跳到主要內容

臺灣博碩士論文加值系統

(44.192.49.72) GMT+8:2024/09/17 21:37
Font Size: Enlarge Font   Word-level reduced   Reset  
Back to format1 :::

Browse Content

 
twitterline
Author:呂翊瑄
Author (Eng.):Yi-Syuan Lyu
Title:天然藥物過氧化麥角固醇抑制D型肝炎病毒感染之機制
Title (Eng.):Ergosterol Peroxide Acts as a Novel Hepatitis Delta Virus Entry Inhibitor
Advisor:黃琤
advisor (eng):Cheng Huang
degree:Master
Institution:國立陽明交通大學
Department:醫學生物技術暨檢驗學系
Narrow Field:醫藥衛生學門
Detailed Field:醫學技術及檢驗學類
Types of papers:Academic thesis/ dissertation
Publication Year:2021
Graduated Academic Year:109
language:English
number of pages:58
keyword (chi):D型肝炎病毒過氧化麥角固醇鈉離子牛磺膽酸共轉運蛋白基因轉殖小鼠進入抑制劑
keyword (eng):Hepatitis D virusErgosterol peroxideEntry inhibitorSodium taurocholate co-transporting polypeptidehuman NTCP transgenic mice
Ncl record status:
  • Cited Cited :0
  • HitsHits:126
  • ScoreScore:system iconsystem iconsystem iconsystem iconsystem icon
  • DownloadDownload:2
  • gshot_favorites title msgFav:0
D型肝炎是由D型肝炎病毒伴隨著B型肝炎病毒共感染所引起,是病毒性肝病中最為嚴重的一種,病患肝臟可能出現肝硬化、肝衰竭、肝癌等症狀。儘管全球約有4800-6000萬人口感染D型肝炎,但是目前D型肝炎的臨床治療策略並非直接針對D型肝炎病毒,而是利用抗B型肝炎病毒藥物來間接抑制D型肝炎病毒。首選藥物是干擾素α (interferon-α),利用干擾素α提升病患的免疫能力來毒殺病毒,但是此療程需要持續一年以上才能有效抑制D型肝炎病毒,且許多病患容易對干擾素類藥物產生副作用,因此D型肝炎的治療仍需要發展。鈉離子牛磺膽酸共轉運蛋白(Sodium taurocholate co-transporting polypeptide, NTCP)是肝細胞膜上所特有的穿膜蛋白,在正常情況下,NTCP可藉由鈉離子協同運輸,將血液中的膽酸送入肝臟。近幾年,NTCP被發現是B型肝炎病毒與D型肝炎病毒感染的肝臟細胞受器,NTCP會辨識大型B型肝炎病毒表面抗原(L-HBsAg)的pre-S1區域並與之結合,因此NTCP被作為治療D型肝炎病毒感染的新目標。
我們在此次研究中發現,在表現NTCP的人類肝臟細胞中,ergosterol peroxide (EP; 5α,8α-epidioxy-22E-ergosta-6,22-dien-3β-ol)有抑制D型肝炎病毒感染的能力。EP為固醇衍生物,存在於多種藥用真菌中,具有抗癌、抗病毒、抗發炎等功效,其化學結構與膽酸相似。過去有研究指出膽酸可藉由NTCP來抑制D型肝炎病毒感染。從細胞實驗結果中可以觀察到,與其他EP結構類似物相比,EP有較好抑制D型肝炎病毒的能力,另外也發現EP藉由干擾病毒進入時的fusion/endocytosis步驟來達到抑制D型肝炎病毒感染的效果。此外,我們利用表現人類NTCP蛋白的基因轉殖小鼠來評估EP對D型肝炎病毒的效果是否與細胞實驗結果相符。首先,實驗結果證明表現人類NTCP蛋白基因轉殖小鼠的肝臟確實大量表現人類NTCP蛋白且可成功被HDV感染,並觀察到以腹腔注射給予EP之後,小鼠肝臟內的D型肝炎病毒表現量下降。同時,小鼠體重、肝功能生化指數並沒有顯著變化,證明EP在基因轉殖小鼠體內的安全性。總括而言,我們的研究分別在體內與體外試驗中證實EP可以作為一個有發展潛力且用於抑制D型肝炎病毒的天然化合物。
Hepatitis D caused by coinfection or superinfection of hepatitis delta virus (HDV) in hepatitis B patients increases the risk of liver cirrhosis, liver failure, and hepatocellular carcinoma. Although there are up to 60 million hepatitis D patients worldwide, the standard treatment for hepatitis D patients is not specific. By using interferon-α (IFN-α) to enhance patients' immune responses, patients are obliged to take the therapy persistently but are liable to experience IFN-related side effects. Human sodium taurocholate co-transporting polypeptide (hNTCP) is a transmembrane transporter on the hepatocyte plasma membrane, it takes up bile acids in the normal situation. Recently, hNTCP has been identified as an entry receptor for HDV and HBV. This discovery provides researchers a new therapeutic option targeting the entry step of HDV infection.
Here, we showed that ergosterol peroxide (EP; 5α,8α-epidioxy-22E-ergosta-6,22-dien-3β-ol) had inhibitory effects on HDV infection in hNTCP-expressing immortalized human hepatocytes cells, differentiated HuS-E/2 cells induced by DMSO. EP, a steroid derivative found in many medicinal mushrooms, has a chemical structure resembling to bile acids. Interestingly, a previous study has revealed that bile acids have antiviral activity against HDV infection. Compared with other EP analogs, EP had a better potency on inhibiting HDV infection. Then, we observed that EP acted on the fusion/endocytosis step in HDV infection. Besides, we translated the results from cells to HDV-infected hNTCP transgenic mice driven by the loxP-cre system. In hNTCP transgenic mice, HDV RNA expression decreased upon EP treatment in a dose-dependent manner. Meanwhile, mouse body weight was of no statistical difference between groups and biochemical indices suggested the safety of EP treatment. Our study proved the natural compound EP as a potential agent against HDV in vitro and in vivo.
Table of Contents
中文摘要................................i
Abstract .............................iii
Table of Contents..................... iv
List of Figures and Tables ...........vii
Chapter 1. Introduction ................1
1.1 Hepatitis delta virus (HDV) ........1
1.1.1 Virology .........................1
1.1.2 Epidemiology......................1
1.1.3 Replication cycle ................2
1.1.4 Clinical course of hepatitis D......... 3
1.1.5 Immune response of HDV infection .......3
1.1.6 Diagnosis........................ 4
1.1.7 Treatment ........................5
1.2 Sodium taurocholate cotransporting polypeptide (NTCP) ........................................6
1.2.1 The function of NTCP............. 6
1.2.2 NTCP-expressing hepatocytes and mice for HDV infection ........................................6
1.3 Ergosterol peroxide (EP) ...........7
Chapter 2. Specific aim................ 8
Chapter 3. Materials and Methods....... 9
3.1 Drugs ..............................9
3.2 Cell lines and cell culture ........9
3.2.1 HuS-E/2.......................... 9
3.2.2 HepG2.2.15 .......................9
3.2.3 HepG2-hNTCP-C4 ..................10
3.3 Cell viability assay ............. 10
3.4 HDV viral particle purification and quantification ...................................... 11
3.5 HDV infection in cell lines .......11
3.6 Animals-hNTCP transgenic mice .... 12
3.7 Mouse genotyping... .............. 12
3.8 Mouse HDV viral inoculation and ergosterol peroxide treatment ............................ 13
3.9 Western blot...................... 13
3.10 Antibodies....................... 14
3.11 Quantitative real-time polymerase chain reaction ...................................... 14
3.12 Biochemical analysis............. 14
3.13 Statistical analysis ............ 15
Chapter 4. Results ................... 16
4.1 Generation of HDV viral stock .... 16
4.2 Determination of EP dose.......... 16
4.3 EP inhibits HDV infection in differentiated HuS-E/2 cells ................................ 17
4.4 EP inhibited HDV infection in HepG2-hNTCP-C4 cells ...................................... 18
4.5 The effect of EP and its analogues on HDV infection in differentiated HuS-E/2 cel............ 18
4.6 The effect of EP on steps involved in HDV life cycle in differentiated HuS-E/2 cells ......... 19
4.7 The human NTCP transgenic mice model and mice genotyping ...................................... 20
4.8 The hNTCP expression and the susceptibility to HDV infection in hNTCP transgenic mice ... 20
4.9 EP suppressed HDV infection in hNTCP transgenic mice ...................................... 21
4.10 The effect of EP on liver hNTCP expression, body weight, and liver function in hNTCP transgenic mice ...................................... 21
4.11 The innate immune response of hNTCP transgenic mice ...................................... 22
Chapter 5. Discussion and conclusion ............. 23
5.1 Discussion ....................... 23
5.2 Conclusion ....................... 27
Supplementary Information............. 49
Reference ............................ 52

List of Figures and Tables
Figure 1. HDAg protein expression of pSVD2-transfected HepG2.2.15 cells. ................................ 28
Figure 2. HDV virus stock quantification. ........ 29
Figure 3. The cytotoxicity of EP in the differentiated-HuS-E/2 cell line. ................................... 30
Figure 4. The effect of EP on HDV replication in differentiated HuS-E/2 ........................... 32
Figure 5. The effect of EP on HDV infection in HepG2-hNTCP-C4 cells. ........................................ 33
Figure 6. The effect of EP and its analogues on HDV replication in differentiated HuS-E/2 cells............................................. 34
Figure 7. The effect of EP on HDV replicated steps in differentiated HuS-E/2 cells. .................... 37
Figure 8. Graphical illustration of hNTCP gene cassette in hNTCP transgenic mice and mice genotyping. ....... 39
Figure 9. The hNTCP expression and the susceptibility to HDV infection in hNTCP-cre transgenic mice. .......... 40
Figure 10. The effect of EP on HDV infection in hNTCP-cre transgenic mice. ................................. 42
Figure 11. Liver hNTCP expression, body weight, serum GOT, and GPT in hNTCP-cre transgenic mice. ............ 45
Figure 12. Inflammatory factor and interferon expression in the liver of EP-treated hNTCP-cre transgenic mice. .... 46
Figure 13. Graphical demonstration of mechanisms of EP action. .......................................... 48
Table. S1 Primer list..............................49
Figure. S1 EP inhibits the binding of the pre-S1 domain of LHBsAg and NTCP....................................51
1. Turon-Lagot, V., et al., Targeting the Host for New Therapeutic Perspectives in Hepatitis D. J Clin Med, 2020. 9(1).
2. Lempp, F.A., Y. Ni, and S. Urban, Hepatitis delta virus: insights into a peculiar pathogen and novel treatment options. Nat Rev Gastroenterol Hepatol, 2016. 13(10): p. 580-9.
3. Wedemeyer, H. and M.P. Manns, Epidemiology, pathogenesis and management of hepatitis D: update and challenges ahead. Nat Rev Gastroenterol Hepatol, 2010. 7(1): p. 31-40.
4. Gudima, S., et al., Parameters of human hepatitis delta virus genome replication: the quantity, quality, and intracellular distribution of viral proteins and RNA. J Virol, 2002. 76(8): p. 3709-19.
5. Miao, Z., et al., Estimating the Global Prevalence, Disease Progression, and Clinical Outcome of Hepatitis Delta Virus Infection. J Infect Dis, 2020. 221(10): p. 1677-1687.
6. Chen, H.Y., et al., Prevalence and burden of hepatitis D virus infection in the global population: a systematic review and meta-analysis. Gut, 2019. 68(3): p. 512-521.
7. Negro, F., Hepatitis D virus coinfection and superinfection. Cold Spring Harb Perspect Med, 2014. 4(11): p. a021550.
8. Jung, S., S.M. Altstetter, and U. Protzer, Innate immune recognition and modulation in hepatitis D virus infection. World J Gastroenterol, 2020. 26(21): p. 2781-2791.
9. Katze, M.G., Y. He, and M. Gale, Jr., Viruses and interferon: a fight for supremacy. Nat Rev Immunol, 2002. 2(9): p. 675-87.
10. Zhang, Z. and S. Urban, New insights into HDV persistence: The role of interferon response and implications for upcoming novel therapies. J Hepatol, 2021. 74(3): p. 686-699.
11. Elemans, M., N.K. Seich Al Basatena, and B. Asquith, The efficiency of the human CD8+ T cell response: how should we quantify it, what determines it, and does it matter? PLoS Comput Biol, 2012. 8(2): p. e1002381.
12. Wursthorn, K., M.P. Manns, and H. Wedemeyer, Natural history: the importance of viral load, liver damage and HCC. Best Pract Res Clin Gastroenterol, 2008. 22(6): p. 1063-79.
13. Yan, H., et al., Sodium taurocholate cotransporting polypeptide is a functional receptor for human hepatitis B and D virus. Elife, 2012. 1: p. e00049.
14. Herrscher, C., et al., Hepatitis B virus entry into HepG2-NTCP cells requires clathrin-mediated endocytosis. Cell Microbiol, 2020. 22(8): p. e13205.
15. Ni, Y., et al., Hepatitis B and D viruses exploit sodium taurocholate co-transporting polypeptide for species-specific entry into hepatocytes. Gastroenterology, 2014. 146(4): p. 1070-83.
16. Verrier, E.R., et al., Cell Culture Models for the Investigation of Hepatitis B and D Virus Infection. Viruses, 2016. 8(9).
17. He, W., et al., Hepatitis D Virus Infection of Mice Expressing Human Sodium Taurocholate Co-transporting Polypeptide. PLoS Pathog, 2015. 11(4): p. e1004840.
18. Allweiss, L. and M. Dandri, Experimental in vitro and in vivo models for the study of human hepatitis B virus infection. J Hepatol, 2016. 64(1 Suppl): p. S17-S31.
19. Lempp, F.A., et al., Hepatitis B Virus Infection of a Mouse Hepatic Cell Line Reconstituted with Human Sodium Taurocholate Cotransporting Polypeptide. J Virol, 2016. 90(9): p. 4827-4831.
20. Takei, T., et al., Ergosterol peroxide, an apoptosis-inducing component isolated from Sarcodon aspratus (Berk.) S. Ito. Biosci Biotechnol Biochem, 2005. 69(1): p. 212-5.
21. Yan, H., et al., Viral entry of hepatitis B and D viruses and bile salts transportation share common molecular determinants on sodium taurocholate cotransporting polypeptide. J Virol, 2014. 88(6): p. 3273-84.
22. Aly, H.H., et al., Serum-derived hepatitis C virus infectivity in interferon regulatory factor-7-suppressed human primary hepatocytes. J Hepatol, 2007. 46(1): p. 26-36.
23. Huang, H.C., et al., Entry of hepatitis B virus into immortalized human primary hepatocytes by clathrin-dependent endocytosis. J Virol, 2012. 86(17): p. 9443-53.
24. Huang, H.C., et al., (-)-Epigallocatechin-3-gallate inhibits entry of hepatitis B virus into hepatocytes. Antiviral Res, 2014. 111: p. 100-11.
25. Huang, H.C., et al., Cellular Nuclear Export Factors TAP and Aly Are Required for HDAg-L-mediated Assembly of Hepatitis Delta Virus. J Biol Chem, 2016. 291(50): p. 26226-26238.
26. Chang, M.F., et al., Nuclear localization signals, but not putative leucine zipper motifs, are essential for nuclear transport of hepatitis delta antigen. J Virol, 1992. 66(10): p. 6019-27.
27. Gudima, S., et al., Assembly of hepatitis delta virus: particle characterization, including the ability to infect primary human hepatocytes. J Virol, 2007. 81(7): p. 3608-17.
28. Wang, C.J., et al., Small-form hepatitis B surface antigen is sufficient to help in the assembly of hepatitis delta virus-like particles. J Virol, 1991. 65(12): p. 6630-6.
29. Urban, S., et al., Strategies to inhibit entry of HBV and HDV into hepatocytes. Gastroenterology, 2014. 147(1): p. 48-64.
30. Indrayanto, G., G.S. Putra, and F. Suhud, Validation of in-vitro bioassay methods: Application in herbal drug research. Profiles Drug Subst Excip Relat Methodol, 2021. 46: p. 273-307.
31. Chen, W., et al., Comprehensive Analysis of Serum and Fecal Bile Acid Profiles and Interaction with Gut Microbiota in Primary Biliary Cholangitis. Clin Rev Allergy Immunol, 2020. 58(1): p. 25-38.
32. Yan, H., et al., Molecular determinants of hepatitis B and D virus entry restriction in mouse sodium taurocholate cotransporting polypeptide. J Virol, 2013. 87(14): p. 7977-91.
33. Winer, B.Y., et al., Preclinical assessment of antiviral combination therapy in a genetically humanized mouse model for hepatitis delta virus infection. Sci Transl Med, 2018. 10(447).
34. Vigant, F., N.C. Santos, and B. Lee, Broad-spectrum antivirals against viral fusion. Nat Rev Microbiol, 2015. 13(7): p. 426-37.
35. Tu, T. and S. Urban, Virus entry and its inhibition to prevent and treat hepatitis B and hepatitis D virus infections. Curr Opin Virol, 2018. 30: p. 68-79.
36. Giersch, K., et al., Hepatitis delta virus persists during liver regeneration and is amplified through cell division both in vitro and in vivo. Gut, 2019. 68(1): p. 150-157.
37. Veloso Alves Pereira, I., et al., Primary biliary acids inhibit hepatitis D virus (HDV) entry into human hepatoma cells expressing the sodium-taurocholate cotransporting polypeptide (NTCP). PLoS One, 2015. 10(2): p. e0117152.
38. Konig, A., et al., Kinetics of the bile acid transporter and hepatitis B virus receptor Na+/taurocholate cotransporting polypeptide (NTCP) in hepatocytes. J Hepatol, 2014. 61(4): p. 867-75.
39. Bogomolov, P., et al., Treatment of chronic hepatitis D with the entry inhibitor myrcludex B: First results of a phase Ib/IIa study. J Hepatol, 2016. 65(3): p. 490-8.
40. Li, H., et al., HBV life cycle is restricted in mouse hepatocytes expressing human NTCP. Cell Mol Immunol, 2014. 11(2): p. 175-83.
41. D'Souza, S., et al., Molecular mechanisms of viral hepatitis induced hepatocellular carcinoma. World J Gastroenterol, 2020. 26(38): p. 5759-5783.
42. Kang, S., H.M. Brown, and S. Hwang, Direct Antiviral Mechanisms of Interferon-Gamma. Immune Netw, 2018. 18(5): p. e33.
43. Grabowski, J., et al., Hepatitis D virus-specific cytokine responses in patients with chronic hepatitis delta before and during interferon alfa-treatment. Liver Int, 2011. 31(9): p. 1395-405.
44. Merdivan, S. and U. Lindequist, Ergosterol Peroxide: A Mushroom-Derived Compound with Promising Biological Activities-A Review. Int J Med Mushrooms, 2017. 19(2): p. 93-105.
45. Kobori, M., et al., Ergosterol peroxide from an edible mushroom suppresses inflammatory responses in RAW264.7 macrophages and growth of HT29 colon adenocarcinoma cells. Br J Pharmacol, 2007. 150(2): p. 209-19.
46. Hofmann, W.P., V. Soriano, and S. Zeuzem, Antiviral combination therapy for treatment of chronic hepatitis B, hepatitis C, and human immunodeficiency virus infection. Handb Exp Pharmacol, 2009(189): p. 321-46.
47. Melville, K., T. Rodriguez, and H.M. Dobrovolny, Investigating Different Mechanisms of Action in Combination Therapy for Influenza. Front Pharmacol, 2018. 9: p. 1207.
48. Perez-Vargas, J., et al., Enveloped viruses distinct from HBV induce dissemination of hepatitis D virus in vivo. Nat Commun, 2019. 10(1): p. 2098.
49. McCarthy, M.K., et al., Interferon-dependent immunoproteasome activity during mouse adenovirus type 1 infection. Virology, 2016. 498: p. 57-68.
Link to school's url:Link url
Link record message
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
First Page Prev Page Next Page Last Page top
None related journal articles
 
1. Discovery of novel NTCP inhibitors to inhibit Hepatitis B virus infection
2. Developing a NK-based immunotherapy targeting cetuximab resistant colorectal cancer cells
3. Trends in socioeconomic inequalities in maternal health and the role of insurance in the Philippines from 2008 to 2017
4. _Association between intimate partner violence and nutrition status of under-five children in Malawi.
5. The association between maternal engagement in child stimulating activities and the socio-emotional development of children aged 3 and 4 years, in Eswatini: modification by child gender
6. The Role of a de novo NDEL1 Mutation p.R105P in Lissencephaly and Neuronal Migration Delay
7. Stabilized high amylose maize ameliorate the metabolic syndrome and gut microbiota in HFD-induced obese mice
8. Transition into first marriage in Northern Taiwan: Does adolescent self-esteem matter?
9. The association of BPA and parabens exposure and oxidative stress with Attention-Deficit/Hyperactivity Disorder in children.
10. Relationship between children's exposure to multiple environmental hormones and attention deficit hyperactivity disorder in northern Taiwan.
11. Basal forebrain glutamatergic neurons inhibit reward-seeking behavior and encode negative valence
12. Discrete states transition in the basal forebrain during probability reversal
13. The functional coupling between midbrain dopamine neurons and basal forebrain bursting neurons in the encoding of reward prediction error
14. Study Tumor Oxygen Microenvironments In Vitro Using Microfluidic Device and Frequency Domain Fluorescence Lifetime Imaging Microscopy (FD-FLIM)
15. Dietary Risk Assessment of Benzophenone-type Photoinitiators from Foodstuffs for Taiwanese
 
system icon system icon