跳到主要內容

臺灣博碩士論文加值系統

(3.231.230.177) 您好!臺灣時間:2021/08/04 11:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:余政哲
研究生(外文):YU, CHENG-ZHE
論文名稱:高濃度摻雜鈉對熔煉銅銦硒晶體成長之影響
論文名稱(外文):Effects of High Doping Sodium on the Growth of CuInSe2 Crystals by Melting Process
指導教授:楊立中楊立中引用關係
指導教授(外文):YANG, LI-CHUNG
口試委員:陳伯宜林堅楊
口試委員(外文):CHEN, BO-YILIN, JIAN-YANG
口試日期:2021-05-31
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:材料科學與工程系材料科學與綠色能源工程碩士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:67
中文關鍵詞:銅銦硒氟化鈉黃銅礦結構熔煉
外文關鍵詞:CuInSeSodium fluorideChalcopyriteMelt
相關次數:
  • 被引用被引用:0
  • 點閱點閱:10
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本實驗利用熔煉法來熔煉並研究CuInSe2晶體在太陽能吸收層之材料特性。將銅、銦、硒三種純元素調配成Cu-poor、Stoichiometric、Cu-rich成份,分別在三種成分中摻雜氟化鈉,以及一份銅、銦、硒三種純元素調配成Stoichiometric成份,共為四管。裝入石英管內並進行封管,接著利用高溫爐來進行熔煉,將熔煉產生出之CuInSe2 三元化合物進行分析。原始設計之原子百分比CIS為0.8、0.95、1.4,經熔煉後之原子百分比變成0.78、0.97、1.35,與原先設計之原子比相近。相比本實驗室先前實驗結果可看出,各種成份經由SEM可得出晶粒大小約100µm~400µm之間,與去年所熔煉之尺寸差異不大,但添加氟化鈉之晶體顯微結構與去年有相當大的差異。根據XRD分析結果,在(112)特徵峰下皆產生黃銅礦結構,並且比較CuInSe2 三元化合物在三種不同成分中添加氟化鈉,晶粒方位所產生之變化所析出之氟化鈉之顯微結構為針狀,可得知添加過多的氟化鈉導致晶粒析出。
In this experiment, the smelting method is used to investigate the characteristics of CuInSe2 crystals in solar cell absorber layer. First, the four pure elements of copper, indium, selenium, and sodium fluoride are blended into Cu-poor, Stoichiometric, and Cu-rich components, and a portion of the three pure elements of copper, indium, and selenium are blended into Stoichiometric ingredients.The total is four tubes. Then, it is smelted in a high-temperature furnace to produce and analyze CuInSe2 ternary compounds.
The atomic percentage CIS of the original design is 0.8, 0.95, 1.4. After smelting, the atomic percentage becomes 0.78, 0.97, 1.35, which is not much different from the atomic ratio of the original design. Compare with the previous experimental results of our laboratory, the SEM observation of various components the grain size grows between 100µm and 400µm, it is similar with last year in our laboratory but doping the sodium fluoride is much different in crystal of microstruture than before. According to XRD analysis, all of the sample have a chalcopyrite structure and the (112) characteristic peak , and compared the CuInSe2 ternary compound with sodium fluoride in three different components ,and the grain orientation of microstruture becomes much sharper , it can find out that doping too much sodium fluoride may cause grain precipitate.

摘要....i
Abstract........ii
誌謝....iii
目錄....iv
表目錄...vii
圖目錄...viii
第一章 簡介....1
1.1前言....1
1.2研究動機......2
第二章 文獻探討....3
2.1太陽能電池材料種類....3
2.1.1非晶矽(a-Si:H)薄膜太陽能電池........4
2.1.2非晶矽(a-Si)/微晶矽(μc-Si)堆疊薄膜太陽能電池........5
2.1.3碲化鎘(CdTe)薄膜太陽能電池 ....5
2.1.4染料敏化薄膜太陽能電池........6
2.1.5銅銦硒(CISe2)薄膜太陽能電池........6
2.1.6銅銦鎵硒(CIGSe2)薄膜太陽能電池....7
2.1.7銅鋅錫硫(CZTS) 和銅鋅錫硒(CZTSe2)太陽能電池....8
2.2太陽能電池工作原理....9
2.3 Ⅰ-Ⅲ-Ⅵ2與I2-II-IV-VI4薄膜太陽能電池結構....11
2.4銅銦硒(CuInSe2)/銅銦鎵硒(CuInGaSe2)主吸收層(Absorber)....16
2.5銅銦鎵硒吸收層製程技術....19
2.5.1蒸鍍法....20
2.5.2硒化法....21
2.5.3塗佈法....22
2.6 I-III-VI族化合物薄膜太陽電池之發展及現况....23
第三章 實驗流程........33
3.1實驗材料....33
3.1.1製備CuInSe2之化合物....33
3.2實驗流程....33
3.2.1石英管前處理........33
3.2.2 CuInSe2結晶製備........34
3.3製程設備........34
3.3.1高溫爐........34
3.4實驗分析設備........34
3.4.1 X光繞射儀(X-Ray Diffraction,XRD)....34
3.4.2掃描式電子顯微鏡(Scanning Electron Microscope, SEM)....36
3.4.3能量散佈光譜儀(Energy Dispersive Spectrometer, EDS)....37
3.4.4 感應耦合電漿質譜儀....37
(Inductively Coupled Plasma-MassSpectrometer; ICP-MS)....37
第四章 實驗結果與討論....44
4.1顯微結構分析....44
4.2銅銦硒成份分析....46
4.3結晶特性分析....47
第五章 結論....57
參考文獻 ....59


1.維基百科,自由的百科全書,可再生能源。https://reurl.cc/MZA9av
2.台灣電力公司,再生能源發電概況(民109年12月28日)。https://reurl.cc/qmgo7g
3.Solar Energy Engineering, Chapter 9 Photovoltaic Systems “9.1.2
Photovoltaic effect”,pp481, 2014
4.維基百科,自由的百科全書,太陽能電池。http://reurl.cc/4yaK2Y
5.冠晶光電股份有限公司,CIGS薄膜太陽能電池,CIGS技術原理,https://www.gcsol-
tech.com/index.php/tw/cigs-tw/cigs-tech-tw
6.Y. Hamakawa, Thin-Film Solar Cells, “Key Manufacturing Technology and
Device Design”, Springer-Verlag Berlin Heidelberg, Germany, pp. 107,
2004.
7.Y. Hamakawa, Thin-Film Solar Cells, “Low-Pressure Microwave PCVD
Method”, Springer-Verlag Berlin Heidelberg, Germany, pp. 124, 2004.
8.D. B. Mitzi, T. K. Todorov, Kathleen and B. Reuter, “High-Efficiency
Solar Cell with Earth-Abundant Liquid-Processed Absorber”, Adv.
Mater., 22, pp. 1-4, 25 May, 2010.
9.Energy Trend,碲化鎘薄膜電池的神助攻「硒」,科學家找到效率大幅提升關鍵(2019
年5月15日)https://reurl.cc/dVXVbM
10.李源弘,雷永泉,新能源材料,天津大學出版社.p213
11.Michael Grätzel, Brian O'Regan, “high-efficiency solar cell based
ondye-sensitized colloidal TiO2 films”, Nature , 353 (24), pp. 737 -
740, October,1991.
12.B. Xu , X. Li , Z. Qin , C. Long , D. Yang , J. Sun and L. Yi,
“Electronic and optical properties of CuGaS2: First-principles
calculations”, Physica B, 406, pp. 946-951, 22 December, 2011.
13.黃惠良、曾百亨,太陽電池:太陽能轉換成電能的最佳裝置-Solar Cells,Chapter
11,五南,台北市,2008。
14.Paifeng Luo,Penghan Yu,Ruzhong Zuo,Jiao Jin,Yuankui Ding,Junda
Song,Yutong Chen,” The preparation of CuInSe2 films by solvothermal
route and non-vacuum spin-coating process”, Physica B, Volume 405,
Issue 16,pp. 3294-3298,2010.
15.黃崇傑,“太陽電池技術簡介”,電機月刊,16卷,7期,頁108-115,7月,2006。
16.劉博文,半導體元件物理,Chapter 11,高立,台北,2006。
17.莊嘉琛,太陽能工程-太陽電池篇,Chapter 2,全華,台北,1997。
18.A. Rockett, et al.“Na incorporation in Mo and CuInSe2 from production
processes” Solar energy materials and solar cells, vol 59, page 255-
264, 1999.
19.D.Braunger, D.Hariskos, G.Biglger et al. “Influence of sodium on the
growth of polycrystalline Cu(in,Ga)Se2 thin films”,Thin Solid
Films,vol.361-362,pp.161-166, 2000.
20.J. Holz, F. Karg and H. von Philipsborn,“Proceedings of the 12th
European Photovoltaic Solar Energy Conference”Ampsterdam, pp. 1592,
1994.
21.謝秀琴、戴賢輝、謝世豪,“TFT-LCD 無鹼玻璃基板材料介紹”,化工所產資組,13卷,
7期
22.R. Chakrabarti, A. B. Maity, R. Pal et al.“ Estimation of Stress.
23.In Polycrystalline CuInSe2 Films Deposited on Mo-Coated Glass
Substrates” Phys. Stat. Sol., (a) ,vol.160, pp. 67, 1997.
24.J.R. Tuttle,M. Contreras, M. H.Bode et al. “ Structure chemistry,and
growth mechanisms of photovoltaic quality thin-film Cu(In,Ga)Se2 grown
from a mixed-phase precursor ”, J.Appl.Phys.,vol.77,pp.153-161, 1995.
25.C. H. Hung, S. S. Li Rieth, A. Halani, “ A Comparative Study of
Chemical-bath-deposited CdS,(Cd,Zn)S, ZnS,and In(OH),S,Buffer Layer
for CIS-based Solar Cells ” IEEE, pp. 696-699,2000.
26.J. Kessler, K. O. Velthaus, M. Ruckh et al.“Proceedings of 6th
Photovoltaic Science and Engineering Conference” pp.1005-1010, New
Delhi, India, 1992.
27.K. Ramanathan, R. N. Bhattacharya, J. Granata et al. “Advances In The
CIS Research At NREL” IEEE, pp.319-322,1997.
28.W. Eisele, A. Ennaoul, P. Schubert-Bischoff, “New cadmium-free buffer
layers as heterojunction partners on Cu(In,Ga)(S,Se)2 thin film solar
cells ” IEEE, pp.692-695, 2000.
29.G. Gordillo, G. Cediel, L. M. Caicedo et al.“Study of Optical,
Structural And Morphological Properties on Cd-Free Buffer Materials”
IEEE, pp.614-617, 2001.
30.K. Yoshino, T. Hata, T. Kakeno, et al., Phys. Stat. Sol. (c) 0, No. 2,
pp. 626-630, 2003.
31.D. Hamemamm, 2000, Crit, Rev. Solid State Mater. Sci., 14, p. 377,
1988.Eighth IEEE Photovoltaic Specialists Conference, pp. 440–445.
32.D. Schmid, M. Ruckh, F. Crunwald and J. W. Schock, J. Appl. Phys. ,
1993, 73, p.2902.
33..B. J. Stanbery, “Copper indium selenides and related materials for
photovoltaic devices”, Critical Reviews in Solid State and Materials
Sciences , 27, pp.73-117,2002.
34.R. W. Birkmire, L.C.Dinetta, P. G. Lasswell, J. D. Meakin and J. E.
Phillips,“Solar Cells”, 16, p.419, 1986.S. Zweigart, D. Schmid, J.
Kessler, H. Dittrich and H. W. Schock, “Studies of the growth-
mechanism of polycrystalline CuInSe2 thinfilms prepared by a
sequential progress”, J. Cryst. Growth, 146, pp. 233-23,1995.
35.B. M. Basol, V. K. Kapur and R. C. Kullberg,“Solar Cells”, 27,
p.299,1989.
36.K. W. Mitchell, G. A. Pollack and A. V. Mason, “Proceedings of the
20th Institute of Electrical and Electronics Engineers Photovoltaic
Specialists Conference”, (Institute of Electrical and Electronics
Engineers, New York , p.1578,1988.
37.L.-C. Yang and A. Rocket, “Cu-Mo Contact to CuInSe2 for Improved
Adhesion in Photovotaic Devices,” J. Appl. Phys., 75(2), P.1185,1994.
38.R. J. Matson M.A. Contreras, J.R. Tuttle, A.B. Swartzlander, P.A.
Parilla, R. Noufi, Mat.,“Effects of the Concentration of Ga on
Junction Formation in Thin-film ZnO/CdS/CuInXGal-XSe2 /Mo Photovoltaic
Devices”, Mater. Res. Soc. Symp. Proc., 426, 183,1996.
39.A. Luque and S. Hegedus, Handbook of photovoltaic science and
engineering, John Wiley & Sons Ltd,2003.
40.Y. Hamakawa, Thin-Film Solar Cells:Next Generation Photovoltaics and
Its Applications, Springer,2004.
41.Kegao Liua, Hong Liub, JiyangWangb, Lei Shia, 2009, “Synthesis and
characterization of Cu2Se prepared y hydrothermal co-reduction”,
Journal of Alloys and Compounds, May.R. W. Birkmire, L.C.Dinetta, P.
G. Lasswell, J. D. Meakin and J. E. Phillips, 1986, “Solar Cells”, 16,
p.419.
42.Nakada, T., and Mizutani, M., Proc.,28th IEEE PVSC, Anchorage, 15-22,
pp. 529,2000.
43.W. J. Jeong, S. K. Kim, G. C. Park, “Preparation and characteristic of
ZnO thin film with high and low resistivity for an application of
solar cell.”, Thin Solid Films. 506-507, p180-183,2006.
44.U. C. Bohnke and G. Kuhn, “Phase Relations in the Ternary System Cu-
InSe”, Journal of Materials Science, 22(5), pp. 1635-1641,1987.
45.H. W. Schock et al., “High Efficiency Chalcopyrite Based Thin Film
Solar Cells-Results of the Eurocis-Colaboration”, Eleventh E.C. PVSEC,
pp. 116-119, Montreux, October,1992.

46.B. M. Baso, V. K. Kapur and A. Halani,“Advances in High Efficiency
CuInSe2 Solar Cells Prepared by the Selenization Technique”, Twenty
Second IEEE PVSC, pp. 893-897, Las Vegas, October,1991.
47.半 導 體 科 技 http://ssttpro.acesuppliers.com/meg/meg_1_07917
90532005117234004316_4140.html.
48..M. A. Contreras, J. Tuttle, A. Gabor, A. Tennant, K. Ramanathan, S.
Asher, A. Franz, J. Keane, L. Wang, J. Scofield, and R. Noufi, Proc.,
1994 “Photovolt. Energy Conv.”, IEEE, 68, Piscataway.
49.Mark T. Winkler, Wei Wang, Oki Gunawan, Harold J. Hovel, Teodor K.
Todorov and David B. Mitzi*, “Optical designs that improve the
efficiency of Cu2ZnSn(S,Se)4 solar cells”, Energy and Enviromental
Science, DOI: 10.1039/c3ee42541j. (2013)
50.“User’s Manual”, Ametek Process & Analytical Instruments,2003.
51.R. S. Houk, J. J. Thompson, Mass Spectrometry Rev. 7, 425, 1988.
52.李珠,“感應耦合電漿質譜儀技術及其在材料分析上的應用”, 工業材料雜誌,3卷,
181期,頁87-93,1月,2002。
53.E. Clementi and D. L. Raimondi. Atomic Screening Constants from SCF
Functions. Journal of Chemical Physics. 1963, 38, 2686.

電子全文 電子全文(網際網路公開日期:20260617)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top