跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2024/12/13 21:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李瑋淇
研究生(外文):Wei-Chi Li
論文名稱:經痛程度與大腦的正負向神經可塑性之關聯:從基因影像學到經顱直流電刺激介入研究
論文名稱(外文):Adaptive and maladaptive neuroplasticity attuned by the severity of menstrual pain: from genetic neuroimaging to tDCS intervention
指導教授:陳麗芬陳麗芬引用關係謝仁俊謝仁俊引用關係
指導教授(外文):Li-Fen ChenJen-Chuen Hsieh
學位類別:博士
校院名稱:國立陽明交通大學
系所名稱:腦科學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:英文
論文頁數:89
中文關鍵詞:原發性痛經腦源性神經滋養因子海馬迴經顱直流電刺激大腦導水管旁灰質神經可塑性基因神經影像學
外文關鍵詞:Primary dysmenorrheaBrain-derived neurotrophic factorHippocampusTranscranial direct current stimulationPeriaqueductal grayNeuroplasticityGenetic neuroimaging
相關次數:
  • 被引用被引用:0
  • 點閱點閱:230
  • 評分評分:
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:0
女性疼痛的議題近年來逐漸被重視,原發性痛經(Primary dysmenorrhea, PDM)是指沒有骨盆腔病變下所引發的月經疼痛,在育齡女性中一直是個困擾的疾病。當中有10到20 %的PDM女性是屬於嚴重程度的痛經,這些患者大多無法藉由常規的止痛藥物與物理治療緩解疼痛,並且會因為嚴重痛經對其日常生活造成影響。而痛經的女性在日後發展成慢性疼痛(例如:纖維肌痛症)的比例較無痛經女性高。
過去研究中發現環境壓力一直是痛經的危險因子,長期痛經困擾的女性在心理狀態上會有較高的焦慮與憂鬱特質,且會造成疼痛感知、疼痛調控與情緒處理等相關腦區之結構與功能異常,其中也包含壓力調控相關神經迴路(如:下視丘、海馬迴)。海馬迴是神經新生重要腦區且易受環境壓力影響,腦源性神經滋養因子(Brain-derived neurotrophic factor, BDNF)是一種幫助細胞生長、存活的蛋白質,且高濃度分布與基因表現於海馬迴組織中。環境壓力產生時BDNF表現會受到抑制,進而導致海馬迴細胞受到損害。過去研究中已經證實,BDNF基因中的Val66Met多態性與海馬迴結構與焦慮、憂鬱之心理狀態有所關連。過去痛經相關研究中也發現,BDNF Val66Met多態性與痛經女性在疼痛感知、疼痛抑制與情緒調節處理迴路異常有關,但對於不同BDNF Val66Met基因型在原發性痛經女性的海馬迴結構差異目前尚未釐清。本研究除了探究BDNF Val66Met基因型對於原發性痛經女性海馬迴結構的影響之外,更深入討論與痛經嚴重程度的關聯性。
此外,過去研究中已經發現藉由刺激大腦運動皮質區,能夠有效緩解疼痛。我們使用經顱直流電刺激(Transcranial direct current stimulation , tDCS)介入,藉由刺激運動皮質區,進而減緩嚴重原發性痛經受試者疼痛感受。除了討論臨床止痛效益外,我們也針對下行性疼痛抑制系統中大腦導水管旁灰質(Periaqueductal gray matter, PAG)其功能性連結,進而探討tDCS對於疼痛緩解的調控機轉,尤其是PAG與運動皮質區域之間連結的探討。
本論文主要研究目的將討論不同痛經程度對於大腦神經適應與可塑性之影響。論文分成兩大部分,第一部分將討論不同痛經程度患者在大腦結構網路(研究一)以及BDNF Val66Met基因多態性在海馬迴結構之差異(研究二)。第二部分我們探討嚴重原發性痛經女性,經由運動皮質區tDCS刺激介入後,對於疼痛的緩解以及其大腦下行性疼痛抑制系統的影響進行探討(研究三)。此外,本論文也提出我們在進行大腦磁振造影實驗中的腦部結構影像的意外發現(研究四)。
研究一我們使用擴散頻譜影像探討不同嚴重程度痛經女性在大腦白質神經束完整性以及大腦結構網路之差異。我們發現痛經女性和無痛經女性相比較,大腦白質神經束與大腦結構網路均無顯著差異且與嚴重程度無關,這和我們過去針對痛經女性在大腦功能性網路中的發現一致。雖然痛經會導致區域性的結構或功能上的影響,但在整體大腦網路結構中並沒有顯著差異,這或許可以印證痛經女性在非疼痛期間可維持正常社會心理功能,且並不會表現出顯著的認知與情感等障礙。
研究二我們使用大腦結構影像,從巨觀到微觀角度探討歷經長期痛經女性其海馬迴體積變化與BDNF Val66Met基因型之關聯,同時也探討不同嚴重程度的痛經是否會影響BDNF Val66Met基因型與海馬迴體積之變化。我們發現中等疼痛程度的痛經女性在左前以及右後局部海馬迴會隨著所攜帶Val等位基因的數量增加而體積增加,反之在嚴重疼痛的痛經女性,不論帶有何種BDNF Val66Met基因型,體積的大小均沒有顯著差異。這樣的結果可以推斷BDNF Val等位基因具有神經保護作用避免海馬迴受環境壓力而萎縮,然而該保護作用會隨著環境壓力增強而減弱。
研究三我們採用雙盲與真假刺激隨機分組之實驗設計,討論嚴重難治型原發性痛經女性在經期前給予運動皮質區tDCS刺激後對於痛經的緩解,以及藉由PAG與運動皮質區其功能性連結,探討下行性疼痛抑制系統經神經調節後之可塑性機轉。大多數接受真刺激的嚴重痛經女性其痛經均有達到緩解,而在假刺激組則發現有安慰劑效應。我們發現PAG與輔助運動區域(Supplementary Motor Area, SMA)有異常的病理性連結,尤其是骨盆肌肉控制區域。而tDCS介入會削減PAG與SMA之間的功能性連結,同時其疼痛也隨之緩解。我們認為運動皮質區tDCS刺激,有效削減嚴重痛經女性其PAG與SMA之間的病理性連結,達到臨床止痛成效。
研究四我們觀察到痛經女性在大腦結構正常變異與異常的比例均高於無痛經女性,然而其背後機轉有待未來更深入研究。
本研究證實了BDNF Val66Met基因多態性的神經保護機制會因為嚴重痛經而減弱,進而對於海馬迴結構產生影響。同時我們也證實運用tDCS在運動皮質區的刺激,對於嚴重難治型痛經女性將可達到臨床疼痛緩解效益,對於未來臨床止痛開創新的可能性。而藉由減少嚴重疼痛對於神經系統所帶來之負面影響,將有效提升女性生活品質以及減低未來疼痛慢性化的可能性。
Primary dysmenorrhea (PDM) refers to menstrual pain of which the pathological cause(s) are unknown. About 20% of PDM subjects have extreme pain intensity and describe their suffering as severe and distressing. PDM may cause adaptive/maladaptive functional and structural alterations in pain, emotion, stress-related brain regions (e.g., hippocampus, hypothalamus, and periaqueductal gray matter (PAG)). Brain-derived neurotrophic factor (BDNF) is a neurotrophin highly expressed in the hippocampus, which plays a vital role in the processing of pain-laden stress. We previously reported that BDNF Val66Met polymorphisms are associated with stressful PDM. The current study examined the associations among BDNF Val66Met polymorphisms, menstrual pain severity, and hippocampal volume among young PDM subjects. Previous studies have also demonstrated that motor cortex stimulation effectively relieves pain via the descending pain modulation system. Transcranial direct current stimulation (tDCS) is a novel form of non-invasive neuromodulation technology. In the current study, we applied anodal tDCS stimulation over the primary motor cortex (M1) in severe PDM subjects to evaluate the effect on menstrual pain relief, and investigate the functional connectivity (FC) changes in descending pain modulatory system (DPMS) via PAG-seeded resting-state functional magnetic resonance imaging, especially in FC between PAG and motor area.
The general aims of this dissertation were to investigate the means by which gene (e.g., BDNF Val66Met) and motor cortex stimulation (e.g., tDCS intervention) contribute to the adaptive and maladaptive neuroplasticity, and how these effects are modulated by pain severity in PDM subjects. There were two study cohorts with PDM and four studies in this dissertation.
In the first study, we aimed to explore the effect of different severity of dysmenorrhea on white matter tract integrity and structural connectome using diffusion spectrum imaging. We observed no significant difference in white matter tract integrity and structural connectome in PDM females, and those changes were irrelevant to pain severity. Those negative findings of the brain structural network concur with our previous functional network study. Our negative findings supported that PDM is essentially dissimilar to major neurological and psychiatric diseases because PDM females usually do not exhibit overt cognitive, affective, and psychosocial liability and disability.
In the second study, we aimed to investigate how BDNF Val66Met polymorphisms contribute to the structural plasticity of the hippocampus and its subfields, and how these effects are modulated by pain severity in PDM subjects. Significant interactions between PDM severity and BDNF Val66Met genotype were observed in the right whole hippocampus, subiculum, and molecular layer. Post-hoc analysis revealed that the average hippocampal volume of Val/Val moderate PDM subjects was greater than that of Val/Val severe PDM subjects. Note that right hippocampal volume was greater in the Val/Val group than in the Met/Met group, particularly in the right posterior hippocampal region. Dosage effect analysis revealed a positive dosage-dependent relationship between the Val allele and volume of the right whole hippocampus, subiculum, molecular layer, and voxel-based morphometry (VBM)-defined right posterior hippocampal region in the moderate PDM subgroup only. These findings indicate that Val/Val PDM subjects are resistant to intermittent moderate pain-related stress, whereas Met carrier PDM subjects are susceptible. When confronted with years of repeated PDM stress, the hippocampus can undergo differential structural changes in accordance with the BDNF genotype and pain severity. Our results provide evidence for Val allele dosage-dependent protective effects on the hippocampal structure; however, in cases of the Val variant, these effects were modulated in accordance with the severity of menstrual pain.
In the third study, we aimed to investigate the effect of transcranial direct current stimulation intervention on pain relief and neuromodulation of descending pain modulation system with severe dysmenorrhea patients. Our data revealed an analgesic effect in real anodal-M1 tDCS stimulation with pain improvement, and especially the effect is significant in the one month after tDCS intervention. We observed a significant tDCS effect of decreased functional connectivity between the PAG seed and the right supplementary motor area (SMA) after actual tDCS intervention. The functional connectivity value of PAG and SMA was positively correlated with menstrual pain intensity and McGill Pain Questionnaire total score. We indicated that tDCS disrupts the pathological coupling between PAG and SMA (especially in the pelvic-motor control area) for pain alleviation and restores the normal functionality of PAG and SMA.
In the fourth study, we observed that PDM subjects are associated with a high prevalence of normal variants but not brain abnormalities. However, our observations invite further epidemiological and neuroscientific studies.
This triad study on PDM (i.e., combining genotype with endophenotype imaging results and clinical phenotypes) underscores the potential neurobiological consequences of PDM, which may prefigure in neuroimaging abnormalities associated with various chronic pain disorders, and underpin the importance of treating PDM aggressively as early as possible. We have also demonstrated that tDCS stimulation will be another treatment option for pain relief with severe PDM subjects who were ineffective of analgesic or physical therapy.
Table of Contents
Acknowledgement .................... i
Chinese Abstract ................... iv
English Abstract ................... vi
Table of Contents .................. viii
List of Figures .................... xi
List of Tables ..................... xii
Abbreviations ...................... xiii
1. Introduction 1
1.1 Primary dysmenorrhea 1
1.2 Brain-derived neurotrophic factor 2
1.3 Motor cortex stimulation for pain relief 3
1.3.1 Descending pain modulation system 3
1.3.2 Non-invasive brain stimulation techniques 5
(A) Transcranial magnetic stimulation 5
(B) Transcranial direct current stimulation 5
1.4 Aims and hypotheses of the dissertation 7
2. Materials and Methods 9
2.1 Participants 9
2.2 Study design 11
2.2.1 Neuroimaging studies of PDM (Study I, II, and IV) 11
2.2.2 tDCS intervention for the treatment of severe PDM (Study III) 12
2.3 MRI data acquisition 15
2.4 Data analyses 16
2.4.1 White matter tract integrity and whole-brain connectome analyses (Study I) 16
2.4.2 Hippocampal volumetric and morphometric analysis (Study II) 21
2.4.3 PAG-seeded functional connectivity analysis (Study III) 22
2.4.4 Assessment of incidental findings (Study IV) 24
2.5 Statistical analyses 24
2.5.1 Demographic data and BDNF Val66Met genotyping 24
2.5.2 White matter tract integrity and whole-brain connectome analyses (Study I) 25
2.5.3 Volumetric analysis of the whole hippocampus and hippocampal subfields (Study II) 25
2.5.4 Voxel-based morphometry analysis on hippocampus (Study II) 25
2.5.5 tDCS outcome measurement (Study III) 26
2.5.6 PAG-seeded functional connectivity analysis (Study III) 26
2.5.7 Prevalence of incidental brain findings (Study IV) 27
3. Results 28
3.1 Demographic data and grouping using behavioral and genetic information for genetic neuroimaging study cohort (Study I and II) 28
3.2 Study I: No significant difference changes on white matter tract integrity and structural connectome in PDM female 33
3.3 Study II: BDNF Val66Met polymorphism on hippocampus is modulated by the severity of menstrual pain 36
(A) Association of global hippocampal volume and genotypes as modulated by PDM severity 36
(B) Association between subfield volume and genotypes, as modulated by PDM severity 39
(C) Association between VBM volume and genotypes, as modulated by PDM severity 40
3.4 Study III: tDCS intervention for the treatment of severe PDM 44
(A) Demographic and menstrual pain experience assessments for tDCS intervention cohort 44
(B) Clinical pain reduction with real and sham tDCS intervention 45
(C) Real tDCS intervention is associated with decreases in functional connectivity between PAG and SMA 49
3.5 Study IV: High prevalence of incidental brain findings in PDM 52
4. Discussion 53
4.1 Unaltered intrinsic structural brain architecture maintains normal psychosocial outcomes in PDM females 53
4.2 The brief nature of cyclic PDM episodes would not necessarily prompt global structural changes in the hippocampus 54
4.3 The hippocampus can undergo differential adaptive or maladaptive structural changes in accordance with the BDNF genotype and pain severity 54
4.4 BDNF Val allele exhibits an adaptive neuroprotective effect on hippocampal volume but undermines when severe distressful pain 56
4.5 Analgesic benefit of tDCS intervention over motor cortex for female with severe PDM 57
4.6 Decoupling the pathological functional connectivity between the PAG and pelvic-motor area might indicate potential analgesic mechanisms after tDCS intervention in severe PDM 57
4.7 PDM subjects have many times of high incidence of normal anomalies 59
4.8 Limitation 60
5. Conclusions 61
6. References 62
7. Appendices 73

List of Figures
Figure 1-1. Illustration of descending pain modulation system. 4
Figure 1-2. The overall research framework of present dissertation. 7
Figure 2-1. Flow-chart for subject selection in the cohort of genetic neuroimaging study. 10
Figure 2-2. Flow-chart for subject selection and allocation in the cohort of tDCS intervention study. 11
Figure 2-3. Experimental design of tDCS intervention study. 13
Figure 2-4. (Left) The portable one-channel tDCS device and (Right) the placement of anodal (red) and cathodal (blue) electrodes is schematically stimulation location. 14
Figure 2-5. Flow chart of TBAA analysis. 17
Figure 2-6. The PAG mask overlaid on the MNI152 template. 22
Figure 2-7. An example of fMRI BOLD signals change for each scan. The PAG mask (repressed in red) overlayed on the preprocessed fMRI data. 23
Figure 3-1. Post-hoc genotype analysis of PDM severity on global (A) and subfield (B) hippocampal volumes. 38
Figure 3-2. Post-hoc analysis on VBM-defined hippocampal volumes for PDM vs. CON and PDM severity. 41
Figure 3-3. Post-hoc analysis of PDM severity on genotype-VBM-defined hippocampal volumes. 43
Figure 3-4. Change of menstrual pain intensity after tDCS intervention in severe dysmenorrhea patients. 46
Figure 3-5. Change of menstrual pain intensity trajectory after (top) real and (down) sham tDCS intervention. 48
Figure 3-6. (A) Decreased functional connectivity between the PAG (seed in green) and right SMA (pelvic-motor area) in T3 compared with baseline after real tDCS intervention. (B) The change of functional connectivity value between the PAG and right SMA after real and sham tDCS intervention. 50
Figure 3-7. Correlation between change in functional connectivity of the PAG - right SMA at T3 and (A) menstrual pain intensity (B) total scores MPQ at MENS-Post 2. 51
Figure 3-8. Categorical distribution of incidental findings of brain MRIs in PDM and HC. 52

List of Tables
Table 1. Demographic data and clinical assessment results in PDM and CON groups 29
Table 2. Psychological assessment results in PDM and CON groups 31
Table 3. whole brain tractography-derived index in PDM and CON groups and severe PDM and moderate PDM subgroups 34
Table 4. Global network metrics in PDM and CON groups and severe PDM and moderate PDM subgroups 35
Table 5. Demographic data and clinical assessment results in the real and sham tDCS intervention group 44
Table 6. The effects of tDCS intervention on pain relief in severe dysmenorrhea patients 45
Table 7. Individual data on the menstrual pain change after tDCS intervention using visual analogue scale 47
[1] Ahn, H., Woods, A.J., Kunik, M.E., Bhattacharjee, A., Chen, Z., Choi, E., Fillingim, R.B., 2017. Efficacy of transcranial direct current stimulation over primary motor cortex (anode) and contralateral supraorbital area (cathode) on clinical pain severity and mobility performance in persons with knee osteoarthritis: An experimenter- and participant-blinded, randomized, sham-controlled pilot clinical study. Brain Stimul 10, 902-909.
[2] Ameade, E.P.K., 2016. Menstrual Pain Assessment: Comparing Verbal Rating Scale (VRS) with Numerical Rating Scales (NRS) as Pain Measurement Tools. International Journal of Women's Health and Wellness 2, 017.
[3] Andersen, S.L., Teicher, M.H., 2004. Delayed effects of early stress on hippocampal development. Neuropsychopharmacology 29, 1988-1993.
[4] As-Sanie, S., Harris, R.E., Napadow, V., Kim, J., Neshewat, G., Kairys, A., Williams, D., Clauw, D.J., Schmidt-Wilcke, T., 2012. Changes in regional gray matter volume in women with chronic pelvic pain: a voxel-based morphometry study. Pain 153, 1006-1014.
[5] Ashburner, J., 2007. A fast diffeomorphic image registration algorithm. Neuroimage 38, 95-113.
[6] Auvichayapat, P., Janyacharoen, T., Rotenberg, A., Tiamkao, S., Krisanaprakornkit, T., Sinawat, S., Punjaruk, W., Thinkhamrop, B., Auvichayapat, N., 2012. Migraine prophylaxis by anodal transcranial direct current stimulation, a randomized, placebo-controlled trial. J Med Assoc Thai 95, 1003-1012.
[7] Baliki, M.N., Geha, P.Y., Fields, H.L., Apkarian, A.V., 2010. Predicting value of pain and analgesia: nucleus accumbens response to noxious stimuli changes in the presence of chronic pain. Neuron 66, 149-160.
[8] Baliki, M.N., Petre, B., Torbey, S., Herrmann, K.M., Huang, L., Schnitzer, T.J., Fields, H.L., Apkarian, A.V., 2012. Corticostriatal functional connectivity predicts transition to chronic back pain. Nat Neurosci 15, 1117-1119.
[9] Bath, K.G., Lee, F.S., 2006. Variant BDNF (Val66Met) impact on brain structure and function. Cogn Affect Behav Neurosci 6, 79-85.
[10] Behbehani, M.M., 1995. Functional characteristics of the midbrain periaqueductal gray. Prog Neurobiol 46, 575-605.
[11] Berkley, K.J., 2013. Primary dysmenorrhea: an urgent mandate. Pain: Clin Update 21, 1-8.
[12] Boggio, P.S., Zaghi, S., Lopes, M., Fregni, F., 2008. Modulatory effects of anodal transcranial direct current stimulation on perception and pain thresholds in healthy volunteers. Eur J Neurol 15, 1124-1130.
[13] Boulle, F., van den Hove, D.L., Jakob, S.B., Rutten, B.P., Hamon, M., van Os, J., Lesch, K.P., Lanfumey, L., Steinbusch, H.W., Kenis, G., 2012. Epigenetic regulation of the BDNF gene: implications for psychiatric disorders. Mol Psychiatry 17, 584-596.
[14] Breivik, H., Borchgrevink, P.C., Allen, S.M., Rosseland, L.A., Romundstad, L., Hals, E.K., Kvarstein, G., Stubhaug, A., 2008. Assessment of pain. Br J Anaesth 101, 17-24.
[15] Brooks, G.P., Johanson, G.A., 2011. Sample size considerations for multiple comparison procedures in ANOVA. J Mod Appl Stat Methods 10, 97-109.
[16] Brown, J.A., 2001. Motor cortex stimulation. Neurosurg Focus 11, E5.
[17] Chattarji, S., Tomar, A., Suvrathan, A., Ghosh, S., Rahman, M.M., 2015. Neighborhood matters: divergent patterns of stress-induced plasticity across the brain. Nat Neurosci 18, 1364-1375.
[18] Chen, Y.J., Lo, Y.C., Hsu, Y.C., Fan, C.C., Hwang, T.J., Liu, C.M., Chien, Y.L., Hsieh, M.H., Liu, C.C., Hwu, H.G., Tseng, W.Y., 2015. Automatic whole brain tract-based analysis using predefined tracts in a diffusion spectrum imaging template and an accurate registration strategy. Hum Brain Mapp 36, 3441-3458.
[19] Chervyakov, A.V., Chernyavsky, A.Y., Sinitsyn, D.O., Piradov, M.A., 2015. Possible Mechanisms Underlying the Therapeutic Effects of Transcranial Magnetic Stimulation. Front Hum Neurosci 9, 303.
[20] Coco, A.S., 1999. Primary dysmenorrhea. Am Fam Physician 60, 489-496.
[21] Coghill, R.C., Sang, C.N., Maisog, J.M., Iadarola, M.J., 1999. Pain intensity processing within the human brain: a bilateral, distributed mechanism. Journal of neurophysiology 82, 1934-1943.
[22] Cummiford, C.M., Nascimento, T.D., Foerster, B.R., Clauw, D.J., Zubieta, J.K., Harris, R.E., DaSilva, A.F., 2016. Changes in resting state functional connectivity after repetitive transcranial direct current stimulation applied to motor cortex in fibromyalgia patients. Arthritis Res Ther 18, 40.
[23] de Kloet, E.R., Joels, M., Holsboer, F., 2005. Stress and the brain: from adaptation to disease. Nat Rev Neurosci 6, 463-475.
[24] DeSouza, D.D., Hodaie, M., Davis, K.D., 2014. Abnormal trigeminal nerve microstructure and brain white matter in idiopathic trigeminal neuralgia. Pain 155, 37-44.
[25] DosSantos, M.F., Martikainen, I.K., Nascimento, T.D., Love, T.M., DeBoer, M.D., Schambra, H.M., Bikson, M., Zubieta, J.K., DaSilva, A.F., 2014. Building up analgesia in humans via the endogenous mu-opioid system by combining placebo and active tDCS: a preliminary report. PLoS One 9, e102350.
[26] Drevets, W.C., Price, J.L., Furey, M.L., 2008. Brain structural and functional abnormalities in mood disorders: implications for neurocircuitry models of depression. Brain Struct Funct 213, 93-118.
[27] Duman, R.S., Monteggia, L.M., 2006. A neurotrophic model for stress-related mood disorders. Biol Psychiatry 59, 1116-1127.
[28] Dun, W., Yang, J., Yang, L., Ma, S., Guo, C., Zhang, X., Zhang, H., Liu, H., Zhang, M., 2017. Abnormal white matter integrity during pain-free periovulation is associated with pain intensity in primary dysmenorrhea. Brain Imaging Behav 11, 1061-1070.
[29] Edwards, S., Clow, A., Evans, P., Hucklebridge, F., 2001. Exploration of the awakening cortisol response in relation to diurnal cortisol secretory activity. Life Sci 68, 2093-2103.
[30] Egan, M.F., Kojima, M., Callicott, J.H., Goldberg, T.E., Kolachana, B.S., Bertolino, A., Zaitsev, E., Gold, B., Goldman, D., Dean, M., Lu, B., Weinberger, D.R., 2003. The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell 112, 257-269.
[31] Fanselow, M.S., Dong, H.W., 2010. Are the dorsal and ventral hippocampus functionally distinct structures? Neuron 65, 7-19.
[32] Fenske, S.J., Bierer, D., Chelimsky, G., Conant, L., Ustine, C., Yan, K., Chelimsky, T., Kutch, J.J., 2020. Sensitivity of functional connectivity to periaqueductal gray localization, with implications for identifying disease-related changes in chronic visceral pain: A MAPP Research Network neuroimaging study. Neuroimage Clin 28, 102443.
[33] Fenton, B.W., Palmieri, P.A., Boggio, P., Fanning, J., Fregni, F., 2009. A preliminary study of transcranial direct current stimulation for the treatment of refractory chronic pelvic pain. Brain Stimul 2, 103-107.
[34] Fomberstein, K., Qadri, S., Ramani, R., 2013. Functional MRI and pain. Curr Opin Anaesthesiol 26, 588-593.
[35] Fregni, F., Pascual-Leone, A., 2007. Technology insight: noninvasive brain stimulation in neurology-perspectives on the therapeutic potential of rTMS and tDCS. Nat Clin Pract Neurol 3, 383-393.
[36] Frot, M., Magnin, M., Mauguiere, F., Garcia-Larrea, L., 2013. Cortical representation of pain in primary sensory-motor areas (S1/M1)--a study using intracortical recordings in humans. Hum Brain Mapp 34, 2655-2668.
[37] Fuchikami, M., Yamamoto, S., Morinobu, S., Takei, S., Yamawaki, S., 2010. Epigenetic regulation of BDNF gene in response to stress. Psychiatry Investig 7, 251-256.
[38] Golub, S., 1976. The magnitude of premenstrual anxiety and depression. Psychosom Med 38, 4-12.
[39] Grace, A.A., 2010. Dopamine system dysregulation by the ventral subiculum as the common pathophysiological basis for schizophrenia psychosis, psychostimulant abuse, and stress. Neurotox Res 18, 367-376.
[40] Greenberg, J., Burns, J.W., 2003. Pain anxiety among chronic pain patients: specific phobia or manifestation of anxiety sensitivity? Behav Res Ther 41, 223-240.
[41] Gupta, A., Rapkin, A.J., Gill, Z., Kilpatrick, L., Fling, C., Stains, J., Masghati, S., Tillisch, K., Mayer, E.A., Labus, J.S., 2015. Disease-related differences in resting-state networks: a comparison between localized provoked vulvodynia, irritable bowel syndrome, and healthy control subjects. Pain 156, 809-819.
[42] Hashmi, J.A., Baliki, M.N., Huang, L., Baria, A.T., Torbey, S., Hermann, K.M., Schnitzer, T.J., Apkarian, A.V., 2013. Shape shifting pain: chronification of back pain shifts brain representation from nociceptive to emotional circuits. Brain 136, 2751-2768.
[43] He, J., Dun, W., Han, F., Wang, K., Yang, J., Ma, S., Zhang, M., Liu, J., Liu, H., 2020. Abnormal white matter microstructure along the thalamus fiber pathways in women with primary dysmenorrhea. Brain Imaging Behav.
[44] Heidari, F., Afshari, M., Moosazadeh, M., 2017. Prevalence of fibromyalgia in general population and patients, a systematic review and meta-analysis. Rheumatol Int 37, 1527-1539.
[45] Herman, J.P., McKlveen, J.M., Ghosal, S., Kopp, B., Wulsin, A., Makinson, R., Scheimann, J., Myers, B., 2016. Regulation of the Hypothalamic-Pituitary-Adrenocortical Stress Response. Compr Physiol 6, 603-621.
[46] Herman, J.P., Mueller, N.K., 2006. Role of the ventral subiculum in stress integration. Behav Brain Res 174, 215-224.
[47] Hsu, Y.C., Lo, Y.C., Chen, Y.J., Wedeen, V.J., Isaac Tseng, W.Y., 2015. NTU‐DSI‐122: A diffusion spectrum imaging template with high anatomical matching to the ICBM‐152 space. Human Brain Mapping.
[48] Huang, E.J., Reichardt, L.F., 2001. Neurotrophins: roles in neuronal development and function. Annu Rev Neurosci 24, 677-736.
[49] Iacovides, S., Avidon, I., Baker, F.C., 2015. What we know about primary dysmenorrhea today: a critical review. Hum Reprod Update 21, 762-778.
[50] Ihle, K., Rodriguez-Raecke, R., Luedtke, K., May, A., 2014. tDCS modulates cortical nociceptive processing but has little to no impact on pain perception. Pain 155, 2080-2087.
[51] Illes, J., Kirschen, M.P., Karetsky, K., Kelly, M., Saha, A., Desmond, J.E., Raffin, T.A., Glover, G.H., Atlas, S.W., 2004. Discovery and disclosure of incidental findings in neuroimaging research. J Magn Reson Imaging 20, 743-747.
[52] Jensen, K.B., Loitoile, R., Kosek, E., Petzke, F., Carville, S., Fransson, P., Marcus, H., Williams, S.C., Choy, E., Mainguy, Y., Vitton, O., Gracely, R.H., Gollub, R., Ingvar, M., Kong, J., 2012. Patients with fibromyalgia display less functional connectivity in the brain's pain inhibitory network. Mol Pain 8, 32.
[53] Kang, J.H., Choi, S.E., Park, D.J., Xu, H., Lee, J.K., Lee, S.S., 2020. Effects of add-on transcranial direct current stimulation on pain in Korean patients with fibromyalgia. Sci Rep 10, 12114.
[54] Kessler, S.K., Turkeltaub, P.E., Benson, J.G., Hamilton, R.H., 2012. Differences in the experience of active and sham transcranial direct current stimulation. Brain Stimul 5, 155-162.
[55] Kilpatrick, L.A., Kutch, J.J., Tillisch, K., Naliboff, B.D., Labus, J.S., Jiang, Z., Farmer, M.A., Apkarian, A.V., Mackey, S., Martucci, K.T., Clauw, D.J., Harris, R.E., Deutsch, G., Ness, T.J., Yang, C.C., Maravilla, K., Mullins, C., Mayer, E.A., 2014. Alterations in resting state oscillations and connectivity in sensory and motor networks in women with interstitial cystitis/painful bladder syndrome. J Urol 192, 947-955.
[56] Kim, J.J., Fanselow, M.S., 1992. Modality-specific retrograde amnesia of fear. Science 256, 675-677.
[57] Krause, B., Marquez-Ruiz, J., Cohen Kadosh, R., 2013. The effect of transcranial direct current stimulation: a role for cortical excitation/inhibition balance? Front Hum Neurosci 7, 602.
[58] Kutch, J.J., Labus, J.S., Harris, R.E., Martucci, K.T., Farmer, M.A., Fenske, S., Fling, C., Ichesco, E., Peltier, S., Petre, B., Guo, W., Hou, X., Stephens, A.J., Mullins, C., Clauw, D.J., Mackey, S.C., Apkarian, A.V., Landis, J.R., Mayer, E.A., Network, M.R., 2017. Resting-state functional connectivity predicts longitudinal pain symptom change in urologic chronic pelvic pain syndrome: a MAPP network study. Pain 158, 1069-1082.
[59] Kutch, J.J., Yani, M.S., Asavasopon, S., Kirages, D.J., Rana, M., Cosand, L., Labus, J.S., Kilpatrick, L.A., Ashe-McNalley, C., Farmer, M.A., Johnson, K.A., Ness, T.J., Deutsch, G., Harris, R.E., Apkarian, A.V., Clauw, D.J., Mackey, S.C., Mullins, C., Mayer, E.A., 2015. Altered resting state neuromotor connectivity in men with chronic prostatitis/chronic pelvic pain syndrome: A MAPP: Research Network Neuroimaging Study. Neuroimage Clin 8, 493-502.
[60] Lang, N., Siebner, H.R., Ward, N.S., Lee, L., Nitsche, M.A., Paulus, W., Rothwell, J.C., Lemon, R.N., Frackowiak, R.S., 2005. How does transcranial DC stimulation of the primary motor cortex alter regional neuronal activity in the human brain? Eur J Neurosci 22, 495-504.
[61] Lanz, T.A., Bove, S.E., Pilsmaker, C.D., Mariga, A., Drummond, E.M., Cadelina, G.W., Adamowicz, W.O., Swetter, B.J., Carmel, S., Dumin, J.A., 2012. Robust changes in expression of brain-derived neurotrophic factor (BDNF) mRNA and protein across the brain do not translate to detectable changes in BDNF levels in CSF or plasma. Biomarkers 17, 524-531.
[62] Lee, L.C., Chen, Y.H., Lin, C.S., Li, W.C., Low, I., Tu, C.H., Chou, C.C., Cheng, C.M., Yeh, T.C., Chen, L.F., Chao, H.T., Hsieh, J.C., 2018. Unaltered intrinsic functional brain architecture in young women with primary dysmenorrhea. Sci Rep 8, 12971.
[63] Lee, L.C., Tu, C.H., Chen, L.F., Shen, H.D., Chao, H.T., Lin, M.W., Hsieh, J.C., 2014. Association of brain-derived neurotrophic factor gene Val66Met polymorphism with primary dysmenorrhea. PLoS One 9, e112766.
[64] Lee, P.S., Low, I., Chen, Y.S., Tu, C.H., Chao, H.T., Hsieh, J.C., Chen, L.F., 2017. Encoding of menstrual pain experience with theta oscillations in women with primary dysmenorrhea. Sci Rep 7, 15977.
[65] Li, Z., Chen, J., Zhao, Y., Wang, Y., Xu, J., Ji, J., Shen, J., Zhang, W., Chen, Z., Sun, Q., Mao, L., Cheng, S., Yang, B., Zhang, D., Xu, Y., Zhao, Y., Liu, D., Shen, Y., Zhang, W., Li, C., Shen, J., Shi, Y., 2017. Common variants in ZMIZ1 and near NGF confer risk for primary dysmenorrhoea. Nat Commun 8, 14900.
[66] Lieberman, G., Shpaner, M., Watts, R., Andrews, T., Filippi, C.G., Davis, M., Naylor, M.R., 2014. White matter involvement in chronic musculoskeletal pain. J Pain 15, 1110-1119.
[67] Linnman, C., Moulton, E.A., Barmettler, G., Becerra, L., Borsook, D., 2012. Neuroimaging of the periaqueductal gray: state of the field. Neuroimage 60, 505-522.
[68] Liotti, M., Mayberg, H.S., Brannan, S.K., McGinnis, S., Jerabek, P., Fox, P.T., 2000. Differential limbic--cortical correlates of sadness and anxiety in healthy subjects: implications for affective disorders. Biol Psychiatry 48, 30-42.
[69] Lisofsky, N., Martensson, J., Eckert, A., Lindenberger, U., Gallinat, J., Kuhn, S., 2015. Hippocampal volume and functional connectivity changes during the female menstrual cycle. Neuroimage 118, 154-162.
[70] Liu, J., Liu, H., Mu, J., Xu, Q., Chen, T., Dun, W., Yang, J., Tian, J., Hu, L., Zhang, M., 2017. Altered white matter microarchitecture in the cingulum bundle in women with primary dysmenorrhea: A tract-based analysis study. Hum Brain Mapp 38, 4430-4443.
[71] Liu, P., Wang, G., Liu, Y., Yu, Q., Yang, F., Jin, L., Sun, J., Yang, X., Qin, W., Calhoun, V.D., 2016. White matter microstructure alterations in primary dysmenorrhea assessed by diffusion tensor imaging. Sci Rep 6, 25836.
[72] Lovell, R.M., Ford, A.C., 2012. Effect of gender on prevalence of irritable bowel syndrome in the community: systematic review and meta-analysis. Am J Gastroenterol 107, 991-1000.
[73] Low, I., Kuo, P.-C., Liu, Y.-H., Tsai, C.-L., Chao, H.-T., Hsieh, J.-C., Chen, L.-F., Chen, Y.-S., 2017. Altered Brain Complexity in Women with Primary Dysmenorrhea: A Resting-State Magneto-Encephalography Study Using Multiscale Entropy Analysis. Entropy 19.
[74] Low, I., Kuo, P.C., Tsai, C.L., Liu, Y.H., Lin, M.W., Chao, H.T., Chen, Y.S., Hsieh, J.C., Chen, L.F., 2018. Interactions of BDNF Val66Met Polymorphism and Menstrual Pain on Brain Complexity. Front Neurosci 12, 826.
[75] Maarrawi, J., Peyron, R., Mertens, P., Costes, N., Magnin, M., Sindou, M., Laurent, B., Garcia-Larrea, L., 2007. Motor cortex stimulation for pain control induces changes in the endogenous opioid system. Neurology 69, 827-834.
[76] Mainero, C., Boshyan, J., Hadjikhani, N., 2011. Altered functional magnetic resonance imaging resting-state connectivity in periaqueductal gray networks in migraine. Ann Neurol 70, 838-845.
[77] McEwen, B.S., 2000. The neurobiology of stress: from serendipity to clinical relevance. Brain Res 886, 172-189.
[78] Medeiros, L.F., de Souza, I.C., Vidor, L.P., de Souza, A., Deitos, A., Volz, M.S., Fregni, F., Caumo, W., Torres, I.L., 2012. Neurobiological effects of transcranial direct current stimulation: a review. Front Psychiatry 3, 110.
[79] Mhalla, A., Baudic, S., de Andrade, D.C., Gautron, M., Perrot, S., Teixeira, M.J., Attal, N., Bouhassira, D., 2011. Long-term maintenance of the analgesic effects of transcranial magnetic stimulation in fibromyalgia. Pain 152, 1478-1485.
[80] Moisset, X., Lefaucheur, J.P., 2019. Non pharmacological treatment for neuropathic pain: Invasive and non-invasive cortical stimulation. Rev Neurol (Paris) 175, 51-58.
[81] Murer, M.G., Boissiere, F., Yan, Q., Hunot, S., Villares, J., Faucheux, B., Agid, Y., Hirsch, E., Raisman-Vozari, R., 1999. An immunohistochemical study of the distribution of brain-derived neurotrophic factor in the adult human brain, with particular reference to Alzheimer's disease. Neuroscience 88, 1015-1032.
[82] Murphy, K., Fox, M.D., 2017. Towards a consensus regarding global signal regression for resting state functional connectivity MRI. Neuroimage 154, 169-173.
[83] Mutso, A.A., Radzicki, D., Baliki, M.N., Huang, L., Banisadr, G., Centeno, M.V., Radulovic, J., Martina, M., Miller, R.J., Apkarian, A.V., 2012. Abnormalities in hippocampal functioning with persistent pain. J Neurosci 32, 5747-5756.
[84] Nitsche, M.A., Paulus, W., 2000. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol 527 Pt 3, 633-639.
[85] Pagano, R.L., Fonoff, E.T., Dale, C.S., Ballester, G., Teixeira, M.J., Britto, L.R.G., 2012. Motor cortex stimulation inhibits thalamic sensory neurons and enhances activity of PAG neurons: possible pathways for antinociception. Pain 153, 2359-2369.
[86] Pazmany, E., Ly, H.G., Aerts, L., Kano, M., Bergeron, S., Verhaeghe, J., Peeters, R., Tack, J., Dupont, P., Enzlin, P., Van Oudenhove, L., 2017. Brain responses to vestibular pain and its anticipation in women with Genito-Pelvic Pain/Penetration Disorder. Neuroimage Clin 16, 477-490.
[87] Pegado, R., Silva, L.K., da Silva Dantas, H., Andrade Camara, H., Andrade Mescouto, K., Silva-Filho, E.M., Lopes, J.M., Micussi, M., Correia, G.N., 2020. Effects of Transcranial Direct Current Stimulation for Treatment of Primary Dysmenorrhea: Preliminary Results of a Randomized Sham-Controlled Trial. Pain Med 21, 3615-3623.
[88] Phelps, E.A., 2004. Human emotion and memory: interactions of the amygdala and hippocampal complex. Curr Opin Neurobiol 14, 198-202.
[89] Polania, R., Paulus, W., Nitsche, M.A., 2012. Modulating cortico-striatal and thalamo-cortical functional connectivity with transcranial direct current stimulation. Hum Brain Mapp 33, 2499-2508.
[90] Poppenk, J., Evensmoen, H.R., Moscovitch, M., Nadel, L., 2013. Long-axis specialization of the human hippocampus. Trends Cogn Sci 17, 230-240.
[91] Quach, T.T., Lerch, J.K., Honnorat, J., Khanna, R., Duchemin, A.M., 2016. Neuronal networks in mental diseases and neuropathic pain: Beyond brain derived neurotrophic factor and collapsin response mediator proteins. World J Psychiatry 6, 18-30.
[92] Radley, J.J., Sawchenko, P.E., 2011. A common substrate for prefrontal and hippocampal inhibition of the neuroendocrine stress response. J Neurosci 31, 9683-9695.
[93] Rolls, E.T., Joliot, M., Tzourio-Mazoyer, N., 2015. Implementation of a new parcellation of the orbitofrontal cortex in the automated anatomical labeling atlas. Neuroimage 122, 1-5.
[94] Rose, E.J., Donohoe, G., 2013. Brain vs behavior: an effect size comparison of neuroimaging and cognitive studies of genetic risk for schizophrenia. Schizophr Bull 39, 518-526.
[95] Rubinov, M., Sporns, O., 2010. Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52, 1059-1069.
[96] Sadler, T.W., 2011. Langman's medical embryology. Lippincott Williams & Wilkins.
[97] Sarrieau, A., Dussaillant, M., Agid, F., Philibert, D., Agid, Y., Rostene, W., 1986. Autoradiographic localization of glucocorticosteroid and progesterone binding sites in the human post-mortem brain. J Steroid Biochem 25, 717-721.
[98] Segerdahl, A.R., Themistocleous, A.C., Fido, D., Bennett, D.L., Tracey, I., 2018. A brain-based pain facilitation mechanism contributes to painful diabetic polyneuropathy. Brain 141, 357-364.
[99] Seltman, H.J., 2018. Contrasts and Custom Hypotheses. In: Experimental design and analysis. Carnegie Mellon University, Pennsylvania, pp. 319-338.
[100] Severeijns, R., Vlaeyen, J.W., van den Hout, M.A., Weber, W.E., 2001. Pain catastrophizing predicts pain intensity, disability, and psychological distress independent of the level of physical impairment. Clin J Pain 17, 165-172.
[101] Smith, S.M., Jenkinson, M., Johansen-Berg, H., Rueckert, D., Nichols, T.E., Mackay, C.E., Watkins, K.E., Ciccarelli, O., Cader, M.Z., Matthews, P.M., Behrens, T.E., 2006. Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage 31, 1487-1505.
[102] Spisak, T., Kincses, B., Schlitt, F., Zunhammer, M., Schmidt-Wilcke, T., Kincses, Z.T., Bingel, U., 2020. Pain-free resting-state functional brain connectivity predicts individual pain sensitivity. Nat Commun 11, 187.
[103] Sullivan, M.J., Bishop, S.R., Pivik, J., 1995. The pain catastrophizing scale: development and validation. Psychol Assess 7, 524-532.
[104] Teicher, M.H., Anderson, C.M., Polcari, A., 2012. Childhood maltreatment is associated with reduced volume in the hippocampal subfields CA3, dentate gyrus, and subiculum. Proc Natl Acad Sci U S A 109, E563-572.
[105] Tsao, H., Galea, M.P., Hodges, P.W., 2008. Reorganization of the motor cortex is associated with postural control deficits in recurrent low back pain. Brain 131, 2161-2171.
[106] Tsubokawa, T., Katayama, Y., Yamamoto, T., Hirayama, T., Koyama, S., 1991. Chronic Motor Cortex Stimulation for the Treatment of Central Pain. Springer Vienna, Vienna, pp. 137-139.
[107] Tsubokawa, T., Katayama, Y., Yamamoto, T., Hirayama, T., Koyama, S., 1993. Chronic motor cortex stimulation in patients with thalamic pain. J Neurosurg 78, 393-401.
[108] Tu, C.H., Lin, C.L., Yang, S.T., Shen, W.C., Chen, Y.H., 2020. Hormonal Contraceptive Treatment May Reduce the Risk of Fibromyalgia in Women with Dysmenorrhea: A Cohort Study. J Pers Med 10, 280.
[109] Tu, C.H., Niddam, D.M., Chao, H.T., Chen, L.F., Chen, Y.S., Wu, Y.T., Yeh, T.C., Lirng, J.F., Hsieh, J.C., 2010. Brain morphological changes associated with cyclic menstrual pain. Pain 150, 462-468.
[110] Tu, C.H., Niddam, D.M., Chao, H.T., Liu, R.S., Hwang, R.J., Yeh, T.C., Hsieh, J.C., 2009. Abnormal cerebral metabolism during menstrual pain in primary dysmenorrhea. Neuroimage 47, 28-35.
[111] Tu, C.H., Niddam, D.M., Yeh, T.C., Lirng, J.F., Cheng, C.M., Chou, C.C., Chao, H.T., Hsieh, J.C., 2013. Menstrual pain is associated with rapid structural alterations in the brain. Pain 154, 1718-1724.
[112] Tuch, D.S., 2004. Q-ball imaging. Magn Reson Med 52, 1358-1372.
[113] Turnbull, G.K., Hamdy, S., Aziz, Q., Singh, K.D., Thompson, D.G., 1999. The cortical topography of human anorectal musculature. Gastroenterology 117, 32-39.
[114] Victoria, N.C., Murphy, A.Z., 2016. Exposure to Early Life Pain: Long Term Consequences and Contributing Mechanisms. Curr Opin Behav Sci 7, 61-68.
[115] Wallace, B.A., Ashkan, K., Benabid, A.L., 2004. Deep brain stimulation for the treatment of chronic, intractable pain. Neurosurg Clin N Am 15, 343-357, vii.
[116] Wei, P., Lan, Z., Lv, Z., Fan, Y., 2020. Brainstem fMRI. Encyclopedia 1, 4-11.
[117] Wei, S.Y., Chao, H.T., Tu, C.H., Li, W.C., Low, I., Chuang, C.Y., Chen, L.F., Hsieh, J.C., 2016a. Changes in functional connectivity of pain modulatory systems in women with primary dysmenorrhea. Pain 157, 92-102.
[118] Wei, S.Y., Chao, H.T., Tu, C.H., Lin, M.W., Li, W.C., Low, I., Shen, H.D., Chen, L.F., Hsieh, J.C., 2016b. The BDNF Val66Met polymorphism is associated with the functional connectivity dynamics of pain modulatory systems in primary dysmenorrhea. Sci Rep 6, 23639.
[119] Wei, S.Y., Chen, L.F., Lin, M.W., Li, W.C., Low, I., Yang, C.J., Chao, H.T., Hsieh, J.C., 2017. The OPRM1 A118G polymorphism modulates the descending pain modulatory system for individual pain experience in young women with primary dysmenorrhea. Sci Rep 7, 39906.
[120] Woon, F.L., Sood, S., Hedges, D.W., 2010. Hippocampal volume deficits associated with exposure to psychological trauma and posttraumatic stress disorder in adults: a meta-analysis. Prog Neuropsychopharmacol Biol Psychiatry 34, 1181-1188.
[121] Wu, T.H., Tu, C.H., Chao, H.T., Li, W.C., Low, I., Chuang, C.Y., Yeh, T.C., Cheng, C.M., Chou, C.C., Chen, L.F., Hsieh, J.C., 2016. Dynamic Changes of Functional Pain Connectome in Women with Primary Dysmenorrhea. Sci Rep 6, 24543.
[122] Wu, Y.W., Slakter, M.J., 1990. Increasing the precision of data analysis: planned comparisons versus omnibus tests. Nurs Res 39, 251-253.
[123] Yan, C.G., Wang, X.D., Zuo, X.N., Zang, Y.F., 2016. DPABI: Data Processing & Analysis for (Resting-State) Brain Imaging. Neuroinformatics 14, 339-351.
[124] Yani, M.S., Wondolowski, J.H., Eckel, S.P., Kulig, K., Fisher, B.E., Gordon, J.E., Kutch, J.J., 2018. Distributed representation of pelvic floor muscles in human motor cortex. Sci Rep 8, 7213.
[125] Yeh, F.C., Tseng, W.Y., 2011. NTU-90: a high angular resolution brain atlas constructed by q-space diffeomorphic reconstruction. Neuroimage 58, 91-99.
[126] Yeh, F.C., Tseng, W.Y., 2013. Sparse solution of fiber orientation distribution function by diffusion decomposition. PLoS One 8, e75747.
[127] Yeh, F.C., Wedeen, V.J., Tseng, W.Y., 2010. Generalized q-sampling imaging. IEEE Trans Med Imaging 29, 1626-1635.
[128] Young, N.A., Sharma, M., Deogaonkar, M., 2014. Transcranial magnetic stimulation for chronic pain. Neurosurg Clin N Am 25, 819-832.
[129] Yu, H., Wang, Y., Pattwell, S., Jing, D., Liu, T., Zhang, Y., Bath, K.G., Lee, F.S., Chen, Z.Y., 2009. Variant BDNF Val66Met polymorphism affects extinction of conditioned aversive memory. J Neurosci 29, 4056-4064.
[130] Yu, R., Gollub, R.L., Spaeth, R., Napadow, V., Wasan, A., Kong, J., 2014. Disrupted functional connectivity of the periaqueductal gray in chronic low back pain. Neuroimage Clin 6, 100-108.
[131] Yu, S., Xie, M., Liu, S., Guo, X., Tian, J., Wei, W., Zhang, Q., Zeng, F., Liang, F., Yang, J., 2020. Resting-State Functional Connectivity Patterns Predict Acupuncture Treatment Response in Primary Dysmenorrhea. Front Neurosci 14, 559191.
[132] Zaghi, S., Heine, N., Fregni, F., 2009. Brain stimulation for the treatment of pain: A review of costs, clinical effects, and mechanisms of treatment for three different central neuromodulatory approaches. Journal of pain management 2, 339-352.
[133] Zhang, L., Benedek, D.M., Fullerton, C.S., Forsten, R.D., Naifeh, J.A., Li, X.X., Hu, X.Z., Li, H., Jia, M., Xing, G.Q., Benevides, K.N., Ursano, R.J., 2014. PTSD risk is associated with BDNF Val66Met and BDNF overexpression. Mol Psychiatry 19, 8-10.
[134] Zhou, G., Qin, W., Zeng, F., Liu, P., Yang, X., von Deneen, K.M., Gong, Q., Liang, F., Tian, J., 2013. White-matter microstructural changes in functional dyspepsia: a diffusion tensor imaging study. Am J Gastroenterol 108, 260-269.
[135] Zidda, F., Andoh, J., Pohlack, S., Winkelmann, T., Dinu-Biringer, R., Cavalli, J., Ruttorf, M., Nees, F., Flor, H., 2018. Default mode network connectivity of fear- and anxiety-related cue and context conditioning. Neuroimage 165, 190-199.
[136] Zortea, M., Ramalho, L., Alves, R.L., Alves, C., Braulio, G., Torres, I., Fregni, F., Caumo, W., 2019. Transcranial Direct Current Stimulation to Improve the Dysfunction of Descending Pain Modulatory System Related to Opioids in Chronic Non-cancer Pain: An Integrative Review of Neurobiology and Meta-Analysis. Front Neurosci 13, 1218.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊