|
[1] Ahn, H., Woods, A.J., Kunik, M.E., Bhattacharjee, A., Chen, Z., Choi, E., Fillingim, R.B., 2017. Efficacy of transcranial direct current stimulation over primary motor cortex (anode) and contralateral supraorbital area (cathode) on clinical pain severity and mobility performance in persons with knee osteoarthritis: An experimenter- and participant-blinded, randomized, sham-controlled pilot clinical study. Brain Stimul 10, 902-909. [2] Ameade, E.P.K., 2016. Menstrual Pain Assessment: Comparing Verbal Rating Scale (VRS) with Numerical Rating Scales (NRS) as Pain Measurement Tools. International Journal of Women's Health and Wellness 2, 017. [3] Andersen, S.L., Teicher, M.H., 2004. Delayed effects of early stress on hippocampal development. Neuropsychopharmacology 29, 1988-1993. [4] As-Sanie, S., Harris, R.E., Napadow, V., Kim, J., Neshewat, G., Kairys, A., Williams, D., Clauw, D.J., Schmidt-Wilcke, T., 2012. Changes in regional gray matter volume in women with chronic pelvic pain: a voxel-based morphometry study. Pain 153, 1006-1014. [5] Ashburner, J., 2007. A fast diffeomorphic image registration algorithm. Neuroimage 38, 95-113. [6] Auvichayapat, P., Janyacharoen, T., Rotenberg, A., Tiamkao, S., Krisanaprakornkit, T., Sinawat, S., Punjaruk, W., Thinkhamrop, B., Auvichayapat, N., 2012. Migraine prophylaxis by anodal transcranial direct current stimulation, a randomized, placebo-controlled trial. J Med Assoc Thai 95, 1003-1012. [7] Baliki, M.N., Geha, P.Y., Fields, H.L., Apkarian, A.V., 2010. Predicting value of pain and analgesia: nucleus accumbens response to noxious stimuli changes in the presence of chronic pain. Neuron 66, 149-160. [8] Baliki, M.N., Petre, B., Torbey, S., Herrmann, K.M., Huang, L., Schnitzer, T.J., Fields, H.L., Apkarian, A.V., 2012. Corticostriatal functional connectivity predicts transition to chronic back pain. Nat Neurosci 15, 1117-1119. [9] Bath, K.G., Lee, F.S., 2006. Variant BDNF (Val66Met) impact on brain structure and function. Cogn Affect Behav Neurosci 6, 79-85. [10] Behbehani, M.M., 1995. Functional characteristics of the midbrain periaqueductal gray. Prog Neurobiol 46, 575-605. [11] Berkley, K.J., 2013. Primary dysmenorrhea: an urgent mandate. Pain: Clin Update 21, 1-8. [12] Boggio, P.S., Zaghi, S., Lopes, M., Fregni, F., 2008. Modulatory effects of anodal transcranial direct current stimulation on perception and pain thresholds in healthy volunteers. Eur J Neurol 15, 1124-1130. [13] Boulle, F., van den Hove, D.L., Jakob, S.B., Rutten, B.P., Hamon, M., van Os, J., Lesch, K.P., Lanfumey, L., Steinbusch, H.W., Kenis, G., 2012. Epigenetic regulation of the BDNF gene: implications for psychiatric disorders. Mol Psychiatry 17, 584-596. [14] Breivik, H., Borchgrevink, P.C., Allen, S.M., Rosseland, L.A., Romundstad, L., Hals, E.K., Kvarstein, G., Stubhaug, A., 2008. Assessment of pain. Br J Anaesth 101, 17-24. [15] Brooks, G.P., Johanson, G.A., 2011. Sample size considerations for multiple comparison procedures in ANOVA. J Mod Appl Stat Methods 10, 97-109. [16] Brown, J.A., 2001. Motor cortex stimulation. Neurosurg Focus 11, E5. [17] Chattarji, S., Tomar, A., Suvrathan, A., Ghosh, S., Rahman, M.M., 2015. Neighborhood matters: divergent patterns of stress-induced plasticity across the brain. Nat Neurosci 18, 1364-1375. [18] Chen, Y.J., Lo, Y.C., Hsu, Y.C., Fan, C.C., Hwang, T.J., Liu, C.M., Chien, Y.L., Hsieh, M.H., Liu, C.C., Hwu, H.G., Tseng, W.Y., 2015. Automatic whole brain tract-based analysis using predefined tracts in a diffusion spectrum imaging template and an accurate registration strategy. Hum Brain Mapp 36, 3441-3458. [19] Chervyakov, A.V., Chernyavsky, A.Y., Sinitsyn, D.O., Piradov, M.A., 2015. Possible Mechanisms Underlying the Therapeutic Effects of Transcranial Magnetic Stimulation. Front Hum Neurosci 9, 303. [20] Coco, A.S., 1999. Primary dysmenorrhea. Am Fam Physician 60, 489-496. [21] Coghill, R.C., Sang, C.N., Maisog, J.M., Iadarola, M.J., 1999. Pain intensity processing within the human brain: a bilateral, distributed mechanism. Journal of neurophysiology 82, 1934-1943. [22] Cummiford, C.M., Nascimento, T.D., Foerster, B.R., Clauw, D.J., Zubieta, J.K., Harris, R.E., DaSilva, A.F., 2016. Changes in resting state functional connectivity after repetitive transcranial direct current stimulation applied to motor cortex in fibromyalgia patients. Arthritis Res Ther 18, 40. [23] de Kloet, E.R., Joels, M., Holsboer, F., 2005. Stress and the brain: from adaptation to disease. Nat Rev Neurosci 6, 463-475. [24] DeSouza, D.D., Hodaie, M., Davis, K.D., 2014. Abnormal trigeminal nerve microstructure and brain white matter in idiopathic trigeminal neuralgia. Pain 155, 37-44. [25] DosSantos, M.F., Martikainen, I.K., Nascimento, T.D., Love, T.M., DeBoer, M.D., Schambra, H.M., Bikson, M., Zubieta, J.K., DaSilva, A.F., 2014. Building up analgesia in humans via the endogenous mu-opioid system by combining placebo and active tDCS: a preliminary report. PLoS One 9, e102350. [26] Drevets, W.C., Price, J.L., Furey, M.L., 2008. Brain structural and functional abnormalities in mood disorders: implications for neurocircuitry models of depression. Brain Struct Funct 213, 93-118. [27] Duman, R.S., Monteggia, L.M., 2006. A neurotrophic model for stress-related mood disorders. Biol Psychiatry 59, 1116-1127. [28] Dun, W., Yang, J., Yang, L., Ma, S., Guo, C., Zhang, X., Zhang, H., Liu, H., Zhang, M., 2017. Abnormal white matter integrity during pain-free periovulation is associated with pain intensity in primary dysmenorrhea. Brain Imaging Behav 11, 1061-1070. [29] Edwards, S., Clow, A., Evans, P., Hucklebridge, F., 2001. Exploration of the awakening cortisol response in relation to diurnal cortisol secretory activity. Life Sci 68, 2093-2103. [30] Egan, M.F., Kojima, M., Callicott, J.H., Goldberg, T.E., Kolachana, B.S., Bertolino, A., Zaitsev, E., Gold, B., Goldman, D., Dean, M., Lu, B., Weinberger, D.R., 2003. The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell 112, 257-269. [31] Fanselow, M.S., Dong, H.W., 2010. Are the dorsal and ventral hippocampus functionally distinct structures? Neuron 65, 7-19. [32] Fenske, S.J., Bierer, D., Chelimsky, G., Conant, L., Ustine, C., Yan, K., Chelimsky, T., Kutch, J.J., 2020. Sensitivity of functional connectivity to periaqueductal gray localization, with implications for identifying disease-related changes in chronic visceral pain: A MAPP Research Network neuroimaging study. Neuroimage Clin 28, 102443. [33] Fenton, B.W., Palmieri, P.A., Boggio, P., Fanning, J., Fregni, F., 2009. A preliminary study of transcranial direct current stimulation for the treatment of refractory chronic pelvic pain. Brain Stimul 2, 103-107. [34] Fomberstein, K., Qadri, S., Ramani, R., 2013. Functional MRI and pain. Curr Opin Anaesthesiol 26, 588-593. [35] Fregni, F., Pascual-Leone, A., 2007. Technology insight: noninvasive brain stimulation in neurology-perspectives on the therapeutic potential of rTMS and tDCS. Nat Clin Pract Neurol 3, 383-393. [36] Frot, M., Magnin, M., Mauguiere, F., Garcia-Larrea, L., 2013. Cortical representation of pain in primary sensory-motor areas (S1/M1)--a study using intracortical recordings in humans. Hum Brain Mapp 34, 2655-2668. [37] Fuchikami, M., Yamamoto, S., Morinobu, S., Takei, S., Yamawaki, S., 2010. Epigenetic regulation of BDNF gene in response to stress. Psychiatry Investig 7, 251-256. [38] Golub, S., 1976. The magnitude of premenstrual anxiety and depression. Psychosom Med 38, 4-12. [39] Grace, A.A., 2010. Dopamine system dysregulation by the ventral subiculum as the common pathophysiological basis for schizophrenia psychosis, psychostimulant abuse, and stress. Neurotox Res 18, 367-376. [40] Greenberg, J., Burns, J.W., 2003. Pain anxiety among chronic pain patients: specific phobia or manifestation of anxiety sensitivity? Behav Res Ther 41, 223-240. [41] Gupta, A., Rapkin, A.J., Gill, Z., Kilpatrick, L., Fling, C., Stains, J., Masghati, S., Tillisch, K., Mayer, E.A., Labus, J.S., 2015. Disease-related differences in resting-state networks: a comparison between localized provoked vulvodynia, irritable bowel syndrome, and healthy control subjects. Pain 156, 809-819. [42] Hashmi, J.A., Baliki, M.N., Huang, L., Baria, A.T., Torbey, S., Hermann, K.M., Schnitzer, T.J., Apkarian, A.V., 2013. Shape shifting pain: chronification of back pain shifts brain representation from nociceptive to emotional circuits. Brain 136, 2751-2768. [43] He, J., Dun, W., Han, F., Wang, K., Yang, J., Ma, S., Zhang, M., Liu, J., Liu, H., 2020. Abnormal white matter microstructure along the thalamus fiber pathways in women with primary dysmenorrhea. Brain Imaging Behav. [44] Heidari, F., Afshari, M., Moosazadeh, M., 2017. Prevalence of fibromyalgia in general population and patients, a systematic review and meta-analysis. Rheumatol Int 37, 1527-1539. [45] Herman, J.P., McKlveen, J.M., Ghosal, S., Kopp, B., Wulsin, A., Makinson, R., Scheimann, J., Myers, B., 2016. Regulation of the Hypothalamic-Pituitary-Adrenocortical Stress Response. Compr Physiol 6, 603-621. [46] Herman, J.P., Mueller, N.K., 2006. Role of the ventral subiculum in stress integration. Behav Brain Res 174, 215-224. [47] Hsu, Y.C., Lo, Y.C., Chen, Y.J., Wedeen, V.J., Isaac Tseng, W.Y., 2015. NTU‐DSI‐122: A diffusion spectrum imaging template with high anatomical matching to the ICBM‐152 space. Human Brain Mapping. [48] Huang, E.J., Reichardt, L.F., 2001. Neurotrophins: roles in neuronal development and function. Annu Rev Neurosci 24, 677-736. [49] Iacovides, S., Avidon, I., Baker, F.C., 2015. What we know about primary dysmenorrhea today: a critical review. Hum Reprod Update 21, 762-778. [50] Ihle, K., Rodriguez-Raecke, R., Luedtke, K., May, A., 2014. tDCS modulates cortical nociceptive processing but has little to no impact on pain perception. Pain 155, 2080-2087. [51] Illes, J., Kirschen, M.P., Karetsky, K., Kelly, M., Saha, A., Desmond, J.E., Raffin, T.A., Glover, G.H., Atlas, S.W., 2004. Discovery and disclosure of incidental findings in neuroimaging research. J Magn Reson Imaging 20, 743-747. [52] Jensen, K.B., Loitoile, R., Kosek, E., Petzke, F., Carville, S., Fransson, P., Marcus, H., Williams, S.C., Choy, E., Mainguy, Y., Vitton, O., Gracely, R.H., Gollub, R., Ingvar, M., Kong, J., 2012. Patients with fibromyalgia display less functional connectivity in the brain's pain inhibitory network. Mol Pain 8, 32. [53] Kang, J.H., Choi, S.E., Park, D.J., Xu, H., Lee, J.K., Lee, S.S., 2020. Effects of add-on transcranial direct current stimulation on pain in Korean patients with fibromyalgia. Sci Rep 10, 12114. [54] Kessler, S.K., Turkeltaub, P.E., Benson, J.G., Hamilton, R.H., 2012. Differences in the experience of active and sham transcranial direct current stimulation. Brain Stimul 5, 155-162. [55] Kilpatrick, L.A., Kutch, J.J., Tillisch, K., Naliboff, B.D., Labus, J.S., Jiang, Z., Farmer, M.A., Apkarian, A.V., Mackey, S., Martucci, K.T., Clauw, D.J., Harris, R.E., Deutsch, G., Ness, T.J., Yang, C.C., Maravilla, K., Mullins, C., Mayer, E.A., 2014. Alterations in resting state oscillations and connectivity in sensory and motor networks in women with interstitial cystitis/painful bladder syndrome. J Urol 192, 947-955. [56] Kim, J.J., Fanselow, M.S., 1992. Modality-specific retrograde amnesia of fear. Science 256, 675-677. [57] Krause, B., Marquez-Ruiz, J., Cohen Kadosh, R., 2013. The effect of transcranial direct current stimulation: a role for cortical excitation/inhibition balance? Front Hum Neurosci 7, 602. [58] Kutch, J.J., Labus, J.S., Harris, R.E., Martucci, K.T., Farmer, M.A., Fenske, S., Fling, C., Ichesco, E., Peltier, S., Petre, B., Guo, W., Hou, X., Stephens, A.J., Mullins, C., Clauw, D.J., Mackey, S.C., Apkarian, A.V., Landis, J.R., Mayer, E.A., Network, M.R., 2017. Resting-state functional connectivity predicts longitudinal pain symptom change in urologic chronic pelvic pain syndrome: a MAPP network study. Pain 158, 1069-1082. [59] Kutch, J.J., Yani, M.S., Asavasopon, S., Kirages, D.J., Rana, M., Cosand, L., Labus, J.S., Kilpatrick, L.A., Ashe-McNalley, C., Farmer, M.A., Johnson, K.A., Ness, T.J., Deutsch, G., Harris, R.E., Apkarian, A.V., Clauw, D.J., Mackey, S.C., Mullins, C., Mayer, E.A., 2015. Altered resting state neuromotor connectivity in men with chronic prostatitis/chronic pelvic pain syndrome: A MAPP: Research Network Neuroimaging Study. Neuroimage Clin 8, 493-502. [60] Lang, N., Siebner, H.R., Ward, N.S., Lee, L., Nitsche, M.A., Paulus, W., Rothwell, J.C., Lemon, R.N., Frackowiak, R.S., 2005. How does transcranial DC stimulation of the primary motor cortex alter regional neuronal activity in the human brain? Eur J Neurosci 22, 495-504. [61] Lanz, T.A., Bove, S.E., Pilsmaker, C.D., Mariga, A., Drummond, E.M., Cadelina, G.W., Adamowicz, W.O., Swetter, B.J., Carmel, S., Dumin, J.A., 2012. Robust changes in expression of brain-derived neurotrophic factor (BDNF) mRNA and protein across the brain do not translate to detectable changes in BDNF levels in CSF or plasma. Biomarkers 17, 524-531. [62] Lee, L.C., Chen, Y.H., Lin, C.S., Li, W.C., Low, I., Tu, C.H., Chou, C.C., Cheng, C.M., Yeh, T.C., Chen, L.F., Chao, H.T., Hsieh, J.C., 2018. Unaltered intrinsic functional brain architecture in young women with primary dysmenorrhea. Sci Rep 8, 12971. [63] Lee, L.C., Tu, C.H., Chen, L.F., Shen, H.D., Chao, H.T., Lin, M.W., Hsieh, J.C., 2014. Association of brain-derived neurotrophic factor gene Val66Met polymorphism with primary dysmenorrhea. PLoS One 9, e112766. [64] Lee, P.S., Low, I., Chen, Y.S., Tu, C.H., Chao, H.T., Hsieh, J.C., Chen, L.F., 2017. Encoding of menstrual pain experience with theta oscillations in women with primary dysmenorrhea. Sci Rep 7, 15977. [65] Li, Z., Chen, J., Zhao, Y., Wang, Y., Xu, J., Ji, J., Shen, J., Zhang, W., Chen, Z., Sun, Q., Mao, L., Cheng, S., Yang, B., Zhang, D., Xu, Y., Zhao, Y., Liu, D., Shen, Y., Zhang, W., Li, C., Shen, J., Shi, Y., 2017. Common variants in ZMIZ1 and near NGF confer risk for primary dysmenorrhoea. Nat Commun 8, 14900. [66] Lieberman, G., Shpaner, M., Watts, R., Andrews, T., Filippi, C.G., Davis, M., Naylor, M.R., 2014. White matter involvement in chronic musculoskeletal pain. J Pain 15, 1110-1119. [67] Linnman, C., Moulton, E.A., Barmettler, G., Becerra, L., Borsook, D., 2012. Neuroimaging of the periaqueductal gray: state of the field. Neuroimage 60, 505-522. [68] Liotti, M., Mayberg, H.S., Brannan, S.K., McGinnis, S., Jerabek, P., Fox, P.T., 2000. Differential limbic--cortical correlates of sadness and anxiety in healthy subjects: implications for affective disorders. Biol Psychiatry 48, 30-42. [69] Lisofsky, N., Martensson, J., Eckert, A., Lindenberger, U., Gallinat, J., Kuhn, S., 2015. Hippocampal volume and functional connectivity changes during the female menstrual cycle. Neuroimage 118, 154-162. [70] Liu, J., Liu, H., Mu, J., Xu, Q., Chen, T., Dun, W., Yang, J., Tian, J., Hu, L., Zhang, M., 2017. Altered white matter microarchitecture in the cingulum bundle in women with primary dysmenorrhea: A tract-based analysis study. Hum Brain Mapp 38, 4430-4443. [71] Liu, P., Wang, G., Liu, Y., Yu, Q., Yang, F., Jin, L., Sun, J., Yang, X., Qin, W., Calhoun, V.D., 2016. White matter microstructure alterations in primary dysmenorrhea assessed by diffusion tensor imaging. Sci Rep 6, 25836. [72] Lovell, R.M., Ford, A.C., 2012. Effect of gender on prevalence of irritable bowel syndrome in the community: systematic review and meta-analysis. Am J Gastroenterol 107, 991-1000. [73] Low, I., Kuo, P.-C., Liu, Y.-H., Tsai, C.-L., Chao, H.-T., Hsieh, J.-C., Chen, L.-F., Chen, Y.-S., 2017. Altered Brain Complexity in Women with Primary Dysmenorrhea: A Resting-State Magneto-Encephalography Study Using Multiscale Entropy Analysis. Entropy 19. [74] Low, I., Kuo, P.C., Tsai, C.L., Liu, Y.H., Lin, M.W., Chao, H.T., Chen, Y.S., Hsieh, J.C., Chen, L.F., 2018. Interactions of BDNF Val66Met Polymorphism and Menstrual Pain on Brain Complexity. Front Neurosci 12, 826. [75] Maarrawi, J., Peyron, R., Mertens, P., Costes, N., Magnin, M., Sindou, M., Laurent, B., Garcia-Larrea, L., 2007. Motor cortex stimulation for pain control induces changes in the endogenous opioid system. Neurology 69, 827-834. [76] Mainero, C., Boshyan, J., Hadjikhani, N., 2011. Altered functional magnetic resonance imaging resting-state connectivity in periaqueductal gray networks in migraine. Ann Neurol 70, 838-845. [77] McEwen, B.S., 2000. The neurobiology of stress: from serendipity to clinical relevance. Brain Res 886, 172-189. [78] Medeiros, L.F., de Souza, I.C., Vidor, L.P., de Souza, A., Deitos, A., Volz, M.S., Fregni, F., Caumo, W., Torres, I.L., 2012. Neurobiological effects of transcranial direct current stimulation: a review. Front Psychiatry 3, 110. [79] Mhalla, A., Baudic, S., de Andrade, D.C., Gautron, M., Perrot, S., Teixeira, M.J., Attal, N., Bouhassira, D., 2011. Long-term maintenance of the analgesic effects of transcranial magnetic stimulation in fibromyalgia. Pain 152, 1478-1485. [80] Moisset, X., Lefaucheur, J.P., 2019. Non pharmacological treatment for neuropathic pain: Invasive and non-invasive cortical stimulation. Rev Neurol (Paris) 175, 51-58. [81] Murer, M.G., Boissiere, F., Yan, Q., Hunot, S., Villares, J., Faucheux, B., Agid, Y., Hirsch, E., Raisman-Vozari, R., 1999. An immunohistochemical study of the distribution of brain-derived neurotrophic factor in the adult human brain, with particular reference to Alzheimer's disease. Neuroscience 88, 1015-1032. [82] Murphy, K., Fox, M.D., 2017. Towards a consensus regarding global signal regression for resting state functional connectivity MRI. Neuroimage 154, 169-173. [83] Mutso, A.A., Radzicki, D., Baliki, M.N., Huang, L., Banisadr, G., Centeno, M.V., Radulovic, J., Martina, M., Miller, R.J., Apkarian, A.V., 2012. Abnormalities in hippocampal functioning with persistent pain. J Neurosci 32, 5747-5756. [84] Nitsche, M.A., Paulus, W., 2000. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol 527 Pt 3, 633-639. [85] Pagano, R.L., Fonoff, E.T., Dale, C.S., Ballester, G., Teixeira, M.J., Britto, L.R.G., 2012. Motor cortex stimulation inhibits thalamic sensory neurons and enhances activity of PAG neurons: possible pathways for antinociception. Pain 153, 2359-2369. [86] Pazmany, E., Ly, H.G., Aerts, L., Kano, M., Bergeron, S., Verhaeghe, J., Peeters, R., Tack, J., Dupont, P., Enzlin, P., Van Oudenhove, L., 2017. Brain responses to vestibular pain and its anticipation in women with Genito-Pelvic Pain/Penetration Disorder. Neuroimage Clin 16, 477-490. [87] Pegado, R., Silva, L.K., da Silva Dantas, H., Andrade Camara, H., Andrade Mescouto, K., Silva-Filho, E.M., Lopes, J.M., Micussi, M., Correia, G.N., 2020. Effects of Transcranial Direct Current Stimulation for Treatment of Primary Dysmenorrhea: Preliminary Results of a Randomized Sham-Controlled Trial. Pain Med 21, 3615-3623. [88] Phelps, E.A., 2004. Human emotion and memory: interactions of the amygdala and hippocampal complex. Curr Opin Neurobiol 14, 198-202. [89] Polania, R., Paulus, W., Nitsche, M.A., 2012. Modulating cortico-striatal and thalamo-cortical functional connectivity with transcranial direct current stimulation. Hum Brain Mapp 33, 2499-2508. [90] Poppenk, J., Evensmoen, H.R., Moscovitch, M., Nadel, L., 2013. Long-axis specialization of the human hippocampus. Trends Cogn Sci 17, 230-240. [91] Quach, T.T., Lerch, J.K., Honnorat, J., Khanna, R., Duchemin, A.M., 2016. Neuronal networks in mental diseases and neuropathic pain: Beyond brain derived neurotrophic factor and collapsin response mediator proteins. World J Psychiatry 6, 18-30. [92] Radley, J.J., Sawchenko, P.E., 2011. A common substrate for prefrontal and hippocampal inhibition of the neuroendocrine stress response. J Neurosci 31, 9683-9695. [93] Rolls, E.T., Joliot, M., Tzourio-Mazoyer, N., 2015. Implementation of a new parcellation of the orbitofrontal cortex in the automated anatomical labeling atlas. Neuroimage 122, 1-5. [94] Rose, E.J., Donohoe, G., 2013. Brain vs behavior: an effect size comparison of neuroimaging and cognitive studies of genetic risk for schizophrenia. Schizophr Bull 39, 518-526. [95] Rubinov, M., Sporns, O., 2010. Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52, 1059-1069. [96] Sadler, T.W., 2011. Langman's medical embryology. Lippincott Williams & Wilkins. [97] Sarrieau, A., Dussaillant, M., Agid, F., Philibert, D., Agid, Y., Rostene, W., 1986. Autoradiographic localization of glucocorticosteroid and progesterone binding sites in the human post-mortem brain. J Steroid Biochem 25, 717-721. [98] Segerdahl, A.R., Themistocleous, A.C., Fido, D., Bennett, D.L., Tracey, I., 2018. A brain-based pain facilitation mechanism contributes to painful diabetic polyneuropathy. Brain 141, 357-364. [99] Seltman, H.J., 2018. Contrasts and Custom Hypotheses. In: Experimental design and analysis. Carnegie Mellon University, Pennsylvania, pp. 319-338. [100] Severeijns, R., Vlaeyen, J.W., van den Hout, M.A., Weber, W.E., 2001. Pain catastrophizing predicts pain intensity, disability, and psychological distress independent of the level of physical impairment. Clin J Pain 17, 165-172. [101] Smith, S.M., Jenkinson, M., Johansen-Berg, H., Rueckert, D., Nichols, T.E., Mackay, C.E., Watkins, K.E., Ciccarelli, O., Cader, M.Z., Matthews, P.M., Behrens, T.E., 2006. Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage 31, 1487-1505. [102] Spisak, T., Kincses, B., Schlitt, F., Zunhammer, M., Schmidt-Wilcke, T., Kincses, Z.T., Bingel, U., 2020. Pain-free resting-state functional brain connectivity predicts individual pain sensitivity. Nat Commun 11, 187. [103] Sullivan, M.J., Bishop, S.R., Pivik, J., 1995. The pain catastrophizing scale: development and validation. Psychol Assess 7, 524-532. [104] Teicher, M.H., Anderson, C.M., Polcari, A., 2012. Childhood maltreatment is associated with reduced volume in the hippocampal subfields CA3, dentate gyrus, and subiculum. Proc Natl Acad Sci U S A 109, E563-572. [105] Tsao, H., Galea, M.P., Hodges, P.W., 2008. Reorganization of the motor cortex is associated with postural control deficits in recurrent low back pain. Brain 131, 2161-2171. [106] Tsubokawa, T., Katayama, Y., Yamamoto, T., Hirayama, T., Koyama, S., 1991. Chronic Motor Cortex Stimulation for the Treatment of Central Pain. Springer Vienna, Vienna, pp. 137-139. [107] Tsubokawa, T., Katayama, Y., Yamamoto, T., Hirayama, T., Koyama, S., 1993. Chronic motor cortex stimulation in patients with thalamic pain. J Neurosurg 78, 393-401. [108] Tu, C.H., Lin, C.L., Yang, S.T., Shen, W.C., Chen, Y.H., 2020. Hormonal Contraceptive Treatment May Reduce the Risk of Fibromyalgia in Women with Dysmenorrhea: A Cohort Study. J Pers Med 10, 280. [109] Tu, C.H., Niddam, D.M., Chao, H.T., Chen, L.F., Chen, Y.S., Wu, Y.T., Yeh, T.C., Lirng, J.F., Hsieh, J.C., 2010. Brain morphological changes associated with cyclic menstrual pain. Pain 150, 462-468. [110] Tu, C.H., Niddam, D.M., Chao, H.T., Liu, R.S., Hwang, R.J., Yeh, T.C., Hsieh, J.C., 2009. Abnormal cerebral metabolism during menstrual pain in primary dysmenorrhea. Neuroimage 47, 28-35. [111] Tu, C.H., Niddam, D.M., Yeh, T.C., Lirng, J.F., Cheng, C.M., Chou, C.C., Chao, H.T., Hsieh, J.C., 2013. Menstrual pain is associated with rapid structural alterations in the brain. Pain 154, 1718-1724. [112] Tuch, D.S., 2004. Q-ball imaging. Magn Reson Med 52, 1358-1372. [113] Turnbull, G.K., Hamdy, S., Aziz, Q., Singh, K.D., Thompson, D.G., 1999. The cortical topography of human anorectal musculature. Gastroenterology 117, 32-39. [114] Victoria, N.C., Murphy, A.Z., 2016. Exposure to Early Life Pain: Long Term Consequences and Contributing Mechanisms. Curr Opin Behav Sci 7, 61-68. [115] Wallace, B.A., Ashkan, K., Benabid, A.L., 2004. Deep brain stimulation for the treatment of chronic, intractable pain. Neurosurg Clin N Am 15, 343-357, vii. [116] Wei, P., Lan, Z., Lv, Z., Fan, Y., 2020. Brainstem fMRI. Encyclopedia 1, 4-11. [117] Wei, S.Y., Chao, H.T., Tu, C.H., Li, W.C., Low, I., Chuang, C.Y., Chen, L.F., Hsieh, J.C., 2016a. Changes in functional connectivity of pain modulatory systems in women with primary dysmenorrhea. Pain 157, 92-102. [118] Wei, S.Y., Chao, H.T., Tu, C.H., Lin, M.W., Li, W.C., Low, I., Shen, H.D., Chen, L.F., Hsieh, J.C., 2016b. The BDNF Val66Met polymorphism is associated with the functional connectivity dynamics of pain modulatory systems in primary dysmenorrhea. Sci Rep 6, 23639. [119] Wei, S.Y., Chen, L.F., Lin, M.W., Li, W.C., Low, I., Yang, C.J., Chao, H.T., Hsieh, J.C., 2017. The OPRM1 A118G polymorphism modulates the descending pain modulatory system for individual pain experience in young women with primary dysmenorrhea. Sci Rep 7, 39906. [120] Woon, F.L., Sood, S., Hedges, D.W., 2010. Hippocampal volume deficits associated with exposure to psychological trauma and posttraumatic stress disorder in adults: a meta-analysis. Prog Neuropsychopharmacol Biol Psychiatry 34, 1181-1188. [121] Wu, T.H., Tu, C.H., Chao, H.T., Li, W.C., Low, I., Chuang, C.Y., Yeh, T.C., Cheng, C.M., Chou, C.C., Chen, L.F., Hsieh, J.C., 2016. Dynamic Changes of Functional Pain Connectome in Women with Primary Dysmenorrhea. Sci Rep 6, 24543. [122] Wu, Y.W., Slakter, M.J., 1990. Increasing the precision of data analysis: planned comparisons versus omnibus tests. Nurs Res 39, 251-253. [123] Yan, C.G., Wang, X.D., Zuo, X.N., Zang, Y.F., 2016. DPABI: Data Processing & Analysis for (Resting-State) Brain Imaging. Neuroinformatics 14, 339-351. [124] Yani, M.S., Wondolowski, J.H., Eckel, S.P., Kulig, K., Fisher, B.E., Gordon, J.E., Kutch, J.J., 2018. Distributed representation of pelvic floor muscles in human motor cortex. Sci Rep 8, 7213. [125] Yeh, F.C., Tseng, W.Y., 2011. NTU-90: a high angular resolution brain atlas constructed by q-space diffeomorphic reconstruction. Neuroimage 58, 91-99. [126] Yeh, F.C., Tseng, W.Y., 2013. Sparse solution of fiber orientation distribution function by diffusion decomposition. PLoS One 8, e75747. [127] Yeh, F.C., Wedeen, V.J., Tseng, W.Y., 2010. Generalized q-sampling imaging. IEEE Trans Med Imaging 29, 1626-1635. [128] Young, N.A., Sharma, M., Deogaonkar, M., 2014. Transcranial magnetic stimulation for chronic pain. Neurosurg Clin N Am 25, 819-832. [129] Yu, H., Wang, Y., Pattwell, S., Jing, D., Liu, T., Zhang, Y., Bath, K.G., Lee, F.S., Chen, Z.Y., 2009. Variant BDNF Val66Met polymorphism affects extinction of conditioned aversive memory. J Neurosci 29, 4056-4064. [130] Yu, R., Gollub, R.L., Spaeth, R., Napadow, V., Wasan, A., Kong, J., 2014. Disrupted functional connectivity of the periaqueductal gray in chronic low back pain. Neuroimage Clin 6, 100-108. [131] Yu, S., Xie, M., Liu, S., Guo, X., Tian, J., Wei, W., Zhang, Q., Zeng, F., Liang, F., Yang, J., 2020. Resting-State Functional Connectivity Patterns Predict Acupuncture Treatment Response in Primary Dysmenorrhea. Front Neurosci 14, 559191. [132] Zaghi, S., Heine, N., Fregni, F., 2009. Brain stimulation for the treatment of pain: A review of costs, clinical effects, and mechanisms of treatment for three different central neuromodulatory approaches. Journal of pain management 2, 339-352. [133] Zhang, L., Benedek, D.M., Fullerton, C.S., Forsten, R.D., Naifeh, J.A., Li, X.X., Hu, X.Z., Li, H., Jia, M., Xing, G.Q., Benevides, K.N., Ursano, R.J., 2014. PTSD risk is associated with BDNF Val66Met and BDNF overexpression. Mol Psychiatry 19, 8-10. [134] Zhou, G., Qin, W., Zeng, F., Liu, P., Yang, X., von Deneen, K.M., Gong, Q., Liang, F., Tian, J., 2013. White-matter microstructural changes in functional dyspepsia: a diffusion tensor imaging study. Am J Gastroenterol 108, 260-269. [135] Zidda, F., Andoh, J., Pohlack, S., Winkelmann, T., Dinu-Biringer, R., Cavalli, J., Ruttorf, M., Nees, F., Flor, H., 2018. Default mode network connectivity of fear- and anxiety-related cue and context conditioning. Neuroimage 165, 190-199. [136] Zortea, M., Ramalho, L., Alves, R.L., Alves, C., Braulio, G., Torres, I., Fregni, F., Caumo, W., 2019. Transcranial Direct Current Stimulation to Improve the Dysfunction of Descending Pain Modulatory System Related to Opioids in Chronic Non-cancer Pain: An Integrative Review of Neurobiology and Meta-Analysis. Front Neurosci 13, 1218.
|