|
[1] Chih-Yu Hsu “Deep Learning for Classification of Periodontal Bone Loss Severity’’ February, 2021 [2] Muramatsu, C.; Morishita, T.; Takahashi, R.; Hayashi, T.; Nishiyama, W.; Ariji, Y.; Zhou, X.; Hara, T.;Katsumata, A.; Ariji, E.; et al. Tooth detection and classification on panoramic radiographs for automatic dental chart filing: Improved classification by multi-sized input data. Oral Radiol. 2020. [3] Chen H, Zhang K, Lyu P, Li H, Zhang L, Wu J, et al. A deep learning approach to automatic teeth detection and numbering based on object detection in dental periapical flms. Sci Rep. 2019;9(1):3840. [4] K. He, X. Zhang, S. Ren and J. Sun, "Deep Residual Learning for Image Recognition," 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, 2016, pp. 770-778, doi 10.1109/CVPR.2016.90. [5] O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for biomedical image segmentation. In MICCAI, pages 234–241. Springer, 2015. [6] Tuzof DV, Tuzova LN, Bornstein MM, Krasnov AS, Kharchenko MA, Nikolenko SI, et al. Tooth detection and numbering in panoramic radiographs using convolutional neural networks. Dentomaxillofac Radiol. 2019;48:20180051. [7] Zhang K, Wu J, Chen H, Lyu P. An effective teeth recognition method using label tree with cascade network structure. Comput Med Imaging Graph 2018; 68: 61-70 [8] Labelme, https://github.com/wkentaro/labelme [9] Mahdi, F. P., Motoki, K. and Kobashi, S., Optimization technique combined with deep learning method for teeth recognition in dental panoramic radiographs, Scientific Reports, Vol.10, No.1, 2020. [10] https://www.adobe.com/tw/products/photoshop.html [11] Krois J, Ekert T, Meinhold L et al. (2019) Deep learning for the radiographic detection of periodontal bone loss. Scientific Reports 9, 8495. [12] Gameiro, G.R.; Sinkunas, V.; Liguori, G.R.; Auler-Junior, J.O.C. Precision medicine: Changing the way we think about healthcare. Clinics (Sao Paulo) 2018, 73, e723. [13] D. Shen, G. Wu, H.I. Suk, Deep learning in medical image analysis. Annu. Rev. Biomed. Eng., 19 (2017), pp. 221-248 [14] Dental notation, https://www.wikidoc.org/index.php/Dental_notation [15] H. A. Khan, M. A. Haider, H. A. Ansari, H. Ishaq, A. Kiyani, K. Sohail, M. Muhammad, and S. A. Khurram, “Automated feature detection in dental periapical radiographs by using deep learning,” Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology, 2020. [16] Collins FS, Varmus H. A new initiative on precision medicine. N Engl J Med 2015;372(9): 793–795. [17] Ashley, E. A. Towards precision medicine. Nat. Rev. Genet. 17, 507–522 (2016). [18] G.S. Ginsburg, KA. Phillips Precision medicine: from science to value Health Affairs, 37 (2018), pp. 694-704 [19] Wang C-W, Huang C-T, Lee J-H, Li C-H, Chang SW, Siao M-J, et al. A benchmark for comparison of dental radiography analysis algorithms. Med Image Anal 2016;31:63–76. [20] Albawi, S.; Mohammed, T.A.; Al-Zawi, S. Understanding of a convolutional neural network. In Proceedings of the 2017 Int [21] Getao Du, Xu Cao, Jimin Liang, Xueli Chen, and Yonghua Zhan. Medical image segmentation based on u-net: A review. Journal of Imaging Science and Technology, 64(2):20508–1, 2020 [22] Ahmed, I., Ahmad, M., Khan, F. A. & Asif, M. Comparison of Deep-Learning-Based Segmentation Models: Using Top View Person Images. IEEE Access 8, 136361-136373, doi:10.1109/access.2020.3011406 (2020). [23] J. Long, E. Shelhamer, and T. Darrell, ‘‘Fully convolutional networks for semantic segmentation,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2015, pp. 3431–3440. [24] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille, ‘‘DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 40, no. 4, pp. 834–848, Apr. 2018. [25] Yu H, Yang LT, Zhang Q, Armstrong D, Deen MJ. Convolutional neural networks for medical image analysis: state-of-the-art, comparisons, improvement and perspectives. Neurocomputing. 2021. [26] A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet classification with deep convolutional neural networks. In Proceedings of NIPS, pages 1106–1114, 2012. [27] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich. Going deeper with convolutions. In Proceedings of CVPR, pages 1–9, 2015. [28] Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. arXiv:1311.2524 (2014) [29] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for semantic segmentation. In CVPR, 2015. [30] M. Farooq and A. Hafeez, “COVID-ResNet: A deep learning framework for screening of COVID19 from radiographs,” 2020, arXiv:2003.14395. [Online]. Available: http://arxiv.org/abs/2003.14395 [31] M, Pławiak P, Wang K, Acharya UR (2020) ResNetattention model for human authentication using ECG signals. Expert Syst. [32] S.S. Yadav, S.M. Jadhav, Deep convolutional neural network based medical image classification for disease diagnosis, J. Big Data 6 (2019) [33] PCA, https://alyssaq.github.io/2015/computing-the-axes-or-orientation-of-a-blob/
|