Thomas C. Downie, and C. W. Goulding. "Anodic oxide films on aluminum." Chemical Reviews 69.3 (1969): 365-405.
[174]Ebihara, K. "Structure and density of anodic oxide films formed on aluminum in oxalic acid solutions." Journal of The Surface Finishing Society of Japan 34 (1983): 548-553.
[175]Ba, Long, and Wei Sang Li. "Influence of anodizing conditions on the ordered pore formation in anodic alumina." Journal of Physics D: Applied Physics 33.20 (2000): 2527.
[176]Li, Feiyue, Lan Zhang, and Robert M. Metzger. "On the growth of highly ordered pores in anodized aluminum oxide." Chemistry of materials 10.9 (1998): 2470-2480..
[177]Keene, B. J. "Review of data for the surface tension of pure metals." International Materials Reviews 38.4 (1993): 157-192.

電子全文 電子全文(網際網路公開日期:20251030)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔