跳到主要內容

臺灣博碩士論文加值系統

(44.222.104.206) 您好!臺灣時間:2024/05/29 22:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張芷瑋
研究生(外文):Chih-Wei Chang
論文名稱:提升PET/MRI腦功能影像之量化分析準確性以評估巴金森氏症之針灸療效
論文名稱(外文):Improvement of a quantitative analysis system for PET/MRI brain functional images in the treatment of Parkinson's disease with acupuncture
指導教授:陳志成陳志成引用關係
指導教授(外文):Chen, Jyh-Cheng
學位類別:碩士
校院名稱:國立陽明交通大學
系所名稱:生物醫學影像暨放射科學系
學門:醫藥衛生學門
學類:醫學技術及檢驗學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:71
中文關鍵詞:巴金森氏症正子斷層造影影像分割定量分析統計參數映射
外文關鍵詞:Parkinson's disease18F-FDG PETImage segmentationQuantitative analysisStatistical parametric mapping
相關次數:
  • 被引用被引用:0
  • 點閱點閱:193
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
研究背景與目的: 巴金森氏症(Parkinson's disease, PD)是一種神經退化性疾病,其致病機轉為中腦黑質退化,導致紋狀體(struatum)之殼核(putamen)及尾核(caudate)中多巴胺神經元退化,並造成在突觸之多巴胺含量下降,逐漸失去了行動的能力。在PET檢查中,可以藉由注射核醫藥物,進入腦中紋狀體之殼核和尾殼區域,再經由放射藥劑在影像上分布的缺損程度評估與診斷巴金森氏症之嚴重性。透過MRI的影像作為輔助,提供更為精準之解剖資訊,使得ROI圈選之準確率有更大的提升。因此我們的目的是建立一個自動化定量分析系統,用於PET / MRI圖像,透過使用殼核和尾狀的ROI分割並搭配MRI圖像自動進行PET圖像的定量分析。
方法: 我們利用開放來源SPM (statistical parametric mapping)軟體將針灸治療前與治療後之PD病人的MRI TI 影像與PET 影像進行對位(co-registration) 使兩者之空間座標相符。接著將病人之MRI TI 影像對先前建置好的MRI T1 模板(template)進行空間正規化(spatial normalization)並獲得正規化轉換參數,最後將此參數寫入相對應完成對位之 PET 影像中來進行空間正規化。進行正規化處理過之影像,其影像空間座標軸和體素之形狀及大小皆與標準空間腦部模板一致。最後再利用同樣符合標準空間座標軸之 AAL (automated anatomical labeling) ROI 中所定義的尾核與殼核範圍對正規化後之 PET 影像進行ROI自動圈選來進行量化分析。採用專一攝取率 (specific uptake ratio, SUR)與不對稱性索引(asymmetry index, ASI)和核磁共振巴金森氏指標(magnetic resonance parkinsonism index, MRPI)來當作量化分析之指標。
結果: 由台北榮總醫院神經內科招募13位患者進行針灸前後的治療,其中九位女性,四位男性,平均年齡約65.5歲。Hoehn & Yahr (HY) 級別1-4期,其中兩位患者中途退出此研究。將針灸前後之結果進行t TEST統計分析有顯著差異。
結論: 自動化定量分析系統可以改善手工圈選方法耗時費工及人為主觀和再現性低之問題,而導入MRI影像所提供之解剖資訊進行對PET影像ROI自動化圈選,還可提高定量分析與臨床診斷之正確率。透過巴金森病人PET/MRI 腦功能影像之量化分析,結果顯示,針灸輔助療法對輕微巴金森氏症的病人具有療效。
Background and Purpose: Parkinson's disease (PD) is a neurodegenerative disease in old people whose pathogenic mechanism turns into the degeneration of substantia nigra of the midbrain, causing the degeneration of dopaminergic neurons in the putamen and caudate nucleus of the striatum, and the dopamine content in the synapses decreases and gradually loses the ability to act properly. Therefore, our purpose was to establish an automated quantitative analysis system for PET / MRI images, through the use of putamen and caudal ROI segmentation and MRI images to automatically perform quantitative analysis of PET assessment for PD therapy. In PET, radiotrcer can be injected into the putamen and caudate nucleus of the striatum in the brain, and then the radioactive drugs can be distributed on the image to assess and diagnose the severity of Parkinson's disease. The MRI image is used as an aid to provide more accurate anatomical information, so that the accuracy of ROI circle selection is greatly improved.
Methods: We used the open source SPM (statistical parametric mapping) software to co-register each PD patient’s MRI images and the T1 MRI template. Then use the SPM software module to spatially normalize the previously completed MRI images that have been co-aligned to set the clinical image’s spatial coordinate axis and voxel size (2 mm × 2 mm × 2 mm). Quantitative index: The specific uptake ratio (SUR) is a semi-quantitative analysis method often used in nuclear medical imaging of the brain. It can be used to circle the ROIs of the images, where the ROIs include the target area (the area where the uptake is high) and the background area (the area where the uptake is low). The asymmetry index (ASI) is used to observe the asymmetry ratio of the striatum on both sides of the striatum, and the difference in the uptake ratio of the striatum on both sides of the FDG PET image can be observed. The magnetic resonance parkinsonism index (MRPI) can be used in MRI studies to distinguish patients with Parkinson disease and progressive supranuclear palsy (PSP). We use SUR, ASI, and MRPI to evaluate the brain PET/MR images before and after acupuncture treatment of PD patients.
Results: We recruited 13 patients from the Department of Neurology, Taipei Veterans General Hospital for pre- and post-acupuncture treatments, nine women, two men, average age (65.5 years), Parkinson stage 1-4, two of them withdrew from this experiment. Statistical analysis showed significant difference after treatments for some patients (stage1-2).
Conclusions: An automated quantitative analysis system can effectively help clinical analysis and there are significant differences in caudate, putamen, and striatum areas before and after treatments.
致謝..........................................i
中文摘要......................................iii
Abstract......................................v
目錄...........................................vii
圖目錄.........................................x
表目錄..........................................xii
第一章 緒論.....................................1
1.1 研究動機....................................1
1.2 研究目的....................................2
1.3 論文架構....................................3
第二章 文獻回顧.................................4
2.1 PET正子斷層造影原理.........................4
2.1.1正子斷層造影之開發.........................4
2.1.2 正子斷層造影原理..........................5
2.1.3偶合偵測(coincidence detection)...........7
2.1.4正子斷層造影影像重組與修正..................9
2.1.5正子斷層之臨床應用.........................13
2.2 MRI磁振斷層造影及PET/MR.....................15
2.1.1 MRI基本原理..............................15
2.1.2 MRI在PET中之角色.........................21
2.3迴旋加速器與正子藥物.........................21
2.3.1 迴旋加速器製造的核種......................23
2.3.2 臨床常用的核醫藥物........................25
2.4巴金森氏症概述..............................26
2.4.2 巴金森氏症的診斷及臨床治療................29
2.5 中醫針灸概述...............................30
2.5.1 原理與治療...............................31
2.5.2 針灸與巴金森氏症..........................31
第三章 材料與方法...............................33
3.1 掃描儀器...................................33
3.2 人體實驗...................................34
3.2.1 受測者與臨床試驗..........................34
3.2.2 正子藥物.................................36
3.2.3 針灸穴位.................................37
3.3軟體.......................................38
3.3.1 MATLAB..................................38
3.3.2統計參數映射(statistical parametric mapping, SPM)..........................................39
3.4半定量指標計算..............................40
3.4.1 專一攝取率(specific uptake ratio, SUR)...40
3.4.2 不對稱性指標(asymmetry index, ASI).......41
3.4.3核磁共振巴金森氏指数(magnetic resonance parkinsonism index, MRPI)..................................41
3.5 研究步驟及流程.............................42
3.5.1影像處理與VOI製作流程.....................42
3.5.2 ROI的產生與IBASPM自動圈選................44
3.6 統計分析..................................45
第四章 實驗結果與討論..........................46
4.1 影像半定量分析結果.........................46
4.1.1 尾核、殼核、紋狀體.......................46
4.1.2 其他運動區域............................53
4.2 統計檢定..................................60
4.3 討論......................................61
4.4實驗限制...................................63
第五章 結論與未來展望..........................64
5.1 結論......................................64
5.2 未來展望..................................65
參考文獻 References...........................66
附錄一: Biography.............................71


圖目錄
圖2-1 正子斷層造影偵測原理示意圖正子斷層造影偵測原理示意圖.. 7
圖2-2 偶合事件偶合事件 (A)真實事件,真實事件,(B)散射事件,和散射事件,和(C)隨機事件。隨機事件。 ... 8
圖2-3 全部平行角度全部平行角度θ投射線及合成投影投射線及合成投影P(θ) ... 11
圖2-4 疊代式影像運算流程疊代式影像運算流程 ......... 11
圖2-5 氫核加入磁場後示意圖氫核加入磁場後示意圖 ...... 20
圖2-6 氫核加入氫核加入RF波後在磁場波後在磁場B1示意圖示意圖 .. 20
圖2-7 發病機制發病機制 ............................. 27
圖2-8 大腦內基底核區域解剖圖大腦內基底核區域解剖圖 .... 27
圖2-9 溫氏頭皮針溫氏頭皮針 .......................... 32
圖3-1 GE SIGNAPET/MR ............................... 33
圖3–2 臨床試驗臨床試驗............................... 35
圖3-3 氟氟-18去氧葡萄糖結構圖去氧葡萄糖結構圖 ......... 36
圖3-4 正常人與巴金森氏症掃描影像圖正常人與巴金森氏症掃描影像圖[47]................................................ 36
圖3-5 耳針耳針PD扎法扎法 ............................ 37
圖3-6 溫氏頭皮針與耳針溫氏頭皮針與耳針PD扎法。扎法。(A)溫氏頭皮針溫氏頭皮針 (B)耳針耳針PD ........................... 38
圖3-7 SPM 軟體所提供之軟體所提供之T1 MRI 模板進行共同對位模板進行共同對位 ........................................ 43
圖3-8 影像處理影像處理 .............................. 44
圖3-9 ROI的產生與的產生與AAL區域區域 ................. 45
圖4-1 受測者治療前與治療後半定量分析指標,背景區域受測者治療前與治療後半定量分析指標,背景區域(小腦小腦).................48
圖4-2 受測者治療前與治療後半定量分析指標,背景區域受測者治療前與治療後半定量分析指標,背景區域(橋腦橋腦).................50
圖4-3 受測者治療前與治療後半定量分析指標,背景區域受測者治療前與治療後半定量分析指標,背景區域(枕葉枕葉).................52
圖4-4 受測者治療前與治療後半定量分析指標,背景區域受測者治療前與治療後半定量分析指標,背景區域(小腦小腦).................56
圖4-5 受測者治療前與治療後半定量分析指標,背景區域受測者治療前與治療後半定量分析指標,背景區域(橋腦橋腦).................57
圖4-6 受測者治療前與治療後半定量分析指標,背景區域受測者治療前與治療後半定量分析指標,背景區域(枕葉枕葉).................58
圖4-7 受測者受測者(HYS = III)治療前與治療後的治療前與治療後的MRI影像影像 ..............................................59
圖4-8 受測者受測者(HYS =I~II)治療前與治療後的治療前與治療後的MRI影像影像..............................................59
圖4-9 Regional and SURs. ........................... 60

表目錄

表2- 1常用正子衰變放射核種常用正子衰變放射核種 ......... 6
表2-2 迴旋加速生產的迴旋加速生產的核種核種 ............. 24
表2-3 Hoehn-Yahr分級表分級表 ........................... 29
表3-1 GE SIGNAPET/MR規格規格 ........................... 33
表3-2 受測者分布受測者分布 ............................. 35
表4-1 受測者治療前與治療後半定量分析指標,背景區域受測者治療前與治療後半定量分析指標,背景區域(小腦小腦).............. 47
表4-2 受測者治療前與治療後半定量分析指標,背景區域受測者治療前與治療後半定量分析指標,背景區域(橋腦橋腦).............. 49
表4-3 受測者治療前與治療後半定量分析指標,背景區域受測者治療前與治療後半定量分析指標,背景區域(枕葉枕葉).............. 51
表4-4 受測者治療前與治療後半定量分析指標,背景區域受測者治療前與治療後半定量分析指標,背景區域(小腦小腦).............. 53
表4-5 受測者治療前與治療後半定量分析指標,背景區域受測者治療前與治療後半定量分析指標,背景區域(橋腦橋腦).............. 54
表4-6 受測者治療前與治療後半定量分析指標,背景區域受測者治療前與治療後半定量分析指標,背景區域(枕葉枕葉).............. 55
[1] Parkinson J. An essay on the shaking palsy. 1817. J Neuropsychiatry Clin Neurosci. 2002 Spring;14(2):223-36; discussion 222. doi: 10.1176/jnp.14.2.223. PMID: 11983801.
[2] Sveinbjornsdottir S. The clinical symptoms of Parkinson's disease. J Neurochem. 2016 Oct;139 Suppl 1:318-324. doi: 10.1111/jnc.13691. Epub 2016 Jul 11. PMID: 27401947.
[3] Stoessl, A. J. (2007). Positron emission tomography in premotor Parkinson's disease. Parkinsonism & related disorders, 13, S421-S424.
[4] Booij, J., & Knol, R. J. (2007). SPECT imaging of the dopaminergic system in (premotor) Parkinson's disease. Parkinsonism & related disorders, 13, S425-S428.
[5] Morrish, P. K., Sawle, G. V., & Brooks, D. J. (1996). An [18F] dopa–PET and clinical study of the rate of progression in Parkinson’s disease. Brain, 119(2), 585-591.
[6] Morrish, P. K., Sawle, G. V., & Brooks, D. J. (1995). Clinical and [18F] dopa PET findings in early Parkinson's disease. Journal of Neurology, Neurosurgery & Psychiatry, 59(6), 597-600.
[7] Morrish, P. K., Rakshi, J. S., Bailey, D. L., Sawle, G. V., & Brooks, D. J. (1998). Measuring the rate of progression and estimating the preclinical period of Parkinson’s disease with [18F] dopa PET. Journal of Neurology, Neurosurgery & Psychiatry, 64(3), 314-319.
[8] Berding, G., Odin, P., Brooks, D. J., Nikkhah, G., Matthies, C., Peschel, T., ... & Knapp, W. H. (2001). Resting regional cerebral glucose metabolism in advanced Parkinson's disease studied in the off and on conditions with [18F] FDG‐PET. Movement disorders: official journal of the Movement Disorder Society, 16(6), 1014-1022.
[9] Matthews, D. C., Lerman, H., Lukic, A., Andrews, R. D., Mirelman, A., Wernick, M. N., ... & Even-Sapir, E. (2018). FDG PET Parkinson’s disease-related pattern as a biomarker for clinical trials in early stage disease. NeuroImage: Clinical, 20, 572-579.
[10] MM Ter-Pogossian, ME Phelps, EJ Hoffman, NA Mullani (1975). A positron emission transaxial tomography for nuclear imaging (PET). Radiology. 114 (1): 89–98. doi:10.1148/114.1.89. OSTI 4251398. PMID 1208874.
[11] Phelps, ME., Hoffman, EJ., Mullani NA, Ter-Pogossian MM (March 1, 1975). Application of annihilation coincidence detection to transaxial reconstruction tomography. Journal of Nuclear Medicine. 16 (3): 210–224. PMID 1113170.
[12] A Vital Legacy: Biological and Environmental Research in the Atomic Age, U.S. Department of Energy, The Office of Biological and Environmental Research, September 2010, p: 25–26.
[13] Thompson, C., (2005). Sci-PM Thurs - 01: 30 years ago: The first PET scanner in Canada. Medical Physics. 32. 2408-. 10.1118/1.2030971.
[14] T Ido, CN Wan, V Casella, JS Fowler, et al. (1978). Labeled 2-deoxy-D-glucose analogs. 18F-labeled 2-deoxy-2-fluoro-D-glucose, 2-deoxy-2-fluoro-D-mannose and 14C-2-deoxy-2-fluoro-D-glucose. Journal of Labelled Compounds and Radiopharmaceuticals. 14 (2): 175–183.
[15] G.L Brownell., Dave Marcum, B. Hoop JR., and D.E. Bohning, "Quantitative dynamic studies using short-lived radioisotopes and positron detection" in proceedings of the Symposium on Dynamic Studies with Radioisotopes in Medicine, Rotterdam. August 31–September 4, 1945. IAEA. Vienna. 194824. pp. 161–172.
[16] Bruce W. Long, Jeannean Hall Rollins, Barbara J. Smith, Merrill's Atlas of Radiographic Positioning and Procedures E-Book: Volume 3,Elsevier Health Sciences Jan. 2015, ISBN: 9780323312509.
[17] Magdy M. Khalil, Basic Sciences of Nuclear Medicine, Springer Nature, ISBN: 978-3-540-85961-1, 978-3-540-85962-8.
[18] 常用正子衰變核種 2020/05 取自https://sites.google.com/site/cboatpetct/home/fulltext/chapter-02/chapter-02-01
[19] Clarke, N. Bonnie, PET Radiopharmaceuticals: What’s new, what’s reimbursed, and what’s next? Journal of nuclear medicine technology 46.1 (2018): 12-16.
[20] Wieczorek H. The image quality of FBP and MLEM reconstruction. Phys Med Biol. 2010 Jun 7;55(11):3161-76. Epub 2010 May 17. PMID: 20479513.
[21] Kuo Y, Lin YY, Lee RC, Lin CJ, Chiou YY, Guo WY. Comparison of image quality from filtered back projection, statistical iterative reconstruction, and model-based iterative reconstruction algorithms in abdominal computed tomography. Medicine (Baltimore). 2016 Aug;95(31):e4456. Erratum in: Medicine (Baltimore). 2016 Dec 09;95(49):e5663. PMID: 27495078; PMCID: PMC4979832.
[22] Galluzzi, Lorenzo, et al. Metabolic targets for cancer therapy. Nature reviews Drug discovery 12.11 (2013): 829
[23] Marcus, Charles, Esther Mena, and Rathan M. Subramaniam. Brain PET in the diagnosis of Alzheimer’s disease. Clinical nuclear medicine 39.10 (2014): e413
[24] Galluzzi, Lorenzo, et al. Metabolic targets for cancer therapy. Nature reviews Drug discovery 12.11 (2013): 829.
[25] Marcelo F Di Carli, et al. Clinical myocardial perfusion PET/CT. Journal of Nuclear Medicine 48.5 (2007): 783-793.
[26] Grover, V. P., Tognarelli, J. M., Crossey, M. M., Cox, I. J., Taylor-Robinson, S. D., & McPhail, M. J. (2015). Magnetic Resonance Imaging: Principles and Techniques: Lessons for Clinicians. Journal of clinical and experimental hepatology, 5(3), 246–255.
[27] Tognarelli JM, Dawood M, Shariff MI, Grover VP, Crossey MM, Cox IJ, Taylor-Robinson SD, McPhail MJ. Magnetic Resonance Spectroscopy: Principles and Techniques: Lessons for Clinicians. J Clin Exp Hepatol. 2015 Dec;5(4):320-8. doi: 10.1016/j.jceh.2015.10.006. Epub 2015 Nov 12. PMID: 26900274; PMCID: PMC4723643.
[28] 核磁共振成像 (MRI) 掃描2020/05 取自https://teachmeanatomy.info/the-basics/imaging/magnetic-resonance-imaging-mri/
[29] Haacke EM, Mittal S, Wu Z, Neelavallib J, Chenga Y. Susceptibil-ity-weighted imaging: technical aspects and clinical applications,Part 1. AJNR Am J Neuroradiol 2009;26:736-742.
[30] Le Bihan D, Breton E, Lallemand D, Grenier P, Cabanis E, Laval-Jeantet M. MR imaging of intravoxel incoherent motions: applica-tion to diffusion and perfusion in neurologic disorders. Radiology1986;161:401–407.
[31] Gatehouse PD, Keegan J, Crowe LA, et al. Applications of phase-contrast flow and velocity imaging in cardiovascular MRI. EurRadiol 2005;15:2172–2184.
[32] Weber MA, Gu ̈nther M, Lichy MP, et al. Comparison of arterialspin-labeling techniques and dynamic susceptibility-weightedcontrast-enhanced MRI in perfusion imaging of normal brain tis-sue. Invest Radiol 2003;38:718.
[33] Taylor JS, Tofts PS, Port R, et al. MR imaging of tumor microcir-culation: promise for the new millennium. J Magn Reson Imaging1999;10:903–907.
[34] Williams D, Detrett J, Leigh J, Koretsky A. Magnetic resonanceimaging of perfusion using spin inversion of arterial water. ProcNatl Acad Sci U S A 1992;89:212-216.
[35] Walker CL, Foster FS, Plewes DB. Magnetic resonance imaging ofultrasonic fields. Ultrasound Med Biol 1998;24:137-142.
[36] Isidor Isaac Rabi, Space quantization in a gyrating magnetic field. Physical Review 51.8 (1937): 652.
[37] P. E. Kinahan, et al. Attenuation correction for a combined 3D PET/CT scanner. Medical physics 25.10 (1998): 2046-2053.
[38] Parkinson, J. (2002). An essay on the shaking palsy. 1817. The Journal of Neuropsychiatry and Clinical Neurosciences, 14(2), 223–236.
[39] Sveinbjornsdottir, S. (2016). The clinical symptoms of Parkinson’s disease. Journal of Neurochemistry, 318–324. https://doi.org/10.1111/jnc.13691
[40] Cordery, R. J., Tyrrell, P. J., Lantos, P. L., &Rossor, M. N. (2001). Dementia with lewy bodies studied with positron emission tomography. Archives of Neurology, 58(3), 505–508.
[41] de Assis, Gilmara & Silva, Tatiane & Moreira, Paulo. (2018). Dual-task exercise as a therapy for executive motor function in Parkinson's disease. Human Movement. 19. 16-0. 10.5114/hm.2018.73613.
[42] Claesson, Ingrid. (2018). Better Balance with Somatosensory Exercises-a Parkinson Perspective.
[43] Calne, D. B. (1993). Treatment of Parkinson's disease. New England Journal of Medicine, 329(14), 1021-1027.
[44] 朱兵, 黄龙祥, 杨金生, 张丽, 王莹莹, 赵京生, ... & 岗卫娟. (2011). “中医针灸” 申报人类非物质文化遗产代表作名录文本解析. 中国针灸, 31(3), 193-197.
[45] Li, Q., Zhao, D., & Bezard, E. (2006). Traditional Chinese medicine for Parkinson's disease: a review of Chinese literature. Behavioural Pharmacology, 17(5-6), 403-410.
[46] Madsen, M. V., Gøtzsche, P. C., & Hróbjartsson, A. (2009). Acupuncture treatment for pain: systematic review of randomised clinical trials with acupuncture, placebo acupuncture, and no acupuncture groups. Bmj, 338.
[47] Shulman, L. M., Wen, X., Weiner, W. J., Bateman, D., Minagar, A., Duncan, R., & Konefal, J. (2002). Acupuncture therapy for the symptoms of Parkinson's disease. Movement disorders, 17(4), 799-802.
[48] Chen, F. P., Chang, C. M., Shiu, J. H., Chiu, J. H., Wu, T. P., Yang, J. L., …Hwang, S. J. (2015). A clinical study of integrating acupuncture and western medicine in treating patients with Parkinson’s disease. American Journal of Chinese Medicine, 43(3), 407–423.
[49] Wissel BD, Dwivedi AK, Merola A, Chin D, Jacob C, Duker AP, Vaughan JE, Lovera L, LaFaver K, Levy A, Lang AE, Morgante F, Nirenberg MJ, Stephen C, Sharma N, Romagnolo A, Lopiano L, Balint B, Yu XX, Bhatia KP, Espay AJ. Functional neurological disorders in Parkinson disease. J Neurol Neurosurg Psychiatry. 2018 Jun;89(6):566-571. doi: 10.1136/jnnp-2017-317378. Epub 2018 Mar 16. PMID: 29549192.
[50] Quattrone, A., Morelli, M., Williams, D. R., Vescio, B., Arabia, G., Nigro, S., Nicoletti, G., Salsone, M., Novellino, F., Nisticò, R., Pucci, F., Chiriaco, C., Pugliese, P., Bosco, D., & Caracciolo, M. (2016). MR parkinsonism index predicts vertical supranuclear gaze palsy in patients with PSP-parkinsonism. Neurology, 87(12), 1266–1273.
[51] Magnetic resonance parkinsonism index 2021/05取自
https://radiopaedia.org/articles/magnetic-resonance-parkinsonism-index-1
[52] Chételat, G., Arbizu, J., Barthel, H., Garibotto, V., Law, I., Morbelli, S., ... & Drzezga, A. (2020). Amyloid-PET and 18F-FDG-PET in the diagnostic investigation of Alzheimer's disease and other dementias. The Lancet Neurology, 19(11), 951-962.
[53] Zhao, P., Zhang, B., Gao, S., & Li, X. (2020). Clinical features, MRI, and 18F‐FDG‐PET in differential diagnosis of Parkinson disease from multiple system atrophy. Brain and Behavior, 10(11), e01827.
[54] Archer, D. B., Mitchell, T., Burciu, R. G., Yang, J., Nigro, S., Quattrone, A., ... & Vaillancourt, D. E. (2020). Magnetic resonance imaging and neurofilament light in the differentiation of parkinsonism. Movement Disorders, 35(8), 1388-1395.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top