|
1.Davies, L.C., et al., Tissue-resident macrophages. Nature Immunology, 2013. 14(10): p. 986-995. 2. Scollay, R.G., E.C. Butcher, and I.L. Weissman, Thymus cell migration: Quantitative aspects of cellular traffic from the thymus to the periphery in mice. European Journal of Immunology, 1980. 10(3): p. 210-218. 3. Kim, H.-J., et al., Selective Depletion of Eosinophils or Neutrophils in Mice Impacts the Efficiency of Apoptotic Cell Clearance in the Thymus. PLOS ONE, 2010. 5(7): p. e11439. 4. Surh, C.D. and J. Sprent, T-cell apoptosis detected in situ during positive and negative selection in the thymus. Nature, 1994. 372(6501): p. 100-103. 5. Esashi, E., et al., Cutting Edge: A Possible Role for CD4+ Thymic Macrophages as Professional Scavengers of Apoptotic Thymocytes. The Journal of Immunology, 2003. 171(6): p. 2773. 6. Liu, L.-T., et al., Composition and characteristics of distinct macrophage subpopulations in the mouse thymus. Mol Med Rep, 2013. 7(6): p. 1850-1854. 7. Hale, L.P., et al., Hypoxia in the thymus: role of oxygen tension in thymocyte survival. Am J Physiol Heart Circ Physiol, 2002. 282(4): p. H1467-77. 8. Morioka, S., et al., Efferocytosis induces a novel SLC program to promote glucose uptake and lactate release. Nature, 2018. 563(7733): p. 714-718. 9. Yurdagul, A., et al., Macrophage Metabolism of Apoptotic Cell-Derived Arginine Promotes Continual Efferocytosis and Resolution of Injury. Cell Metabolism, 2020. 31(3): p. 518-533.e10. 10. Zhang, S., et al., Efferocytosis Fuels Requirements of Fatty Acid Oxidation and the Electron Transport Chain to Polarize Macrophages for Tissue Repair. Cell Metabolism, 2019. 29(2): p. 443-456.e5. 11. Newsholme, P., et al., Glutamine and glutamate--their central role in cell metabolism and function. Cell Biochem Funct, 2003. 21(1): p. 1-9. 12. Xue, H. and C.J. Field, New role of glutamate as an immunoregulator via glutamate receptors and transporters. Front Biosci (Schol Ed), 2011. 3: p. 1007-20. 13. Rimaniol, A.C., et al., Role of glutamate transporters in the regulation of glutathione levels in human macrophages. Am J Physiol Cell Physiol, 2001. 281(6): p. C1964-70. 14. Martinez-Lozada, Z., A.M. Guillem, and M.B. Robinson, Transcriptional Regulation of Glutamate Transporters: From Extracellular Signals to Transcription Factors. Adv Pharmacol, 2016. 76: p. 103-45. 15. Knickelbein, R.G., et al., Characterization of multiple cysteine and cystine transporters in rat alveolar type II cells. Am J Physiol, 1997. 273(6): p. L1147-55. 16. Bender, A.S., W. Reichelt, and M.D. Norenberg, Characterization of cystine uptake in cultured astrocytes. Neurochem Int, 2000. 37(2-3): p. 269-76. 17. Vigneault, É., et al., Distribution of vesicular glutamate transporters in the human brain. Frontiers in Neuroanatomy, 2015. 9(23). 18. Wojcik, S.M., et al., An essential role for vesicular glutamate transporter 1 (VGLUT1) in postnatal development and control of quantal size. Proceedings of the National Academy of Sciences of the United States of America, 2004. 101(18): p. 7158. 19. Leighton, B.H., et al., Structural Rearrangements at the Translocation Pore of the Human Glutamate Transporter, EAAT1 *. Journal of Biological Chemistry, 2006. 281(40): p. 29788-29796. 20. Slotboom, D.J., W.N. Konings, and J.S. Lolkema, Structural features of the glutamate transporter family. Microbiology and molecular biology reviews : MMBR, 1999. 63(2): p. 293-307. 21. Hagiwara, T., et al., Genomic organization, promoter analysis, and chromosomal localization of the gene for the mouse glial high-affinity glutamate transporter Slc1a3. Genomics, 1996. 33(3): p. 508-15. 22. Hayashi, M.K. and M. Yasui, The transmembrane transporter domain of glutamate transporters is a process tip localizer. Scientific Reports, 2015. 5(1): p. 9032. 23. Krycer, J.R., et al., The amino acid transporter, SLC1A3, is plasma membrane-localised in adipocytes and its activity is insensitive to insulin. FEBS Letters, 2017. 591(2): p. 322-330. 24. Berger, U.V. and M.A. Hediger, Distribution of the glutamate transporters GLT-1 (SLC1A2) and GLAST (SLC1A3) in peripheral organs. Anat Embryol (Berl), 2006. 211(6): p. 595-606. 25. Huggett, J., A. Vaughan-Thomas, and D. Mason, The open reading frame of the Na(+)-dependent glutamate transporter GLAST-1 is expressed in bone and a splice variant of this molecule is expressed in bone and brain. FEBS Lett, 2000. 485(1): p. 13-8. 26. Huggett, J.F., et al., The glutamate transporter GLAST-1 (EAAT-1) is expressed in the plasma membrane of osteocytes and is responsive to extracellular glutamate concentration. Biochem Soc Trans, 2002. 30(Pt 6): p. 890-3. 27. Vallejo-Illarramendi, A., M. Domercq, and C. Matute, A novel alternative splicing form of excitatory amino acid transporter 1 is a negative regulator of glutamate uptake. J Neurochem, 2005. 95(2): p. 341-8. 28. Macnab, L.T. and D.V. Pow, Central nervous system expression of the exon 9 skipping form of the glutamate transporter GLAST. NeuroReport, 2007. 18(8). 29. Sullivan, S.M., et al., GLAST1b, the exon-9 skipping form of the glutamate-aspartate transporter EAAT1 is a sensitive marker of neuronal dysfunction in the hypoxic brain. Neuroscience, 2007. 149(2): p. 434-45. 30. Lee, A., et al., A new splice variant of the glutamate–aspartate transporter: Cloning and immunolocalization of GLAST1c in rat, pig and human brains. Journal of Chemical Neuroanatomy, 2012. 43(1): p. 52-63. 31. Freidman, N., et al., Amino Acid Transporters and Exchangers from the SLC1A Family: Structure, Mechanism and Roles in Physiology and Cancer. Neurochemical Research, 2020. 45(6): p. 1268-1286. 32. Ralphe, J.C., et al., Localization and function of the brain excitatory amino acid transporter type 1 in cardiac mitochondria. J Mol Cell Cardiol, 2004. 37(1): p. 33-41. 33. Garcia-Bermudez, J., et al., Aspartate is a limiting metabolite for cancer cell proliferation under hypoxia and in tumours. Nature Cell Biology, 2018. 20(7): p. 775-781. 34. Tajan, M., et al., A Role for p53 in the Adaptation to Glutamine Starvation through the Expression of SLC1A3. Cell Metabolism, 2018. 28(5): p. 721-736.e6. 35. Bertero, T., et al., Tumor-Stroma Mechanics Coordinate Amino Acid Availability to Sustain Tumor Growth and Malignancy. Cell Metabolism, 2019. 29(1): p. 124-140.e10. 36. Sun, J., et al., SLC1A3 contributes to L-asparaginase resistance in solid tumors. Embo j, 2019. 38(21): p. e102147. 37. Xu, L., et al., SLC1A3 promotes gastric cancer progression via the PI3K/AKT signalling pathway. Journal of Cellular and Molecular Medicine, 2020. 24(24): p. 14392-14404. 38. Rimaniol, A.-C., et al., Na+-Dependent High-Affinity Glutamate Transport in Macrophages. The Journal of Immunology, 2000. 164(10): p. 5430. 39. Takai, S., et al., Localization of the gene (SLC1A3) encoding human glutamate transporter (GluT-1) to 5p13 by fluorescence in situ hybridization. Cytogenet Cell Genet, 1995. 69(3-4): p. 209-10. 40. Jen, J.C., et al., Mutation in the glutamate transporter EAAT1 causes episodic ataxia, hemiplegia, and seizures. Neurology, 2005. 65(4): p. 529. 41. Birben, E., et al., Oxidative Stress and Antioxidant Defense. World Allergy Organization Journal, 2012. 5(1): p. 9-19. 42. Balce, D.R., et al., Alternative activation of macrophages by IL-4 enhances the proteolytic capacity of their phagosomes through synergistic mechanisms. Blood, 2011. 118(15): p. 4199-4208. 43. Marí, M., et al., Mitochondrial glutathione, a key survival antioxidant. Antioxidants & redox signaling, 2009. 11(11): p. 2685-2700. 44. 范琇涵, 胸腺微環境對常駐性巨噬細胞功能之調控, in 微生物及免疫學研究所. 2019, 國立陽明大學: 台北市. p. 89. 45. 蔡宗霖, 以代謝體及轉錄體學分析胸腺巨噬細胞高效率清除凋亡細胞的能力, in 微生物及免疫學研究所. 2020, 國立陽明大學: 台北市. p. 65. 46. Elia, I., et al., Breast cancer cells rely on environmental pyruvate to shape the metastatic niche. Nature, 2019. 568(7750): p. 117-121. 47. 王如初, 胸腺巨噬細胞代謝之探討, in 微生物及免疫學研究所. 2018, 國立陽明大學: 台北市. p. 73. 48. Korns, D., et al., Modulation of macrophage efferocytosis in inflammation. Frontiers in immunology, 2011. 2: p. 57-57. 49. Bosurgi, L., et al., Macrophage function in tissue repair and remodeling requires IL-4 or IL-13 with apoptotic cells. Science (New York, N.Y.), 2017. 356(6342): p. 1072-1076. 50. 李妍靚, 胸腺巨噬細胞的極化狀態與對介白素四號的反應能力, in 微生物及免疫學研究所. 2018, 國立陽明大學: 台北市. p. 53. 51. Canul-Tec, J.C., et al., Structure and allosteric inhibition of excitatory amino acid transporter 1. Nature, 2017. 544(7651): p. 446-451. 52. Duan, S., et al., Glutamate Induces Rapid Upregulation of Astrocyte Glutamate Transport and Cell-Surface Expression of GLAST. The Journal of Neuroscience, 1999. 19(23): p. 10193. 53. Zelenaia, O., et al., Epidermal growth factor receptor agonists increase expression of glutamate transporter GLT-1 in astrocytes through pathways dependent on phosphatidylinositol 3-kinase and transcription factor NF-kappaB. Mol Pharmacol, 2000. 57(4): p. 667-78. 54. Suzuki, K., et al., Transient upregulation of the glial glutamate transporter GLAST in response to fibroblast growth factor, insulin-like growth factor and epidermal growth factor in cultured astrocytes. J Cell Sci, 2001. 114(Pt 20): p. 3717-25. 55. Bonde, C., et al., GDNF pre-treatment aggravates neuronal cell loss in oxygen-glucose deprived hippocampal slice cultures: a possible effect of glutamate transporter up-regulation. Neurochem Int, 2003. 43(4-5): p. 381-8. 56. Medina, C.B., et al., Metabolites released from apoptotic cells act as tissue messengers. Nature, 2020. 580(7801): p. 130-135. 57. Kranich, O., B. Hamprecht, and R. Dringen, Different preferences in the utilization of amino acids for glutathione synthesis in cultured neurons and astroglial cells derived from rat brain. Neuroscience Letters, 1996. 219(3): p. 211-214. 58. Pavlović, V., et al., Effect of monosodium glutamate on apoptosis and Bcl-2/Bax protein level in rat thymocyte culture. Physiol Res, 2007. 56(5): p. 619-26. 59. Davies, L.C., et al., Peritoneal tissue-resident macrophages are metabolically poised to engage microbes using tissue-niche fuels. Nature Communications, 2017. 8(1): p. 2074. 60. Chang, P.V., et al., The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. Proceedings of the National Academy of Sciences, 2014. 111(6): p. 2247. 61. Kang, Y.P., et al., Non-canonical Glutamate-Cysteine Ligase Activity Protects against Ferroptosis. Cell Metab, 2021. 33(1): p. 174-189.e7. 62. Stockwell, B.R., et al., Ferroptosis: A Regulated Cell Death Nexus Linking Metabolism, Redox Biology, and Disease. Cell, 2017. 171(2): p. 273-285.
|