跳到主要內容

臺灣博碩士論文加值系統

(44.200.194.255) 您好!臺灣時間:2024/07/15 01:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳冠迪
研究生(外文):Chen, Guan-Di
論文名稱:使用不鏽鋼,鋁合金,纖維強化聚合物的新型、耐用且輕量的挫屈束制斜撐的數值研究
論文名稱(外文):Numerical Study on Novel, Durable, and Lightweight Buckling Restrained Bracing Using Stainless Steel, Aluminum Alloy, and FRP
指導教授:李東根李東根引用關係
指導教授(外文):Lee, Dongkeun
口試委員:楊子儀袁宇秉
口試日期:2021-07-29
學位類別:碩士
校院名稱:國立陽明交通大學
系所名稱:土木工程研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:英文
論文頁數:59
中文關鍵詞:挫屈束制斜撐有限元素分析抗腐蝕材料遲滯迴圈消能容量
外文關鍵詞:buckling restrained bracing (BRB)finite element analysiscorrosion-resistant materialshysteresis curveenergy dissipation capacity
相關次數:
  • 被引用被引用:0
  • 點閱點閱:96
  • 評分評分:
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:0
臺灣位於菲律賓海板塊與歐亞板塊的交界處,是一個地震頻繁的國家,西元1999年的集集大地震更是造成了無數的傷亡與災害。為了防止這樣巨大的損失再度發生,學者與工程師們致力於耐震結構與方法、設備、系統的改善。像是剪力牆、基礎隔震系統、支撐框架系統等。其中,支撐系統更為可靠,根據材料、機制,和構造的不同可區分成不同類型的支撐。根據機制的不同可分為純拉、拉壓、挫屈束制、自復位,和自復位挫屈束制斜撐。為了克服傳統斜撐挫屈的問題,挫屈束制斜撐逐漸地被發展。
大多數的挫屈束制斜撐由碳鋼製成,以至於容易受到腐蝕的影響。很容易可以在沿海環境中找到被腐蝕的支撐。因此,在本研究中,為了在台灣這樣四面環海且有雨季的環境中,能延長挫屈束制斜撐的使用壽命。在數值結果上探討由不鏽鋼、鋁合金,和纖維強化聚合物等抗腐蝕性佳的材料所製成的挫屈束制斜撐的遲滯行為,並和碳鋼所製成的挫屈束制斜撐比較。
在此研究中,使用有限元素分析軟體ABAQUS。首先,碳鋼製的挫屈束制斜撐的數值結果被用來與實驗結果比較以驗證挫屈束制斜撐的模型,模型驗證完成後,再使用被驗證的模型來進行參數研究。在參數研究中,進行各種材料像是碳鋼 (A36)、碳纖維強化聚合物 (CFRP)、兩種不鏽鋼 (STS304,STS329FLD),和兩種鋁合金 (A6061-T6,A7075-T6)的數值分析,並由耐久性、重量、乘載能力,和消能容量的來尋找最佳的挫屈束制斜撐。
,且在最後的參數討論中,分別以使用碳纖維強化聚合外管的厚度以及其他不鏽鋼及鋁合金的材料作為探討的目的,觀察其遲滯迴圈。再比較其結果,對於新型、耐用、且輕量的挫屈束制斜撐給予更佳的建議。根據數值分析,可發現材料對挫屈束制斜撐的遲滯行為影響相當大。在挫屈束制斜撐的研究中,不鏽鋼核心和碳纖維強化聚合物外管的組合是最佳的,詳細的結果在此論文中被闡述。
Taiwan is a country located on the common boundary between the Eurasian Plate and the Philippine Sea Plate and thus a country where earthquakes frequently occur. For instance, the Chi Chi earthquake in 1999 caused lots of damages and casualties. To prevent such huge losses due to earthquakes, scholars and engineers have been striving to improve the seismic resistance of structures and developing methods, devices, and systems. For example, shear walls, base isolation systems, and braced frame systems were developed. In particular, the braced frame systems are substantially reliable. There are many different types of braces in terms of materials, mechanisms, and configurations. With regard to mechanisms, there are tension-only, tension-compression, buckling restrained, self-centering, and self-centering buckling restrained braces. To overcome a buckling issue of conventional braces, buckling restrained braces (BRBs) were developed.
Most of existing BRBs have been made of carbon steel that is a vulnerable to corrosion. It is not so difficult to find corroded braces at coastal areas. Therefore, in this study, to extend the lifespan of BRBs in Taiwan that is surrounded by the sea and that has a rainy season, hysteretic behaviors of BRBs made of corrosion-resistant materials such as stainless steel, aluminum alloy, and fiber-reinforce composite (FRP) were numerically investigated and compared to the BRB consisting of carbon steel.
Finite element analysis was implemented using a commercially available software, ABAQUS. First, the numerical results from the BRB model made of carbon steel were compared to those from the test for the validation of the BRB model. The model verification was successfully achieved. Then, parametric studies were conducted using the validated model. In the parametric studies, various materials, such as carbon steel (A36), carbon FRP (CFRP), two types of stainless steel (STS 304 and STS 329FLD), and two types of aluminum alloy (A6061-T6 and A7075-T6), were employed to find an optimum BRB from the standpoint of durability, weight, load-carrying capacity, and energy dissipation capacity. Based on the numerical analysis, it was found that the hysteretic behavior of a BRB was considerably dependent on kinds of materials. Among the BRBs studied, the combination of stainless as a core and CFRP as a tube is optimal. Detailed findings are described in this thesis.
Acknowledgement i
中文摘要 ii
Abstract iv
List of Figures viii
List of Tables xi
Chapter 1 Introduction 1
1.1 Background 1
1.2 Research objectives 4
1.3 Thesis outline 5
Chapter 2 Experimental program 7
2.1 Specimens, test setup, and loading protocol 7
2.1.1 Specimens 8
2.1.2 Test setup 11
2.1.3 Loading protocol 12
2.2 Experimental results 14
2.2.1 Hysteresis curve 14
Chapter 3 Numerical simulation 17
3.1 Finite element model 17
3.1.1. Part 18
3.1.2 Material properties 20
3.1.3 Interaction 20
3.1.4 Boundary condition 21
3.1.5 Mesh 22
3.2 Model validation 23
Chapter 4  Parametric study of the thickness of CFRP tube 24
4.1 Parameter: thickness of CFRP tube. 25
4.1.1 Features of models with CFRP tube 25
4.1.2 Results from different thickness of CFRP tube 26
4.2 Parameter: various corrosion-resistant materials 37
4.2.1 Features of models with corrosion-resistant materials 37
4.2.2 Results from different corrosion-resistant materials 38
Chapter 5 Conclusions and future work 52
5.1 Conclusions 52
5.2 Future work 53
References 54
[1] Watanabe, A., Hitomi, Y., Saeki, E., Wada, A., & Fujimoto, M. (1988, August). Properties of brace encased in buckling-restraining concrete and steel tube. In Proceedings of ninth world conference on earthquake engineering (Vol. 4, pp. 719-724).
[2] Chen, Q., Wang, C. L., Meng, S., & Zeng, B. (2016). Effect of the unbonding materials on the mechanic behavior of all-steel buckling-restrained braces. Engineering Structures, 111, 478-493.
[3] AlHamaydeh, M., Abed, F., & Mustapha, A. (2016). Key parameters influencing performance and failure modes for BRBs using nonlinear FEA. Journal of Constructional Steel Research, 116, 1-18.
[4] Uriz, P., & Mahin, S. A. (2004, August). Seismic performance assessment of concentrically braced steel frames. In Proceedings of the 13th world conference on earthquake engineering (p. 6).
[5] Takeuchi, T. (2018). Buckling-restrained brace: History, design and applications. In Key engineering materials (Vol. 763, pp. 50-60). Trans Tech Publications Ltd.
[6] Wu, A. C., Lin, P. C., & Tsai, K. C. (2014). High‐mode buckling responses of buckling‐restrained brace core plates. Earthquake engineering & structural dynamics, 43(3), 375-393.
[7] Tsai, K. C., Wu, A. J., Lin, B. J., Wei, Z. Y., & Chuang, M. J. (2012). Research on the properties of the bracing and delamination materials of the grooved buckling beam system. Structural Engineering, Vol.27, No 3, 29-59.
[8] Wang, C. L., Chen, Q., Zeng, B., & Meng, S. (2017). A novel brace with partial buckling restraint: an experimental and numerical investigation. Engineering Structures, 150, 190-202.
[9] Usami, T., Wang, C. L., & Funayama, J. (2012). Developing high‐performance aluminum alloy buckling‐restrained braces based on series of low‐cycle fatigue tests. Earthquake Engineering & Structural Dynamics, 41(4), 643-661.
[10] Dusicka, P., & Tinker, J. (2013). Global restraint in ultra-lightweight buckling-restrained braces. Journal of Composites for Construction, 17(1), 139-150.
[11] Razavi, S. A., Mirghaderi, S. R., Hosseini, A., & Shemshadian, M. E. (2012, September). Reduced length buckling restrained brace using steel plates as restraining segment. In Proceedings of the 15th World Conference on Earthquake Engineering.
[12] Gancedo, J. R., Alonso, M. C., Andrade Perdrix, C., & Gracia, M. (1989). AES study of the passive layer formed on iron in saturated Ca (OH) 2 solutions.
[13] Dongdong, S., (2015). “Study on corrosion mechanism and evolution of waterborne acrylic acid on coating/metal interface”.Ph.D. thesis, Beijing University of Science and Technology, Beijing, China.
[14] Maraveas, C., & Tsavdaridis, K.D., (2019).” Assessment and retroffiting of an existing steel structure subjected to wind-induced failure analysis”. Journal of Building Engineering, 23, 53-67.
[15] Davis, J. R. (Ed.). (1999). Corrosion of aluminum and aluminum alloys. Asm International
[16] Wang, H., Wu, Y., Sun, X., Ling, J., & Zou, D. (2019). Corrosion Resistance to Chloride of a Novel Stainless Steel: The Threshold Chloride Value and Effect of Surface State. Materials, 12(14), 2235.
[17] Stainless steels – Chemical composition. International Standard ISO15510:2014
[18] Wu AC, Lin PC, Chuang MC, & Tsai K, “Design outline and engineering application of buckling beam braced frame.” Structural Engineering, 2015, 30, 1, 11-33.
[19] Tsai, K.C., Wu, A.C., Wei. C.Y., Lin, P.C., Chuang, M.C. & Yu, Y.J. “Welded end-slot connection and debonding layers for buckling-restrained braces” Earthquake Engineering and Structural Dynamics, 2014, 43, 1785-1807
[20] Junxian Zhao, Bin Wu, Wei Li, & Jinping Ou, “Local buckling behavior of steel angle core members in buckling-restrained braces: Cyclic tests, theoretical analysis, and design recommendations”. Engineering Structural, 2014, 66, 129-145.
[21] AISC (American Institute of Steel Construction). (2016). Seismic provisions for structural steel buildings.
[22] Z. Zhou, Q. Xie, X. C. Lei, X. T. He, & S. P. Meng “Experimental Investigation of the Hysteretic Performance of Dual-Tube Self-Centering Buckling-Restrained Braces with Composite Tendons” Journal of Composites for Construction, 2015, 19(6), 04015011
[23] Simulia D. ABAQUS 6.11 analysis user's manual. Abaqus
[24] Bashiri, M., & Toufigh, V. (2020). Numerical and experimental investigation on a BRB confined with partially carbon fiber reinforced polymer (CFRP). Engineering Structures, 223, 111150.
[25] Hosseini, A., & Hassanipour, A. (2015). Numerical modeling of BRB frame systems with and without concrete. Technol journal of Multidisc Engineering Science, 8.
[26] Ellobody, E., & Young, B. (2011). Numerical simulation of concrete encased steel composite columns. Journal of Constructional Steel Research, 67(2), 211-222.
[27] Alemayehu, R. W., Kim, Y., Bae, J., & Ju, Y. K. (2020). Cyclic Load Test and Finite Element Analysis of NOVEL Buckling-Restrained Brace. Materials, 13(22), 5103.
[28] Rahnavard, R., Hassanipour, A., & Mounesi, A. (2016). Numerical study on important parameters of composite steel-concrete shear walls. Journal of Constructional Steel Research, 121, 441-456.
[29] Rahnavard, R., Naghavi, M., Aboudi, M., & Suleiman, M. (2018). Investigating modeling approaches of buckling-restrained braces under cyclic loads. Case Studies in Construction Materials, 8, 476-488.
[30] López-Almansa, F., Castro-Medina, J. C., & Oller, S. (2012). A numerical model of the structural behavior of buckling-restrained braces. Engineering Structures, 41, 108-117.
[31] Nip, K. H., Gardner, L., & Elghazouli, A. Y. (2010). Cyclic testing and numerical modelling of carbon steel and stainless steel tubular bracing members. Engineering structures, 32(2), 424-441.
[32] Teng, J. G., Chen, J. F., Smith, S. T., & Lam, L. (2002). FRP: strengthened RC structures (p. 266).
[33] Cao, S., & Wu, Z. (2008). Tensile properties of FRP composites at elevated and high temperatures. Journal of applied mechanics, 11, 963-970.
[34] Al-Zubaidy, H., Zhao, X. L., & Al-Mahaidi, R. (2013). Mechanical characterisation of the dynamic tensile properties of CFRP sheet and adhesive at medium strain rates. Composite Structures, 96, 153-164.
[35] Pohl, M., Storz, O., & Glogowski, T. (2007). Effect of intermetallic precipitations on the properties of duplex stainless steel. Materials characterization, 58(1), 65-71.
[36] JungYeon Kim & TaeSoo Kim, “Analytical study on the Buckling Behaviors of Duplex stainless Steel Tubular Columns according to Material Model.” The Korea Institute for Structural Maintenance and Inspection (KSMI) 2019 Autumn Conference, Pusan, South Korea, 9-11, October 2019.
[37] Kim, T., & Cho, Y. (2014). Investigation on ultimate strength and failure mechanism of bolted joints in two different aluminum alloys. Materials & Design, 58, 74-88.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top