跳到主要內容

臺灣博碩士論文加值系統

(44.211.26.178) 您好!臺灣時間:2024/06/15 04:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王詩晴
研究生(外文):WANG, SHIH-CING
論文名稱:小型無人機用的聚合物鋰離子電池熱失控反應研究
論文名稱(外文):Study on the Thermal Runaway Reactions of Lithium-ion Polymer Batteries used in Small Drones
指導教授:高振山高振山引用關係杜逸興杜逸興引用關係
指導教授(外文):Kao, Chen-ShanDuh, Yih-Shing
口試委員:陳俊瑜胡冠華杜逸興高振山
口試委員(外文):Chen, Chun-YuHu, Kwan-HuaDuh, Yih-ShingKao, Chen-Shan
口試日期:2021-07-27
學位類別:碩士
校院名稱:國立聯合大學
系所名稱:環境與安全衛生工程學系碩士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:180
中文關鍵詞:小型無人機聚合物鋰離子電池密閉加熱測試熱失控熱穩定性荷電狀態
外文關鍵詞:small drone batterieslithium-ion polymer batteriesclosed heat testthermal runawaythermal stabilitystate of charge
相關次數:
  • 被引用被引用:0
  • 點閱點閱:174
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
聚合物鋰離子電池(Lithium-ion polymer batteries)作為無人機(Unmanned Aircraft System, UAS)之動力電池,其具有高比電容量、導電性良好、循環壽命長和具備較耐燃高分子材料等特性。隨著無人機產業技術迅速發展,在商用和民用上的使用量與日俱增,使得電池的性能要求提高。聚合物鋰電池如果在誤操作的條件下,便會造成熱危害,其火災與爆炸事故時有所聞,因此研究相關的鋰離子電池之安全性至關重要。為了瞭解聚合物鋰離子電池之熱危害特性,本研究選用三種不同廠牌之小型無人機聚合物鋰電池,分別為ACE、Fullymax、SEFU。將電池充放電至不同荷電狀態下(25%、50% 與100% SOC),利用自行設計之密閉加熱測試儀進行熱危害試驗,根據熱失控反應的初始放熱溫度(Tonset)、臨界溫度(Tcr)、最高溫度(Tmax)、最大壓力(Pmax)、最終壓力(Pfinal)及最大升溫速率((dT/dt)max)等特性,探討小型無人機聚合物鋰電池在高溫環境下所造成之熱危害特性,並將三種電池之不同荷電狀態和不同電池廠牌之實驗結果進行比較。
藉由本研究結果可得知,小型無人機聚合物鋰電池之不同SOC實驗結果顯示隨著SOC之遞增,Tonset、Tcr呈遞減,Pmax、Pfinal、Tmax和(dT/dt)max呈遞增。三種電池廠牌之不同SOC比較,發現SEFU電池在SOC > 50%時,其Tonset最低,50%和100% SOC之Tonset最低分別為115℃和90℃;而在SOC < 50%時,其Tcr最低,SEFU電池25%和50% SOC之Tcr最低分別為203.0℃和200.5℃,熱穩定性相對較差。以及發現Fullymax電池在SOC > 50%時,其Tmax和(dT/dt)max最高,50% SOC之Tmax高達446.4℃,(dT/dt)max高達3870℃ min-1;而100% SOC之Tmax高達605.3℃,(dT/dt)max高達6720℃ min-1,因此Fullymax電池熱失控危害程度較為嚴重。另外,將本研究之小型無人機電池與18650、26650、21700電池以及手機電池之100% SOC實驗結果進行比較,發現所有電池之Tonset大約在200℃以下就會產生放熱現象。小型無人機電池之Tonset和Tcr相較於低,熱安定性較差,容易形變導致內短路後觸發熱失控。小型無人機電池之Pmax較大,氣體產生量較高,且SOC = 100%時,Tmax皆超過EC和DEC之自燃溫度,因此發生熱失控時如果在大氣環境中炸開或電解液外洩會自動著火,有爆炸與電池爆破後燃燒之危害風險。小型無人機電池之Tmax和(dT/dt)max相較於其他電池低,熱失控危害嚴重程度相較其他電池低,但仍較正極材料為磷酸鋰鐵(LFP)之圓柱形電池危害嚴重程度高。
Lithium-ion polymer battery as the power battery for drones, it has high specific power capacity, good conductivity, long cycle life and excellent fire-resistant polymer materials. With the rapid development of drone technology in industry, the application of commercial and civilian uses is increasing day by day, making the battery performance requirements to appear explosive demands. Lithium-ion polymer batteries can cause thermal hazards if operated abusively, and the resulting fires and explosions reported from time to time, so it is important to study the safety issues of related lithium-ion batteries extensively and intensively. In order to understand the thermal hazard characteristics of lithium-ion polymer batteries, three different brands of small drone lithium-ion polymer batteries were selected in this study, namely the ACE, Fullymax and SEFU. By charging the batteries to various state of charge (25%, 50% and 100% SOC), these batteries were conducted to thermal failure to verify their thermal hazards by using custom-designed instrument. Based on the data of initial exothermic temperature (Tonset), critical temperature (Tcr), maximum temperature (Tmax), maximum pressure (Pmax), final Pressure (Pfinal) and maximum heating rate ((dT/dt)max) under thermal runaway reactions, the characterization of thermal hazards of small drone lithium-ion polymer batteries have been performed and compared with the experimental results of three different brands of batteries with different charging states.
According to the results of this study, the experimental data of different SOCs of lithium-ion polymer batteries for small drones show the fact that as the SOC increases then Tonset and Tcr decreasing, however, the Pmax, Pfinal, Tmax and (dT/dt)max increasing. Comparing the different SOCs of the three battery brands, we found that SEFU battery has the lowest Tonset at SOC > 50% in conjunction with the lowest Tonset at 50% and 100% SOC are 115℃ and 90℃, respectively. Nevertheless, at SOC < 50%, the Tcr is the lowest. The lowest Tcr of SEFU cells with 25% and 50% SOC are respectively 203.0°C and 200.5°C, indicating of that the thermal stability is relatively poor. Further, we found that the Fullymax battery has the highest Tmax and (dT/dt)max at SOC > 50%, Tmax of 50% SOC is as high as 446.4℃ associating with a (dT/dt)max is as high as 3870℃ min-1. For Tmax of 100% SOC is found to be as high as 605.3℃ with the (dT/dt)max is a high value of 6720℃ min-1, therefore the much more serious of Fullymax battery under thermal runaway is deduced. In addition, comparing the thermal runaway results of 100% SOC of the small drone batteries with 18650, 26650, 21700 batteries and cell phone batteries, we found that the Tonset of all these batteries occurred at approximately 200°C or below. The Tonset and Tcr of the small drone batteries are relatively low, it is clearly that these batteries possess poor thermal stability and are prone to go into thermal runaway under abusive contingencies. Small drone batteries have larger Pmax and higher non-condensable gases generated, when the SOC = 100%, Tmax exceeds the self-ignition temperature of EC and DEC, therefore the released electrolytes from ruptured batteries will catch fire automatically under the exposure of ejecta to the air. The Tmax and (dT/dt)max of small drone batteries are lower than other cylindrical and prismatic batteries, and the severity of thermal runaway hazards is lower than other batteries, but still higher than cylindrical batteries whose cathode material is lithium iron phosphate (LFP).
誌謝 i
摘要 ii
Abstract iv
目錄 vii
圖目錄 ix
表目錄 xiii
第一章 緒論 1
1.1研究緣起 1
1.2研究背景與動機 2
1.3研究目的 5
1.4研究架構 7
第二章 文獻回顧 8
2.1 鋰離子電池之種類及結構 8
2.2 鋰離子電池之基本原理 11
2.3 正(陰)極材料(Cathode;Positive Electrode) 12
2.3.1 正極材料-鈷酸鋰(LiCoO2) 14
2.3.2 正極材料-鎳酸鋰(LiNiO2) 15
2.3.3 正極材料-錳酸鋰(LiMn2O4) 16
2.3.4 正極材料-磷酸鋰鐵(LiFePO4) 17
2.3.5 正極材料-三元系材料 19
2.4 負(陽)極材料(Anode;Negative Electrode) 21
2.5 隔離膜(Separator) 23
2.6 電解質(液)(Electrolyte) 24
2.7 鋰離子電池之熱失控(Thermal Runaway) 29
2.8 國外相關研究之文獻 32
第三章 研究方法與步驟 61
3.1實驗樣品 61
3.2實驗儀器與設備 63
3.3實驗流程步驟 68
3.4電池充放電器 70
第四章 結果與討論 74
4.1 小型無人機聚合物鋰離子電池之熱分析條件 74
4.2 空白試驗 77
4.3小型無人機聚合物鋰離子電池在不同SOC下之密閉試驗結果 79
4.3.1 格氏(ACE)聚合物鋰離子電池25%、50%、100% SOC之密閉試驗結果 79
4.3.2 富力(Fullymax)聚合物鋰離子電池25%、50%、100% SOC之密閉試驗結果 96
4.3.3 瑟福(SEFU)聚合物鋰離子電池25%、50%、100% SOC之密閉試驗結果 113
4.3.4 不同廠牌和SOC之聚合物離子鋰電池之試驗結果 130
4.3.5 不同電池廠牌之初始放熱溫度與SOC影響 135
4.3.6 不同電池廠牌之臨界溫度與SOC影響 136
4.3.7 不同電池廠牌之最大壓力與SOC影響 137
4.3.8 不同電池廠牌之最高溫度與SOC影響 138
至4.3.9 不同電池廠牌之升溫速率與SOC影響 139
4.4 小型無人機電池與18650、26650、21700電池以及手機電池之100%SOC熱穩定性比較 144
第五章 結論與建議 151
5.1 結論 151
5.2 建議 154
參考文獻 155
Allen, J. (2020). Review of polymers in the prevention of thermal runaway in lithium-ion batteries. Energy Reports, 6, 217–224. https://doi.org/10.1016/j.egyr.2020.03.027
Börger, A., Mertens, J., &Wenzl, H. (2019). Thermal runaway and thermal runaway propagation in batteries: What do we talk about? Journal of Energy Storage, 24(June), 100649. https://doi.org/10.1016/j.est.2019.01.012
Börner, M., Friesen, A., Grützke, M., Stenzel, Y. P., Brunklaus, G., Haetge, J., Nowak, S., Schappacher, F. M., &Winter, M. (2017). Correlation of aging and thermal stability of commercial 18650-type lithium ion batteries. Journal of Power Sources, 342, 382–392. https://doi.org/10.1016/j.jpowsour.2016.12.041
Bugryniec, P. J., Davidson, J. N., Cumming, D. J., &Brown, S. F. (2019). Pursuing safer batteries: Thermal abuse of LiFePO4 cells. Journal of Power Sources, 414(October 2018), 557–568. https://doi.org/10.1016/j.jpowsour.2019.01.013
Chao, C. H., Hsieh, C.Te, Ke, W. J., Lee, L. W., Lin, Y. F., Liu, H. W., Gu, S., Fu, C. C., Juang, R. S., Mallick, B. C., Gandomi, Y. A., &Su, C. Y. (2021). Roll-to-roll atomic layer deposition of titania coating on polymeric separators for lithium ion batteries. Journal of Power Sources, 482(September 2020), 228896. https://doi.org/10.1016/j.jpowsour.2020.228896
Chen, M., Ouyang, D., Weng, J., Liu, J., &Wang, J. (2019). Environmental pressure effects on thermal runaway and fire behaviors of lithium-ion battery with different cathodes and state of charge. Process Safety and Environmental Protection, 130, 250–256. https://doi.org/10.1016/j.psep.2019.08.023
Chidambaranathan, B., Vijayaram, M., Suriya, V., Sai Ganesh, R., &Soundarraj, S. (2020). A review on thermal issues in Li-ion battery and recent advancements in battery thermal management system. Materials Today: Proceedings, 33, 116–128. https://doi.org/10.1016/j.matpr.2020.03.317
Costa, C. M., Lee, Y. H., Kim, J. H., Lee, S. Y., &Lanceros-Méndez, S. (2019). Recent advances on separator membranes for lithium-ion battery applications: From porous membranes to solid electrolytes. Energy Storage Materials, 22(May), 346–375. https://doi.org/10.1016/j.ensm.2019.07.024
Duh, Y. S., Theng, J. H., Chen, C. C., &Kao, C. S. (2020). Comparative study on thermal runaway of commercial 14500, 18650 and 26650 LiFePO4 batteries used in electric vehicles. Journal of Energy Storage, 31(June), 101580. https://doi.org/10.1016/j.est.2020.101580
Duh, Y. S., Tsai, M. T., &Kao, C. S. (2017). Characterization on the thermal runaway of commercial 18650 lithium-ion batteries used in electric vehicle. Journal of Thermal Analysis and Calorimetry, 127(1), 983–993. https://doi.org/10.1007/s10973-016-5767-1
Feng, X., Zheng, S., Ren, D., He, X., Wang, L., Liu, X., Li, M., &Ouyang, M. (2019). Key characteristics for thermal runaway of Li-ion batteries. Energy Procedia, 158, 4684–4689. https://doi.org/10.1016/j.egypro.2019.01.736
Guo, L. S., Wang, Z. R., Wang, J. H., Luo, Q. K., &Liu, J. J. (2017). Effects of the environmental temperature and heat dissipation condition on the thermal runaway of lithium ion batteries during the charge-discharge process. Journal of Loss Prevention in the Process Industries, 49, 953–960. https://doi.org/10.1016/j.jlp.2017.05.029
Han, X., Lu, L., Zheng, Y., Feng, X., Li, Z., Li, J., &Ouyang, M. (2019). A review on the key issues of the lithium ion battery degradation among the whole life cycle. ETransportation, 1, 100005. https://doi.org/10.1016/j.etran.2019.100005
Huang, L., Zhang, Z., Wang, Z., Zhang, L., Zhu, X., &Dorrell, D. D. (2019). Thermal runaway behavior during overcharge for large-format Lithium-ion batteries with different packaging patterns. Journal of Energy Storage, 25(June), 100811. https://doi.org/10.1016/j.est.2019.100811
Huang, Z., Zhao, C., Li, H., Peng, W., Zhang, Z., &Wang, Q. (2020). Experimental study on thermal runaway and its propagation in the large format lithium ion battery module with two electrical connection modes. Energy, 205, 117906. https://doi.org/10.1016/j.energy.2020.117906
Jiang, J., &Dahn, J. R. (2004). ARC studies of the thermal stability of three different cathode materials: LiCoO2; Li[Ni0.1Co0.8Mn0.1]O 2; and LiFePO4, in LiPF6 and LiBoB EC/DEC electrolytes. Electrochemistry Communications, 6(1), 39–43. https://doi.org/10.1016/j.elecom.2003.10.011
Kvasha, A., Gutiérrez, C., Osa, U., deMeatza, I., Blazquez, J. A., Macicior, H., &Urdampilleta, I. (2018). A comparative study of thermal runaway of commercial lithium ion cells. Energy, 159, 547–557. https://doi.org/10.1016/j.energy.2018.06.173
Lamb, J., Orendorff, C. J., Steele, L. A. M., &Spangler, S. W. (2015). Failure propagation in multi-cell lithium ion batteries. Journal of Power Sources, 283, 517–523. https://doi.org/10.1016/j.jpowsour.2014.10.081
Li, C., Zhang, H. P., Fu, L. J., Liu, H., Wu, Y. P., Rahm, E., Holze, R., &Wu, H. Q. (2006). Cathode materials modified by surface coating for lithium ion batteries. Electrochimica Acta, 51(19), 3872–3883. https://doi.org/10.1016/j.electacta.2005.11.015
Li, H., Kong, X., Liu, C., &Zhao, J. (2019). Study on thermal stability of nickel-rich/silicon-graphite large capacity lithium ion battery. Applied Thermal Engineering, 161(July), 114144. https://doi.org/10.1016/j.applthermaleng.2019.114144
Liao, Z., Zhang, S., Li, K., Zhang, G., &Habetler, T. G. (2019). A survey of methods for monitoring and detecting thermal runaway of lithium-ion batteries. Journal of Power Sources, 436(June 2019), 226879. https://doi.org/10.1016/j.jpowsour.2019.226879
Liao, Z., Zhang, S., Li, K., Zhao, M., Qiu, Z., Han, D., Zhang, G., &Habetler, T. G. (2020). Hazard analysis of thermally abused lithium-ion batteries at different state of charges. Journal of Energy Storage, 27(June 2019), 101065. https://doi.org/10.1016/j.est.2019.101065
Lim, J. M., Hwang, T., Kim, D., Park, M. S., Cho, K., &Cho, M. (2017). Intrinsic Origins of Crack Generation in Ni-rich LiNi0.8Co0.1Mn0.1O2 Layered Oxide Cathode Material. Scientific Reports, 7, 2–11. https://doi.org/10.1038/srep39669
Liu, S., Xiong, L., &He, C. (2014). Long cycle life lithium ion battery with lithium nickel cobalt manganese oxide (NCM) cathode. Journal of Power Sources, 261, 285–291. https://doi.org/10.1016/j.jpowsour.2014.03.083
Liu, Yan, Qin, W., Zhang, D., Feng, L., &Wu, L. (2021). Effect of Na+ in situ doping on LiFePO4/C cathode material for lithium-ion batteries. Progress in Natural Science: Materials International, 31(1), 14–18. https://doi.org/10.1016/j.pnsc.2020.10.006
Liu, Yanhui, Sun, P., Niu, H., Huang, X., &Rein, G. (2021). Propensity to self-heating ignition of open-circuit pouch lithium-ion battery pile on a hot boundary. Fire Safety Journal, 120, 103081. https://doi.org/10.1016/j.firesaf.2020.103081
Lyu, P., Liu, X., Qu, J., Zhao, J., Huo, Y., Qu, Z., &Rao, Z. (2020). Recent advances of thermal safety of lithium ion battery for energy storage. Energy Storage Materials, 31(June), 195–220. https://doi.org/10.1016/j.ensm.2020.06.042
Majee, M. K., Nigam, A. K., &Bhobe, P. A. (2019). Comparison of local crystal structure and magnetic properties of cation substituted LiNiO2 compositions. Materials Research Bulletin, 116(January), 143–152. https://doi.org/10.1016/j.materresbull.2019.04.017
Mao, B., Huang, P., Chen, H., Wang, Q., &Sun, J. (2020). Self-heating reaction and thermal runaway criticality of the lithium ion battery. International Journal of Heat and Mass Transfer, 149, 119178. https://doi.org/10.1016/j.ijheatmasstransfer.2019.119178
Mendoza-Hernandez, O. S., Ishikawa, H., Nishikawa, Y., Maruyama, Y., &Umeda, M. (2015). Cathode material comparison of thermal runaway behavior of Li-ion cells at different state of charges including over charge. Journal of Power Sources, 280, 499–504. https://doi.org/10.1016/j.jpowsour.2015.01.143
Noh, H. J., Youn, S., Yoon, C. S., &Sun, Y. K. (2013). Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2 (x = 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries. Journal of Power Sources, 233, 121–130. https://doi.org/10.1016/j.jpowsour.2013.01.063
Ouyang, D., Hu, J., Chen, M., Weng, J., Huang, Q., Liu, J., &Wang, J. (2019). Effects of abusive temperature environment and cycle rate on the homogeneity of lithium-ion battery. Thermochimica Acta, 676(May), 241–248. https://doi.org/10.1016/j.tca.2019.05.004
Perea, A., Paolella, A., Dubé, J., Champagne, D., Mauger, A., &Zaghib, K. (2018). State of charge influence on thermal reactions and abuse tests in commercial lithium-ion cells. Journal of Power Sources, 399(March), 392–397. https://doi.org/10.1016/j.jpowsour.2018.07.112
Quintiere, J. G. (2020). On methods to measure the energetics of a lithium ion battery in thermal runaway. Fire Safety Journal, 111(August 2019), 102911. https://doi.org/10.1016/j.firesaf.2019.102911
Ren, D., Feng, X., Lu, L., He, X., &Ouyang, M. (2019). Overcharge behaviors and failure mechanism of lithium-ion batteries under different test conditions. Applied Energy, 250(May), 323–332. https://doi.org/10.1016/j.apenergy.2019.05.015
Ritchie, A. G., Brady, F., &Tsang, S. C. E. (1999). Future cathode materials for lithium rechargeable batteries. 98–102.
Röder, P., Baba, N., &Wiemhöfer, H. D. (2014). A detailed thermal study of a Li[Ni0.33Co0.33Mn 0.33]O2/LiMn2O4-based lithium ion cell by accelerating rate and differential scanning calorimetry. Journal of Power Sources, 248, 978–987. https://doi.org/10.1016/j.jpowsour.2013.09.146
Schröder, R., Aydemir, M., &Seliger, G. (2017). Comparatively Assessing different Shapes of Lithium-ion Battery Cells. Procedia Manufacturing, 8(October 2016), 104–111. https://doi.org/10.1016/j.promfg.2017.02.013
Shen, H., Zhang, Y., &Wu, Y. (2020). A comparative study on air transport safety of lithium-ion batteries with different SOCs. Applied Thermal Engineering, 179(July), 115679. https://doi.org/10.1016/j.applthermaleng.2020.115679
Son, K., Hwang, S. M., Woo, S. G., Koo, J. K., Paik, M., Song, E. H., &Kim, Y. J. (2020). Comparative study of thermal runaway and cell failure of lab-scale Li-ion batteries using accelerating rate calorimetry. Journal of Industrial and Engineering Chemistry, 83, 247–251. https://doi.org/10.1016/j.jiec.2019.11.034
Spotnitz, R., &Franklin, J. (2003). Abuse behavior of high-power, lithium-ion cells. Journal of Power Sources, 113(1), 81–100. https://doi.org/10.1016/S0378-7753(02)00488-3
Taniguchi, S., Shironita, S., Konakawa, K., Mendoza-Hernandez, O. S., Sone, Y., &Umeda, M. (2019). Thermal characteristics of 80 °C storage-degraded 18650-type lithium-ion secondary cells. Journal of Power Sources, 416(September 2018), 148–154. https://doi.org/10.1016/j.jpowsour.2019.01.087
Tomaszewska, A., Chu, Z., Feng, X., O’Kane, S., Liu, X., Chen, J., Ji, C., Endler, E., Li, R., Liu, L., Li, Y., Zheng, S., Vetterlein, S., Gao, M., Du, J., Parkes, M., Ouyang, M., Marinescu, M., Offer, G., &Wu, B. (2019). Lithium-ion battery fast charging: A review. ETransportation, 1, 100011. https://doi.org/10.1016/j.etran.2019.100011
Wang, Q., Mao, B., Stoliarov, S. I., &Sun, J. (2019). A review of lithium ion battery failure mechanisms and fire prevention strategies. Progress in Energy and Combustion Science, 73, 95–131. https://doi.org/10.1016/j.pecs.2019.03.002
Wang, Q., Sun, J., Yao, X., &Chen, C. (2006). Micro calorimeter study on the thermal stability of lithium-ion battery electrolytes. Journal of Loss Prevention in the Process Industries, 19(6), 561–569. https://doi.org/10.1016/j.jlp.2006.02.002
Xu, C., Feng, X., Huang, W., Duan, Y., Chen, T., Gao, S., Lu, L., Jiang, F., &Ouyang, M. (2020). Internal temperature detection of thermal runaway in lithium-ion cells tested by extended-volume accelerating rate calorimetry. Journal of Energy Storage, 31(July), 101670. https://doi.org/10.1016/j.est.2020.101670
Xu, W., Zheng, Y., Lin, L., Lei, W., Wang, Z., Song, H., Cheng, Y., Qi, R., Peng, H., Lin, H., Yang, Z., &Huang, R. (2021). Atomic insights into surface orientations and oxygen vacancies in the LiMn2O4 cathode for lithium storage. Journal of Alloys and Compounds, 870, 159387. https://doi.org/10.1016/j.jallcom.2021.159387
Yamada, A., &Tanaka, M. (1995). Jahn-Teller structural phase transition around 280K in LiMn2O4. Materials Research Bulletin, 30(6), 715–721. https://doi.org/10.1016/0025-5408(95)00048-8
Yang, Z., Yang, W., Evans, D. G., Li, G., &Zhao, Y. (2008). Enhanced overcharge behavior and thermal stability of commercial LiCoO2 by coating with a novel material. Electrochemistry Communications, 10(8), 1136–1139. https://doi.org/10.1016/j.elecom.2008.05.027
Yuan, L., Dubaniewicz, T., Zlochower, I., Thomas, R., &Rayyan, N. (2020). Experimental study on thermal runaway and vented gases of lithium-ion cells. Process Safety and Environmental Protection, 144, 186–192. https://doi.org/10.1016/j.psep.2020.07.028
Zhao, C., Sun, J., &Wang, Q. (2020). Thermal runaway hazards investigation on 18650 lithium-ion battery using extended volume accelerating rate calorimeter. Journal of Energy Storage, 28(January), 101232. https://doi.org/10.1016/j.est.2020.101232
Zhitao, E., Guo, H., Yan, G., Wang, J., Feng, R., Wang, Z., &Li, X. (2021). Evolution of the morphology, structural and thermal stability of LiCoO2 during overcharge. Journal of Energy Chemistry, 55, 524–532. https://doi.org/10.1016/j.jechem.2020.06.071
The Straits Times(2016),https://www.straitstimes.com/singapore/courts- crime/parry-avenue-fire-which-killed-two-people-may-have-been-caused-by-drone
東森新聞(2016),https://news.ebc.net.tw/news/article/43803
每日頭條(2017),https://kknews.cc/agriculture/qjeblly.html
Men’s Journal Adventure (2018),https://www.mensjournal.com/adventure/drone-crash-sparks-335-acre-wildfire-in-coconino-national-forest/
深廣電(2018),http://www.cutv.com/v2/shenzhen/b/c/b/2018-11-6/3307b4f124e041f7b682fb9e4819a618.shtml
DronesPlayer(2018),https://dronesplayer.com/uav-news/%e7%a9%bf%e8%b6%8a%e6%a9%9f%e5%a4%b1%e6%8e%a7%e3%80%8c%e7%82%b8%e6%a9%9f%e3%80%8d-%e6%92%9e%e5%90%91%e8%8d%89%e5%9c%b0%e7%9e%ac%e9%96%93%e8%b5%b7%e7%81%ab/
CTWANT(2020),https://tw.news.yahoo.com/%E7%A9%BA%E6%8B%8D%E6%A9%9F%E6%93%8D%E6%8E%A7%E8%A8%93%E7%B7%B4%E6%84%8F%E5%A4%96-%E6%A9%9F%E9%AB%94%E5%A2%9C%E6%AF%80%E5%9C%8B%E4%B8%AD%E6%A0%A1%E8%88%8D%E5%B1%8B%E9%A0%82-070007889.html
Lancashire Telegraph(2020),
https://www.lancashiretelegraph.co.uk/news/18512883.blackburn-mans-terrifying-warning-drone-exploded-home/
聯合新聞網(2021),https://udn.com/news/story/7320/5297569
化源網,https://www.chemsrc.com/
蔡孟婷(2015),商業用18650鋰離子電池熱失控特性研究,
國立聯合大學環境與安全衛生工程研究所學位論文
江士家(2016),串並聯18650鋰離子電池熱失控現象之研究,
國立聯合大學環境與安全衛生工程研究所學位論文
鄭佳蕙(2017),高容量26650鋰離子電池熱失控特性研究,
國立聯合大學環境與安全衛生工程研究所學位論文
鄧友翔(2020),智慧型手機高容量鋰離子電池熱失控之研究,
國立聯合大學環境與安全衛生工程學系,碩士論文
林映慈(2020),商用21700鋰離子電池熱失控特性研究,
國立聯合大學環境與安全衛生工程學系,碩士論文
電子全文 電子全文(網際網路公開日期:20260811)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top