|
1. Turon-Lagot, V., et al., Targeting the Host for New Therapeutic Perspectives in Hepatitis D. J Clin Med, 2020. 9(1). 2. Lempp, F.A., Y. Ni, and S. Urban, Hepatitis delta virus: insights into a peculiar pathogen and novel treatment options. Nat Rev Gastroenterol Hepatol, 2016. 13(10): p. 580-9. 3. Wedemeyer, H. and M.P. Manns, Epidemiology, pathogenesis and management of hepatitis D: update and challenges ahead. Nat Rev Gastroenterol Hepatol, 2010. 7(1): p. 31-40. 4. Gudima, S., et al., Parameters of human hepatitis delta virus genome replication: the quantity, quality, and intracellular distribution of viral proteins and RNA. J Virol, 2002. 76(8): p. 3709-19. 5. Miao, Z., et al., Estimating the Global Prevalence, Disease Progression, and Clinical Outcome of Hepatitis Delta Virus Infection. J Infect Dis, 2020. 221(10): p. 1677-1687. 6. Chen, H.Y., et al., Prevalence and burden of hepatitis D virus infection in the global population: a systematic review and meta-analysis. Gut, 2019. 68(3): p. 512-521. 7. Negro, F., Hepatitis D virus coinfection and superinfection. Cold Spring Harb Perspect Med, 2014. 4(11): p. a021550. 8. Jung, S., S.M. Altstetter, and U. Protzer, Innate immune recognition and modulation in hepatitis D virus infection. World J Gastroenterol, 2020. 26(21): p. 2781-2791. 9. Katze, M.G., Y. He, and M. Gale, Jr., Viruses and interferon: a fight for supremacy. Nat Rev Immunol, 2002. 2(9): p. 675-87. 10. Zhang, Z. and S. Urban, New insights into HDV persistence: The role of interferon response and implications for upcoming novel therapies. J Hepatol, 2021. 74(3): p. 686-699. 11. Elemans, M., N.K. Seich Al Basatena, and B. Asquith, The efficiency of the human CD8+ T cell response: how should we quantify it, what determines it, and does it matter? PLoS Comput Biol, 2012. 8(2): p. e1002381. 12. Wursthorn, K., M.P. Manns, and H. Wedemeyer, Natural history: the importance of viral load, liver damage and HCC. Best Pract Res Clin Gastroenterol, 2008. 22(6): p. 1063-79. 13. Yan, H., et al., Sodium taurocholate cotransporting polypeptide is a functional receptor for human hepatitis B and D virus. Elife, 2012. 1: p. e00049. 14. Herrscher, C., et al., Hepatitis B virus entry into HepG2-NTCP cells requires clathrin-mediated endocytosis. Cell Microbiol, 2020. 22(8): p. e13205. 15. Ni, Y., et al., Hepatitis B and D viruses exploit sodium taurocholate co-transporting polypeptide for species-specific entry into hepatocytes. Gastroenterology, 2014. 146(4): p. 1070-83. 16. Verrier, E.R., et al., Cell Culture Models for the Investigation of Hepatitis B and D Virus Infection. Viruses, 2016. 8(9). 17. He, W., et al., Hepatitis D Virus Infection of Mice Expressing Human Sodium Taurocholate Co-transporting Polypeptide. PLoS Pathog, 2015. 11(4): p. e1004840. 18. Allweiss, L. and M. Dandri, Experimental in vitro and in vivo models for the study of human hepatitis B virus infection. J Hepatol, 2016. 64(1 Suppl): p. S17-S31. 19. Lempp, F.A., et al., Hepatitis B Virus Infection of a Mouse Hepatic Cell Line Reconstituted with Human Sodium Taurocholate Cotransporting Polypeptide. J Virol, 2016. 90(9): p. 4827-4831. 20. Takei, T., et al., Ergosterol peroxide, an apoptosis-inducing component isolated from Sarcodon aspratus (Berk.) S. Ito. Biosci Biotechnol Biochem, 2005. 69(1): p. 212-5. 21. Yan, H., et al., Viral entry of hepatitis B and D viruses and bile salts transportation share common molecular determinants on sodium taurocholate cotransporting polypeptide. J Virol, 2014. 88(6): p. 3273-84. 22. Aly, H.H., et al., Serum-derived hepatitis C virus infectivity in interferon regulatory factor-7-suppressed human primary hepatocytes. J Hepatol, 2007. 46(1): p. 26-36. 23. Huang, H.C., et al., Entry of hepatitis B virus into immortalized human primary hepatocytes by clathrin-dependent endocytosis. J Virol, 2012. 86(17): p. 9443-53. 24. Huang, H.C., et al., (-)-Epigallocatechin-3-gallate inhibits entry of hepatitis B virus into hepatocytes. Antiviral Res, 2014. 111: p. 100-11. 25. Huang, H.C., et al., Cellular Nuclear Export Factors TAP and Aly Are Required for HDAg-L-mediated Assembly of Hepatitis Delta Virus. J Biol Chem, 2016. 291(50): p. 26226-26238. 26. Chang, M.F., et al., Nuclear localization signals, but not putative leucine zipper motifs, are essential for nuclear transport of hepatitis delta antigen. J Virol, 1992. 66(10): p. 6019-27. 27. Gudima, S., et al., Assembly of hepatitis delta virus: particle characterization, including the ability to infect primary human hepatocytes. J Virol, 2007. 81(7): p. 3608-17. 28. Wang, C.J., et al., Small-form hepatitis B surface antigen is sufficient to help in the assembly of hepatitis delta virus-like particles. J Virol, 1991. 65(12): p. 6630-6. 29. Urban, S., et al., Strategies to inhibit entry of HBV and HDV into hepatocytes. Gastroenterology, 2014. 147(1): p. 48-64. 30. Indrayanto, G., G.S. Putra, and F. Suhud, Validation of in-vitro bioassay methods: Application in herbal drug research. Profiles Drug Subst Excip Relat Methodol, 2021. 46: p. 273-307. 31. Chen, W., et al., Comprehensive Analysis of Serum and Fecal Bile Acid Profiles and Interaction with Gut Microbiota in Primary Biliary Cholangitis. Clin Rev Allergy Immunol, 2020. 58(1): p. 25-38. 32. Yan, H., et al., Molecular determinants of hepatitis B and D virus entry restriction in mouse sodium taurocholate cotransporting polypeptide. J Virol, 2013. 87(14): p. 7977-91. 33. Winer, B.Y., et al., Preclinical assessment of antiviral combination therapy in a genetically humanized mouse model for hepatitis delta virus infection. Sci Transl Med, 2018. 10(447). 34. Vigant, F., N.C. Santos, and B. Lee, Broad-spectrum antivirals against viral fusion. Nat Rev Microbiol, 2015. 13(7): p. 426-37. 35. Tu, T. and S. Urban, Virus entry and its inhibition to prevent and treat hepatitis B and hepatitis D virus infections. Curr Opin Virol, 2018. 30: p. 68-79. 36. Giersch, K., et al., Hepatitis delta virus persists during liver regeneration and is amplified through cell division both in vitro and in vivo. Gut, 2019. 68(1): p. 150-157. 37. Veloso Alves Pereira, I., et al., Primary biliary acids inhibit hepatitis D virus (HDV) entry into human hepatoma cells expressing the sodium-taurocholate cotransporting polypeptide (NTCP). PLoS One, 2015. 10(2): p. e0117152. 38. Konig, A., et al., Kinetics of the bile acid transporter and hepatitis B virus receptor Na+/taurocholate cotransporting polypeptide (NTCP) in hepatocytes. J Hepatol, 2014. 61(4): p. 867-75. 39. Bogomolov, P., et al., Treatment of chronic hepatitis D with the entry inhibitor myrcludex B: First results of a phase Ib/IIa study. J Hepatol, 2016. 65(3): p. 490-8. 40. Li, H., et al., HBV life cycle is restricted in mouse hepatocytes expressing human NTCP. Cell Mol Immunol, 2014. 11(2): p. 175-83. 41. D'Souza, S., et al., Molecular mechanisms of viral hepatitis induced hepatocellular carcinoma. World J Gastroenterol, 2020. 26(38): p. 5759-5783. 42. Kang, S., H.M. Brown, and S. Hwang, Direct Antiviral Mechanisms of Interferon-Gamma. Immune Netw, 2018. 18(5): p. e33. 43. Grabowski, J., et al., Hepatitis D virus-specific cytokine responses in patients with chronic hepatitis delta before and during interferon alfa-treatment. Liver Int, 2011. 31(9): p. 1395-405. 44. Merdivan, S. and U. Lindequist, Ergosterol Peroxide: A Mushroom-Derived Compound with Promising Biological Activities-A Review. Int J Med Mushrooms, 2017. 19(2): p. 93-105. 45. Kobori, M., et al., Ergosterol peroxide from an edible mushroom suppresses inflammatory responses in RAW264.7 macrophages and growth of HT29 colon adenocarcinoma cells. Br J Pharmacol, 2007. 150(2): p. 209-19. 46. Hofmann, W.P., V. Soriano, and S. Zeuzem, Antiviral combination therapy for treatment of chronic hepatitis B, hepatitis C, and human immunodeficiency virus infection. Handb Exp Pharmacol, 2009(189): p. 321-46. 47. Melville, K., T. Rodriguez, and H.M. Dobrovolny, Investigating Different Mechanisms of Action in Combination Therapy for Influenza. Front Pharmacol, 2018. 9: p. 1207. 48. Perez-Vargas, J., et al., Enveloped viruses distinct from HBV induce dissemination of hepatitis D virus in vivo. Nat Commun, 2019. 10(1): p. 2098. 49. McCarthy, M.K., et al., Interferon-dependent immunoproteasome activity during mouse adenovirus type 1 infection. Virology, 2016. 498: p. 57-68.
|