跳到主要內容

臺灣博碩士論文加值系統

(100.28.2.72) 您好!臺灣時間:2024/06/13 13:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張哲愷
研究生(外文):CHANG, CHE-KAI
論文名稱:表面氟化之有機矽基疏水層沉積於自組裝結構化奈米球表面之研究
論文名稱(外文):The study of the surface fluorinated organosilicon based hydrophobic layer deposited on the surface of self-assembled structured nanospheres
指導教授:劉代山廖德照
指導教授(外文):LIU, DAY-SHANLIAO, TE-CHAO
口試委員:賴豊文劉代山廖德照
口試委員(外文):LAI, LI-WENLIU, DAY-SHANLIAO, TE-CHAO
口試日期:2021-08-03
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:光電工程系光電與材料科技碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:94
中文關鍵詞:旋轉塗佈聚苯乙烯奈米球氧電漿蝕刻電漿增強化學氣相沉積有機矽基疏水薄膜氟化蝕刻油滴接觸角
外文關鍵詞:spin coatingpolystyrene nanospheresoxygen plasma etchingplasma enhanced chemical vapor depositionorganosilicon-based hydrophobic filmfluorinated etchingoil contact angle
相關次數:
  • 被引用被引用:0
  • 點閱點閱:174
  • 評分評分:
  • 下載下載:26
  • 收藏至我的研究室書目清單書目收藏:0
本研究以旋轉塗佈法(spin coating),觀察在不同轉速條件下製備之聚苯乙烯奈米球(polystyrene nanospheres)形貌,並製備出單層聚苯乙烯奈米球薄膜,接著,分析單層奈米球薄膜在不同氧電漿蝕刻(oxygen plasma etching)時間下的粒徑大小與分佈情形,再利用電漿增強化學氣相沉積系統(PECVD),以四甲基矽烷(tetramethylsilane)為源材料,在結構化奈米球表面沉積有機矽基(organosilicon)疏水薄膜,並以稀釋氫氟酸溶液改質有機矽基疏水薄膜的表面特性,提升提升薄膜的疏油效果。研究中,透過原子力顯微鏡 (AFM)、場發射掃描式電子顯微鏡(FE-SEM)、紫外光-可見光光譜儀(UV-VIS),分別觀察結構化奈米球以及有機矽基疏水薄膜改質前後的表面粗糙度、表面/橫截面形貌與光學穿透率,以傅立葉轉換紅外線光譜儀(FTIR)以及X光光電子能譜儀(XPS)分析薄膜化學組成與鍵結型態,並利用接觸角量測系統,量測表面改質前後有機矽基薄膜的表面疏水/疏油特性。研究結果顯示,利用氧電漿蝕刻製程能夠有效控制奈米球粒徑大小及分佈,大幅提升後續沉積有機矽基薄膜的表面粗糙度,有機矽基薄膜沉積在經過適當氧電漿蝕刻之奈米球表面,水滴接觸角可大幅提升,此外,研究結果亦顯示,有機矽基薄膜表面經UV-Ozne照射處理後,再以稀釋氫氟酸溶液氟化蝕刻形成矽-氟鍵結,有助於顯著改善薄膜表面的疏油特性。
In this study, the spin coating method was used to observe the morphology of polystyrene nanospheres prepared under different rotation speeds to prepare a single-layer polystyrene nanosphere film, and then analyze the single-layer nanospheres. The particle size and distribution of the rice ball film under different oxygen plasma etching time, and then use the plasma enhanced chemical vapor deposition system (PECVD), using tetramethylsilane as the source material, An organosilicon hydrophobic film is deposited on the surface of the structured nanosphere, and the surface characteristics of the organosilicon hydrophobic film are modified with a hydrofluoric acid solution to enhance the oleophobic effect of the film. In the research, through the atomic force microscope (AFM), field emission scanning electron microscope (FE-SEM), ultraviolet-visible light spectrometer (UV-VIS), the structured nanospheres and the organic silicon-based hydrophobic film were observed before and after modification. Roughness, surface/cross-section morphology and optical transmittance, Fourier transform infrared spectrometer (FTIR) and X-ray photoelectron spectrometer (XPS) were used to analyze the chemical composition and bonding state of the film, and the contact angle measurement system was used , Measure the hydrophobic/oleophobic properties of the organosilicon-based film before and after the surface modification. The research results show that the use of oxygen plasma etching process can effectively control the size and distribution of nanospheres, and greatly improve the surface roughness of subsequent deposited organosilicon-based films. The organosilicon-based thin films are deposited on nanoparticles that have been properly etched by oxygen plasma. The contact angle of water droplets on the surface of the ball can be greatly increased to more than 120˚. In addition, the research results also show that the surface of the organosilicon-based film is treated with UV-Ozne and then fluorinated and etched with a hydrofluoric acid solution to form a carbon-fluorine bond. Helps greatly increase the contact angle of oil droplets on the surface of the film.
摘要...........i
Abstract..........ii
誌謝..........iv
目錄..........v
表目錄..........vii
圖目錄..........viii
第一章 緒論..........1
1.1前言..........1
1.2文獻回顧..........1
1.2.1 疏水自清潔製程..........1
1.2.2 奈米結構的應用..........2
1.2.3 表面氟化之應用..........2
1.3研究動機..........3
第二章 理論基礎..........12
2.1 電漿成分及原理..........12
2.2 化學氣相沉積薄膜之成長機制..........12
2.3 化學氣相沉積法之種類..........13
2.4 薄膜成長原理..........14
2.5 濕潤性原理..........15
第三章 實驗方法及步驟..........20
3.1實驗流程..........20
3.2實驗系統..........20
3.2.1電漿增強化學氣相沉積系統..........20
3.2.2旋轉塗佈系統(Spin coating)..........21
3.2.2紫外光臭氧清洗機系統(UV-Ozne system)..........21
3.3薄膜量測分析..........21
3.3.1場發射掃描式電子顯微鏡(Field Emission-Scanning Electron Microscope;FE-SEM)..........21
3.3.2原子力顯微鏡(Atomic force microscope;AFM)..........21
3.3.3 α-step表面輪廓儀..........22
3.3.4 紫外光-可見光光譜儀(UV-Vis Spectrum)..........22
3.3.5 傅立葉轉換紅外線吸收光光譜儀(Fourier transform infrared spectroscopy;FTIR)..........22
3.3.6 X光光電子能譜儀 ( X-ray Photoelectron Spectroscopy;XPS )..........22
3.3.7 接觸角量測儀..........23
第四章 結果與討論..........30
4.1 製備自組裝單層聚苯乙烯奈米(Polystyrene nanospheres)並沉積有機矽基薄膜..........30
4.1.1 基底層聚苯乙烯奈米球的合成..........30
4.1.2有機矽基薄膜沉積於自組裝單層奈米球薄膜..........32
4.2 有機矽基薄膜層沉積於自組裝結構化奈米球表面..........34
4.2.1 氧電漿蝕刻單層奈米球基底結構之分析..........34
4.2.2 有機矽基薄膜沉積於結構化聚苯乙烯奈米球表面之分析..........35
4.3 表面氟化之有機矽基薄膜沉積於具結構化聚苯乙烯奈米球層之疏水/疏油特性分析..........39
4.3.1 不同基板下沉積奈米球層/有機矽基薄膜經稀釋氫氟酸濕式蝕刻之表面特性分析..........39
4.3.2 表面氟化處理的有機矽基薄膜之材料及表面結構分析..........42
第五章 結果與未來工作..........83
參考文獻..........85
Extended Abstract..........89

[1]W. Barthlott, C. Neinhuis, 1997,“Purity of the sacred lotus, or escape from contamination in biological surfaces.”, Planta, 202, 1-8.
[2]Xuefeng Gao and Lei Jiang, 2005, “Bioinspired Surfaces with Special Wettability.”, Acc. Chem. Res. 38, 644-652.
[3]Kerstin Koch, Bharat Bhushan, Wilhelm Barthlott, 2009, “Multifunctional surface structures of plants: An inspiration for biomimetics”, Progress in Materials Science, 54, 137-178.
[4]N. J. Shirtcliffe, G. McHale, M. I. Newton, and C. C. Perry, 2003, “Intrinsically Superhydrophobic Organosilica Sol-Gel Foams”, Langmuir, 19, 5626-5631.
[5]Didem Ӧner and Thomas J. McCarthy, 2000, “Ultrahydrophobic Surfaces. Effects of Topography Length Scales on Wettability”, Langmuir, 16, 7777-7782.
[6]R. Blossey, 2003, “Self-cleaning surfaces — virtual realities”, nature materials, 2, 301-306.
[7]S. Shibuichi, T. Yamamoto, T. Onda,† and K. Tsujii, 1998, “Super Water- and Oil-Repellent Surfaces Resulting from Fractal Structure”, Journal of Colloid and Interface Science, 208, 287-294.
[8]陳建智, 2016“利用緩衝層結構改善薄膜沉積於壓克力基板附著度之研究”, 國立虎尾科技大學碩士論文.
[9]Linda Y.L. Wu, S.K. Ngian, Z. Chen, D.T.T. Xuan, 2011, “Quantitative test method for evaluation of anti-fingerprint property of coated surfaces”, Applied Surface Science, 257, 2965-2969.
[10]Linting Yin, Jin Yang, Yongcai Tang, Lin Chen, Can Liu, Hua Tang, Changsheng Li, 2014, “Mechanical durability of superhydrophobic and oleophobic copper meshes.”, Applied Surface Science, 316, 259-263.
[11]Shuang Cai, Qinglan Xue, Bibo Xia, Jie Yang, Hai-bing Lv, Hong-wei Yan, Bo Jiang, 2015, “Hydrophobic–oleophobic antireflective film with excellent optical property prepared by a imple sol–gel route.”, Materials Letters, 156, 14-16.
[12]C. Elif Cansoya, H. Yildirim Erbil, Orhan Akar, Tayfun Akin, 2011, “Effect of pattern size and geometry on the use of Cassie–Baxter equation for superhydrophobic surfaces.”, Colloids and Surfaces A: Physicochem. Eng. Aspects, 386, 116-124.
[13]Thi Phuong Nhung Nguyen, Renaud Dufour, Vincent Thomy, Vincent Senez, Rabah Boukherroub, Yannick Coffinier, 2014, “Fabrication of superhydrophobic and highly oleophobic silicon-based surfaces via electroless etching method.”, Applied Surface Science, 295, 38-43.
[14]Hong Xiao 著.羅正忠 張鼎張 譯,2001, ”半導體製程技術導論 二版”, 歐 亞書局, p.224~228 .
[15]Michael Quirk、Julian Serda 著,2005,羅文雄、蔡榮輝、鄭岫盈譯,“半導體製造技術”,滄海書局,chap 11,8月。
[16]Sematech., 1994, “Deposition Processes in Furnace Processes and Related Topics ”, Austin, TX : SEMATECH, 6-9.
[17]L. Eckertova, and T. Ruzicka., 1993, “Diagnostics and Applications of Thin Films”, Institute of Physics Publishing., chap. 1 & 2.
[18]Kh. Hemmati Kahradeh, E. Saievar-Iranizad , A. Bayat, 2017, “Electrophoretically Deposited Carbon Micro and Nanospheres Thin Films as Superhydrophobic Coatings”, Surface & Coatings Technology 202, 32-39
[19]Wei-Feng Xu, Chun-Chieh Chin, Ding-Wei Hung, Pei-Kuen Wei, 2013, “Transparent electrode for organic solar cells using multilayer structures with nanoporous silver film.”, Solar Energy Materials & Solar Cells, 118, 81-89.
[20]Shih-Jung Liu n , Wei-An Chen, 2012, “Nanofeatured anti-reflective films manufactured using hot roller imprinting and self-assembly nanosphere lithography.”, Optics & Laser Technology, 16,226-234
[21]Zheng-Wen Xu 1 , Yu-Kai Zhang 1 , Tai-Hong Chen 2 , Jin-How Chang 2 , Tsung-Hsin Lee 3 , Pei-Yu Li 1 and Day-Shan Liu 1, 2018, “Enhancement on the Surface Hydrophobicity and Oleophobicity of an Organosilicon Film by Conformity Deposition and Surface Fluorination Etching.”,materials, 40, 4 , 6-8.
[22]W. Somranga , S. Denchitcharoena , P. Eiamchaib , M. Horprathumb , C. Chananonnawathornb, 2018, “Superhydrophobic and antireflective surface of nanostructures fabricated by CF4 plasma etching.”, Materials Today: Proceedings, 21,13879–13885
[23]S. G. Zhang, X. W. Zhang, Z. G. Yin, J. X. Wang, F. T. Si, H. L. Gao, J. J. Dong, and X. Liu, 2012, “Optimization of electroluminescence from n-ZnO/AlN/p-GaN light-emitting diodes by tailoring Ag localized surface plasmon.”, Journal of Applied Physics, 112,89-97
[24]Gaoxue Wang,Chunhui Dong,Changjun Jiang, Guozhi Chai,Desheng Xue, 2012, “Effect of nanoparticle size on magnetic damping parameter in Co92Zr8 soft magnetic films”, Journal of Magnetism and Magnetic Materials 324, 2840-2843.
[25]Th. Uelzen, J. Műller, 2003, “Wettability enhancement by rough surfaces generated by thin film technology.”, Thin Solid Films 434, 311-315.
[26]Takuji Soeno, Kohei Inokuchi, Seimei Shiratori, 2004, “Ultra-water-repellent surface: fabrication of complicated structure of SiO2 nanoparticles by electrostatic self-assembled films.”, Applied Surface Science, 237, 543-547.
[27]Chien-Te Hsieh, Fang-Lin Wu, Wei-Yu Chen, 2009, “Super water- and oil-repellencies from silica-based nanocoatings.”, Surface & Coatings Technology, 203, 3377-3384.
[28]陳順祺, 2016“氣體阻障層製備於具有連續沉積-蝕刻有機矽基覆蓋之圖案化表面之研究”, 國立虎尾科技大學碩士論文.
[29]Teresa Oh, 2007, “Characteristic of Organic Thin Film Depending on Carbon Content by Fourier Transform Infrared Spectra and X-ray Diffraction Pattern”, Bull. Korean Chem. Soc., 28, 6-9.
[30]Matthias H. Richter, Michael Lublow, Kimberly M. Papadantonakis, Nathan S. Lewis, and Hans-Joachim Lewerenz, 2020,“Genesis and Propagation of Fractal Structures During Photoelectrochemical Etching of n-Silicon”, ACS Applied Materials & Interfaces,203, 486-497
[31]Fumio Shimura, 1988, “Semiconductor Silicon Crystal Technology”, Academic Press,.198, 413-425
[32]G.S. Kang, H. J. Ko, C. K. Choi, 2003,“Chemical Bond Structure of a-C:F Films with a Low Dielectric Constant Deposited by Using CH4/CF4 ICPCVD”, J. Korean Phys. Soc, 42, 676-681.
[33]Gang Chen, Junyan Zhang a, Shengrong Yang, 2008, “Fabrication of hydrophobic fluorinated amorphous carbon thin films by an electrochemical route.”, Electrochemistry Communications , 10, 7-11.
[34]E. Yasuda, et al., 2003, “Carbon Alloys, 1st Edition:Novel Concepts to Develop Carbon Science and Technology”, Gulf Professional Publishing, 38,109-118
[35]D.S. Liu, C.Y. Wu, 2010, “Adhesion enhancement of hard coatings deposited on flexible plastic substrates using an interfacial buffer layer”, J. Phys. D: Appl. Phys, 43, 175301-173503.
[36]C. Wang, P.C. Lai, S. H. Syu, J. Leu, 2011, “Effects of CF4 plasma treatment on the moisture uptake, diffusion, and WVTR of poly(ethylene terephthalate) flexible films”, Surf. Coat. Tech., 206, 318-324.
[37]Chien-Te Hsieha, Jin-Ming Chena, Rong-Rong Kuoa, Ta-Sen Linb, Chu-Fu Wuc, 2005, “Influence of surface roughness on water- and oil-repellent surfaces coated with nanoparticles.”, Applied Surface Science, 240, 318-326.
[38]Bernd O. Kolbesen, 1995, “Analytical Techniques for Semiconductor Materials and Process Characterization II”, The Electrochemical Society.
[39]Kei Murakoshi1, K. Uosaki, 1993, “X‐ray photoelectron spectroscopic studies of the chemical nature of as‐prepared and NaOH‐treated porous silicon layer”, Appl. Phys. Lett. 62, 1676.
[40]Yaling Su, Xingwang Zhang, Minghua Zhou, Song Han, Lecheng Lei, 2008, “Preparation of high efficient photoelectrode of N–F codoped TiO2 nanotubes”, Journal of Photochemistry and Photobiology A: Chemistry, 194, 152-160.
[41]Gregor Jakša, 2014,“AFM and XPS Study of Aminosilanes on Si”, Imaging & Microscopy”, Germany,3-6
[42]R.V. Lakshmi, T. Bharathidasan, Parthasarathi Bera, Bharathibai J. Basu, 2012, “Fabrication of superhydrophobic and oleophobic sol–gel nanocomposite coating.”, Surface & Coatings Technology, 206, 3888-3894.
[43]Xu Liu, Zhongqing Liu, Shixiong Hao, Wei Chu, 2012, “Facile fabrication of well-dispersed silver nanoparticles loading on TiO2 nanotube arrays by electrodeposition”, Materials Letters, 80, 66-68.
[44]Jianqi Maa, Xiaohua Guo, Yanyan Zhang, Hongguang Ge, 2014, “Catalytic performance of TiO2@Ag composites prepared by modified photodeposition method.”, Chemical Engineering Journal, 258, 247-253.
[45]吳東權等,2005,“微機電系統之技術現況與發展”,工業技術研究院機械工業研究所。
[46]莊達人, 2000, “VLSI 製造技術”, 高立圖書有限公司, chap. 5
[47]Thomas Young 1805, “An Essay on the Cohesion of Fluids”, Phil. Trans. R. Soc. Lond, 95, 65-87.
[48]Robert N. Wenzel 1936, “Rsistance of Solid Surfaces to Wetting by Water”, Ind. Eng. Chem, 28, 988–994
[49]A. B. D. Cassie and S. Baxter 1944, “Wettability of Porous Surfaces”, Transactions of the Faraday Society, 40, 546-551.
[50]Zhang, L., Kuramoto, N., Azuma, Y., Kurokawa, A., & Fujii, K. 2017, “Thickness Measurement of Oxide and Carbonaceous Layers on a 28Si Sphere by XPS.”, IEEE Transactions on Instrumentation and Measurement, 66, 1297–1303.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top