跳到主要內容

臺灣博碩士論文加值系統

(44.222.64.76) 您好!臺灣時間:2024/06/14 06:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林國維
研究生(外文):LIN, GUO-WEI
論文名稱:高周波表面感應硬化與前熱處理對AISI 1045與AISI 5140鋼料之影響
論文名稱(外文):Effects of High Frequency Surface Induction Hardening and Pre-heat Treatments on AISI 1045 and AISI 5140 Steels
指導教授:李景恒
指導教授(外文):LEE, JING-HENG
口試委員:黃和悅張正君
口試委員(外文):HUANG, HER-YUEHCHANG, CHENG-CHUN
口試日期:2020-12-25
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:材料科學與工程系材料科學與綠色能源工程碩士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:109
語文別:中文
論文頁數:181
中文關鍵詞:滲碳高周波感應硬化線圈輸入功率線圈移動速度硬度分佈金相顯微組織X光繞射分析
外文關鍵詞:CarburizationHigh frequency induction hardeningCoil input powerCoil moving speedHardness distributionMetallographic microstructureX-ray diffraction analysis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:367
  • 評分評分:
  • 下載下載:53
  • 收藏至我的研究室書目清單書目收藏:0
本研究對AISI 1045與AISI 5140鋼料試棒個別先使用正常化、850/880℃調質與滲碳進行前熱處理,接著使用兩種線圈輸入功率(90與95kW)與三種線圈移動走速(20、25與30 mm/s),制定六種感應參數的組合,以此組合對各種試棒分別進行高周波感應硬化。接著對感應硬化後試樣進行硬度試驗、顯微組織觀察與X光繞射分析。
根據兩種鋼料試棒分別在850/880℃滲碳後直接淬火硬度試驗結果,AISI 1045碳鋼的滲碳硬化層深度(Case hardening depth, CHD) 分別為0.39與0.44mm,表層硬度分別為679.3與709.7HV;AISI 5140合金鋼的滲碳硬化層深度分別為0.44與0.54mm,表層硬度分別為720HV與750HV。由此可知,AISI 5140合金鋼滲碳的硬化效果較佳。比較850/880℃滲碳後直接淬火的試棒與經850/880℃滲碳-回火後採95kW-20mm/s參數組合進行感應硬化的試棒的硬度實驗結果得知: AISI 1045碳鋼感應硬化後的試棒表層硬度較直接淬火試棒分別提高108.8及114.3HV; AISI 5140合金鋼感應硬化試棒的表層硬度較直接淬火試棒分別提高約134.2及115.7HV。
對兩種鋼料的試棒進行不同前熱處理後,再以相同的感應參數做感應硬化。發現AISI 5140合金鋼的表層硬度值增加了30~40HV,有效硬化深度(Effective case depth, ECD) 增加了0.1~0.3mm。AISI 5140合金鋼試棒經不同前熱處理後,分別使用90kW-30mm/s與95kW-20mm/s參數組合進行感應硬化。與原材試棒經相同感應硬化處理的硬度試驗結果進行比較。發現滲碳-回火熱處理試棒以90kW-30mm/s與95kW-20mm/s參數組合進行感應硬化後,表層硬度分別提升165.1與127.8HV;經調質處理試棒分別提升80.5與25.6HV;經正常化處理試棒分別提升13.5與11.4HV。經滲碳-回火熱處理試棒的有效硬化深度分別提升0.38與0.44mm;經調質處理試棒分別提升0.40與0.42mm;經正常化處理試棒分別提升0.11與0.07mm。其中,線圈輸入功率越高且線圈移動走速越慢,表層硬度越硬且有效硬化深度越深。
比較同種鋼料經滲碳-回火後進行感應硬化的試棒與滲碳直接淬火試棒X光繞射結果,發現經感應硬化試棒的硬化層的(110)M繞射峰的FWHM較寬且強度較低。比較採相同前熱處理及感應硬化處理的AISI 1045與AISI 5140鋼料的試棒,發現AISI 5140合金鋼試棒的硬化層的(110)M繞射峰的FWHM較寬且強度較低。

In this study, the AISI 1045 and AISI 5140 steels test bars were first used for normalized, 850/880℃ thermal refining and carburized for pre-heat treatment, and then used two coil input powers (90 and 95kW) and three coil moving speeds (20, 25 and 30 mm/s), formulate parametric combinations of six induction parameters, and use these parametric combinations to perform high-frequency induction hardening on various test bars. Then carry out the hardness test, microstructure observation, and X-ray diffraction analysis on the sample after induction hardening.
According to the hardness test results of the two kinds of steel test bars after carburization at 850/880℃, the case hardening depth (CHD) of AISI 1045 carbon steel is 0.39 and 0.44mm, and the surface hardness is 679.3 and 709.7HV, respectively; the case hardening depth of AISI 5140 alloy steel is 0.44 and 0.54mm, and the surface hardness is 720 and 750HV, respectively. It can be seen that the hardening effect of AISI 5140 alloy steel carburizing is better. Compare the hardness test results of the test bar directly quenched after carburizing at 850/880℃ and the test bar undergoing induction hardening with a parametric combination of parameters of 95kW-20mm/s after carburizing-tempering at 850/880℃, the surface hardness of the AISI 1045 carbon steel induction hardened test bar is 108.8 and 114.3HV higher than that of the direct quenched test bar, respectively. The surface hardness of the AISI 5140 alloy steel induction hardened test bar is about 134.2 and 115.7HV higher than the direct quenched test bar, respectively.
After different pre-heat treatments are performed on the test bars of the two steels, induction hardening is performed with the same induction parameters. It is found that the surface hardness of AISI 5140 alloy steel has increased by 30~40HV, and the effective case depth (ECD) has increased by 0.1~0.3mm. AISI 5140 alloy steel test bars are subjected to different pre-heat treatments, and they are respectively subjected to induction hardening using parametric combinations of 90kW-30mm/s and 95kW-20mm/s. Compare with the hardness test results of the raw material test bar subjected to the same induction hardening treatment. It is found that after the carburizing-tempering heat treatment test bar is subjected to induction hardening with parametric combinations of 90kW-30mm/s and 95kW-20mm/s, the surface hardness increases by 165.1 and 127.8HV, respectively; thermal refining test bar was increased by 80.5 and 25.6HV, respectively, and the normalized test bar was increased by 13.5 and 11.4HV, respectively. The effective hardening depth of the carburizing-tempering test bar was increased by 0.38 and 0.44mm, respectively; the thermal refining test bar was increased by 0.40 and 0.42mm, respectively, and the normalized test bar was increased by 0.11 and 0.07mm, respectively. Among them, the higher the coil input power and the slower the coil movement speed, the harder the surface hardness and the deeper the effective hardening depth.
Comparing the X-ray diffraction patterns of the test bars subjected to induction hardening after carburizing-tempering and the test bar directly quenched by carburizing, it is found that the (110)M diffraction peak of the hardened layer of the induction hardened test bar has a wider FWHM and lower intensity. Comparing the AISI 1045 and AISI 5140 steels test bars with the same pre-heat treatment and induction hardening treatment, it is found that the (110)M diffraction peak of the hardened layer of AISI 5140 alloy steel test bars has a wider FWHM and lower intensity.

摘要...i
Abstract...iv
誌謝...vi
目錄...vii
表目錄...ix
圖目錄...x
第一章 緒論...1
1.1 前言...1
1.2 研究動機與目的...2
1.3 文獻回顧...4
第二章 理論基礎...7
2.1 感應加熱的工業應用...7
2.2 感應加熱原理...8
2.2.1 渦電流...9
2.2.2 集膚效應與標準透入深度...10
2.2.3 磁滯損耗(Hysteresis Loss)...13
2.2.4 渦流損耗(Eddy Current Loss)...14
2.3 感應硬化參數選擇...15
2.3.1 感應硬化的頻率選擇...16
2.3.2 感應加熱線圈對鋼料感應硬化影響...17
2.3.3 線圈輸入功率與線圈移動速度對鋼料感應硬化之影響...18
2.4 合金元素對鋼材感應硬化之影響...20
2.5 AISI 1045與AISI 5140鋼料成分與連續冷卻速率對顯微組織影響...22
2.6 高周波感應淬火對組織之影響...25
2.7 加熱速率對臨界溫度AC3之影響...27
2.8 前熱處理狀態對臨界溫度AC3之影響...28
2.9 硬化能...30
2.10 滲碳熱處理(Carburizing)...31
2.11 有效硬化深度測定...37
2.12 有效滲碳深度(case hardening depth, CHD)測定 38
2.13 晶粒度的評定...39
2.14 X光繞射分析(X ray diffraction, XRD)...41
第三章 實驗方法與步驟...43
3.1 實驗設備...43
3.1.1 加工、量測及分析等設備...45
3.2 實驗材料...50
3.3 實驗步驟與分析...51
第四章 結果與討論...58
4.1 感應加熱時試棒色溫的觀察 58
4.2 AISI 1045與AISI 5140鋼料高周波表面感應硬化前熱處理金相組織...60
4.3 AISI 1045與AISI 5140鋼料有效滲碳層深度判定...74
4.4 AISI 1045與AISI 5140鋼料調質與滲碳淬火溫度對晶粒度及硬度之影響...82
4.5 AISI 5140合金鋼原材與不同前熱處理狀態經六種感應參數組合後硬度分析...89
4.6 AISI 1045與AISI 5140鋼料原材與不同前熱處理狀態感應硬化後SEM&EDS與感應硬化效果比較...96
4.7 金相顯微組織分析...113
4.7.1 AISI 1045與AISI 5140鋼料原材經感應硬化後金相組織...113
4.7.2 AISI 1045與AISI 5140鋼料正常化熱處理後經感應硬化金相組織...114
4.7.3 AISI 1045與AISI 5140鋼料850℃與880℃調質熱處理經感應硬化後金相組織...115
4.7.4 AISI 1045與AISI 5140鋼料850℃與880℃滲碳熱處理經感應硬化後金相組織...116
4.7.5 AISI 1045與AISI 5140鋼料原材與不同前熱處理經95kW-20mm/s感應參數組合後SEM組織圖...117
4.7.6 AISI 1045與AISI 5140鋼料原材及不同前熱處理經兩種參數組合感應硬化後試棒表層SEM組織圖比較...119
4.7.7 AISI 1045與AISI 5140鋼料850℃與880℃滲碳直接淬火與經95kW-20mm/s參數組合感應硬化後試棒表層SEM組織圖比較...120
4.8 X光繞射分析...164
第五章 結論...170
參考文獻...173
Extended Abstract...177


[1] J.R. Davis, 2002, “Surface Hardening of Steels: Understanding the Basics”, ASM International, Cleveland, pp. 1~39.
[2] V. Rudnev, D. Loveless, R. Cook, M. Black, 2003, “Handbook of Induction Heating”, Marcel Dekker Inc., New York, pp. 58~66.
[3] B. Kosec, B. Karpe, M. Licen, G. kosec, 2010, “Inductive heating and quenching of planetary shafts”, Journal of Achievements in Materials and Manufacturing Engineering, Vol. 9, pp. 190~196.
[4] Y. Totik, R. Sadeler, H. Altun, M. Gavgali, 2003, “The effects of induction hardening on wear properties of AISI 4140 steel in dry sliding conditions”, Materials and Design, Vol.24, pp. 25~30.
[5] H. Kristoffersen, P. Vomacka, 2001, “Influence of process parameters for induction hardening on residual stresses”, Materials and Design, Vol.22, PP. 637~644.
[6] K. Gao, X. P. Qin, Z. Wang, S. X. Zhu, 2016, “Effect of spot continual induction hardening on the microstructure of steels: Comparison between AISI 1045 and 5140 steels”, Materials Science & Engineering A, Vol. 651, pp.535~547.
[7] T. Urita, K. Namiki, 1990, “Effect of alloy elements and pre-heat treatment on induction hardenability”, Denki-Seiko, Vol.61, No.1, pp.14~24.
[8] 趙俊平,2015,“推進感應淬火替代滲碳淬火的應用”,金屬加工(熱加工)-熱處理/鍛壓/鑄造專刊,第1期,頁4~6。
[9] K. T. Jones, M. R. Newsome and M. D. Carter, 2010, “Gas Carburizing vs. Contour Induction Hardening in Bevel Gears,” Gear Solutions, Vol.8, pp 38~54.
[10] S. Zinn, S. L. Semiatin, 1988, “Elements of induction heating: design control and applications”, ASM International, California, pp. 1~8.
[11] E. Rapoport, Y. Pleshivtseva, 2007, “Optimal control of induction heating processes”, CRC Press, London, pp. 2~5.
[12] 侯旭明,2010,“熱處理原理與工藝”,機械工業出版社,北京,頁164~183。
[13] F. Bay, V. Labbe, Y. Favennec, J. L. Chenot, 2003, “A numerical model for induction heating processes coupling electromagnetism and thermomechanics”, International Journal for Numerical Methods in Engineering, Vol.58, pp. 839~841.
[14] G. E. Totten, 2007, “Steel Heat Treatment Equipment and Process Design” in Steel Heat Treatment Handbook 2rd, CRC Press, London, pp. 304~308.
[15] Z. W. Zeng, P. C. Ding, J. Y. Li, etal., 2019, “Characteristics of Eddy Current Attenuation and Thickness Measurement of Metallic Plate”, Chinese Journal of Mechanical Engineering, Vol. 32, pp. 1~9.
[16] A. B. Nissan, K. Findley, 2014, “Microstructures and Mechanical Performance of Induction-Hardened Medium-Carbon Steels” in Comprehensive Materials Processing Vol.12 Thermal Engineering of Steel Alloy Systems, Elsevier Ltd, New York, pp. 581~604.
[17] F. W. Curtis, 1987, “Heat contribution from eddy currents and hysteresis losses below the Curie temperature as a function of frequency”, Lindsay Publications Inc., Illinois.
[18] 林信智、齊松濤、趙文龍,2015,“感應淬火的頻率選擇”,金屬熱處理, 第40卷,第3期,頁209~211。
[19] T. Bayerl, M. Duhovic, P. Mitschang, D. Bhattacharyya, 2013, “The heating of polymer composites by electromagnetic induction – A review”, Elsevier Ltd, New York, pp.27~40.
[20] N. L. Loh, L. W. Siew and Y. M. Loh, 2010, “IGBT Induction Hardening and Its Application in Singapore”, The Institution of Engineers Malaysia, Vol. 71, pp.41~48.
[21] A. K. Sinha, C. J. Wu, and G. Q. Liu, 2007,“Steel Nomenclature” in Steel Heat Treatment Metallurgy and Technologies of Steel Heat Treatment Handbook 2nd, CRC Press, London, pp.2~8.
[22] Y. Tanaka, F. Pahlevani, S. C. Moon, R. Dippenaar & V. Sahajwalla, 2019, “In situ characterization of MnS precipitation in high carbon steel”, Scientific reports, London, pp.1~12.
[23] B. Liscic, 2007, “Steel Heat Treatment” in Steel Heat Treatment Metallurgy and Technologies of Steel Heat Treatment Handbook 2nd, CRC Press, London, pp.546.
[24] H. M. Tensi, A. Stich, and G. E. Totten, 2007, “Quenching and Quenching Technology” in Steel Heat Treatment Metallurgy and Technologies of Steel Heat Treatment Handbook 2nd, CRC Press, London, pp.546.
[25] D. K. Matlock, 2014, “Metallurgy of Induction Hardening of Steel” in ASM Handbook Volume 4C Induction Heating and Heat Treatment Edited by ASM International Handbook Committee, Materials Park, OH: ASM International, pp.45~57.
[26] K. D. Clarke, 2008, “The Effect of Heating Rate and Microstructural Scale on Austenite Formation, Austenite Homogenization, and As-Quenched Microstructure in Three Induction Hardenable Steels,” Ph.D. thesis, Colorado School of Mines, Golden, Colorado, pp.149.
[27] H. J. Liu, H. P. Li, Z. C. Li and L. F. He, 2018, “Effects of heating and quenching processing parameters on phase transformation of 55CrMo Steel”, Journal of Materials Engineering and Performance, Vol.27, pp. 5254~5270.
[28] S. Zaefferer, J. Ohlert, W. Bleck, 2004, “A study of microstructure, transformation mechanisms and correlation between microstructure and mechanical properties of low alloyed TRIP steel”, Acta Materialia, Vol.52, pp. 2765~2778.
[29] M. X. Zhang, P.M. Kelly, 2002, “Accurate orientation relationship between ferrite and austenite in low carbon martensite and granular bainite”, Scripta Materialia, Vol.47, pp.749~755.
[30] U. Prisco, 2018, “Case microstructure in induction surface hardening of steels: an overview”, The International Journal of Advanced Manufacturing Technology, Vol.98, pp. 2619~2637.
[31] P. A. Hassell and N. V. Ross, 1991, “Introduction to Surface Hardening of Steels” in ASM Handbook Vol. 4 Heat Treating Edited by ASM International Handbook Committee, Materials Park, OH: ASM International, pp. 442~446.
[32] 中國機械工程學會熱處理學會編,2008,“熱處理手冊第四版第四 卷-熱處理質量控制和檢驗”,機械工業出版社,北京,頁759~763。
[33] 潘鄰,2004,“化學熱處理應用技術”,機械工業出版社,北京,頁20~23。
[34] J. Chipman, 1972, “Thermodynamics and phase diagram of the Fe-C system”, Metallurgical and Materials Transactions B, New York, pp. 55~64.
[35] JIS G0559, 2019 Steel-Determination of case depth after flame hardening or induction hardening, Japan.
[36] ISO 6507-1, 2018 Metallic materials - Vickers hardness test Part 1: Test method, USA.
[37] JIS G0557, 2019 Methods of measuring case depth hardened by carburizing treatment for steel, Japan.
[38] ASTM E 112-12, Standard Test Methods for Determining Average Grain Size.
[39] X. Liu, F. Zhong and J. X. Zhang, 1995, “Lattice-parameter variation with carbon content of martensite: I. X-ray-diffraction experimental study”, American Physical Society, Vol.52, pp.9970~9978.
[40] Navy Education & Training Center, 2013, “Navy Steelworker: Volume 1 – Navedtra 14250”, Lulu press, Morrisville, pp. 31.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top