跳到主要內容

臺灣博碩士論文加值系統

(35.172.136.29) 您好!臺灣時間:2021/07/25 00:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張維德
研究生(外文):CHANG, WEI-DA
論文名稱:添加氟化鈉對熔煉三元I-III-VI族化合物銅鎵硒結晶之影響
論文名稱(外文):The effects of sodium fluoride to ternary I-III-VI CuGaSe2 compound crystallization by melting processes
指導教授:楊立中楊立中引用關係
指導教授(外文):YANG, LI-CHUNG
口試委員:陳伯宜林堅楊
口試委員(外文):CHEN, BO-YILIN, JIAN-YANG
口試日期:2021-05-31
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:材料科學與工程系材料科學與綠色能源工程碩士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:51
中文關鍵詞:銅鎵硒I-III-VI族結構熔煉晶粒成長氟化鈉的影響
外文關鍵詞:CuGaSe2I-III-VI group structuresmeltinggrain growthEffects of NaF
相關次數:
  • 被引用被引用:0
  • 點閱點閱:19
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
此實驗是透過熔煉法添加鈉鹽製成I-III-VI族CuGaSe2,透過分析了解氟化鈉對I-III-VI族CuGaSe2有何影響。將銅、鎵、硒三種純元素添加氟化鈉調配成含氟化鈉的Cu-poor、Cu-rich 、Stoichiometric和未添加氟化鈉的Stoichiometric,四種成分裝入石英管中後進行封管,接著利用高溫爐進行熔煉,在透過爐冷讓晶粒成長,最後製成I-III-VI族三元CuGaSe2化合物,熔煉出來的CuGaSe2和一開始成分設計的原子百分比差異不大,透過SEM分析看出所有樣品都以三角形結晶組織和堆疊的樣貌呈現,其晶粒尺寸落在450µm~100µm之間。利用EDS分析樣品的成分含量與原先成分設計是否相符。透過XRD分析下,所有樣品在(112)的特徵峰皆有產生I-III-VI族三元CuGaSe2化合物,並且比較未添加氟化鈉的Stoichiometric和添加氟化鈉的Stoichiometric的2θ角度和(112)特徵峰的半高寬可發現,未添加氟化鈉Stoichiometric在(112)特徵峰的半高寬較寬而2θ的角度較小,由此可知有添加氟化鈉的樣品比較下來,其晶粒成長較小;而Cu-rich與其他樣品差別在於除了(112)特徵峰以外還有(312)優生方位和晶粒形狀較為圓潤。
This experiment is penetrates the smelting law increase sodium salt to make I-III-VI race CuGaSe2, the penetration analysis understanding sodium fluoride has what influence to I-III-VI race CuGaSe2.Copper, the gallium, the selenium three kind of pure element increase sodium fluoride mixes including sodium fluoride Cu-poor, Cu-rich, Stoichiometric and has not increased the sodium fluoride Stoichiometric, after four ingredients load in the quartz tube to carry on the tube sealing, then carries on the smelting using the tower electric muffle furnace, in penetrates the stove to let the crystal grain grow coldly, finally makes I-III-VI the race three Yuan CuGaSe2 compound, smelts CuGaSe2 and the ingredient design atomic percentage difference is not from the very beginning big, penetrates the SEM analysis to see all samples all the appearance which organizes by the triangle crystallization and piles up one on top of another to present, its crystal grain size falls between 450µm~100µm.
Using the EDS analysis sample ingredient content and the original ingredient design whether tallies. Penetrates under the XRD analysis, all samples all have in (112) characteristic peak produce I-III-VI the race three Yuan CuGaSe2 compound, and the comparison has not increased the sodium fluoride Stoichiometric and increase sodium fluoride Stoichiometric 2θ the angle and (112) characteristic peak half high width is detectable, but has not increased sodium fluoride Stoichiometric in (112) characteristic peak half Gao Kuanjiao widely 2θ the angle is small, thus it may be known has the increase sodium fluoride sample to compare, its crystal grain grows slightly; But Cu-rich lies in with other sample difference besides (112) characteristic peak also has (312) eugenics position and the crystal grain shape is clear.

摘要.........................i
Abstract....................ii
誌謝........................iii
目錄.........................iv
表目錄......................vii
圖目錄......................viii
第一章 簡介....................1
1.1 前言.......................1
1.2 太陽能電池的分類....................2
1.2.1 矽晶半導體太陽能電池....................2
1.2.2 化合物薄膜型太陽能電池....................3
1.2.3 有機半導體型太陽能電池....................4
1.2.4 鈣鈦礦型太陽能電池....................5
1.3 研究動機....................5
第二章 文獻探討....................9
2.1 太陽能電池工作原理....................9
2.2 銅銦鎵硒吸收層製程技術....................12
2.2.1 蒸鍍法....................12
2.2.2 硒化法....................14
2.2.3 塗佈法....................15
2.3 銅銦硒(CuInSe) / 銅銦鎵硒(CuInGaSe)/(銅鎵硒)CuGaSe主吸收層(Absorber)....................16
第三章 實驗流程與分析....................22
3.1 實驗方法與步驟....................22
3.1.1 石英管前處理....................22
3.1.2 成份設計....................23
3.2 實驗設備....................23
3.2.1 箱型式熔煉加熱爐原理....................23
3.3 實驗分析設備....................23
3.3.1 掃描式電子顯微鏡....................23
3.3.2 能量光譜儀....................25
3.3.3 X光繞射儀....................25
3.3.4 感應耦合電漿質....................27
第四章 結果與討論....................35
4.1 CuGaSe2成份分析....................35
4.2 CuGaSe2顯微結構分析....................36
4.3 CuGaSe2結晶特性分析....................37
第五章 結論....................45
參考文獻....................46
Extended Abstract....................48
Abstract....................48
Chapter 1. Introduction....................48
Chapter 2. Experimental....................49
Chapter 3. Results & Discussion....................50
Reference....................51




1.J. Liu, G. Cao, Z. Yang, D. Wang, D. Dubois, X. Zhou, G. L. Graff, L. R. Pederson, and J.-G. Zhang, August, “Oriented Nanostructures for Energy Conversion and Storage.”, ChemSusChem, vol. 1, pp. 676-697 , 2008.
2.Michael Grätzel, Brian O'Regan, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films.”, Nature, 353 (24), 1991, October.
3.John Wiley, “Handbook of Photovoltaic Science and Engineering.”, pp. 649-650 pp. 737-740, , Sons, Ltd, April, 2003.
4.Della, “The DSSC efficiency of dye-sensitized solar cells achieves a new breakthrough of 15%.”, 2013.
5.M.A. Green, A. Ho-Baillie, H.J. Snaith, “The emergence of perovskite solar cells” , Nat. Photonics, pp. 506-514 , August, 2014.
6.Golden, “National Renewable Energy Laboratory.”, CO– United States Department of Energy, http://commons.wikimedia.org/wiki/File:Best_Research-Cell_Efficiencies.png, NREL, December, 2020.
7.Oxford, Elsevier Advanced Technology, T. Markvart and L. Castaner, “Solar Cells: Materials, Manufacture and Operation”, 2005.
8.劉博文,半導體元件物理,Chapter 11,高立,台北市,2006。
9.莊嘉琛,太陽能工程-太陽電池篇,Chapter 2,全華,台北市, 1997。
10.A. Luque and S. Hegedus, “Handbook of photovoltaic science and engineering”, 2003.
11.Springer Series in Photonics, Hamakawa, “Thin-Film Solar Cells: Next Generation Photovoltaics and Its Applications”, 2004.
12.Kegao Liu, Hong Liu, Jiyang Wang, Lei Shi, “Synthesis and characterization of Cu2Se prepared by hydrothermal co-reduction.” pp.674-676, 2009, May.R. W. Birkmire, L.C.Dinetta, P. G. Lasswell, J. D. Meakin and J. E. Phillips, “Solar Cells”,《Journal of Alloys and Compounds》, pp.419, 1986.
13.Nakada, T. Mizutani, M. Proc, Anchorage, “IEEE PVSC.”, 15-22, pp. 529, 2000.
14.W. J. Jeong, S. K. Kim, G. C. Park, “Preparation and characteristic of ZnO thin film with high and low resistivity for an application of solar cell.”, Thin Solid Films. 506-507, pp.180-183, 2006.
15.U. C. Bohnke and G. Kuhn, “Phase Relations in the Ternary System Cu-In-Se.”, Journal of Materials Science, 22(5), pp.1635-1641, 1987.
16.H. W. Schock, “High Efficiency Chalcopyrite Based Thin Film Solar Cells-Results of the Eurocis-Colaboration.”, Eleventh E.C. PVSEC, pp.116-119, et al, October, 1992.
17.B. M. Baso, V. K. Kapur and A. Halani, “Advances in High Efficiency CuInSe2 Solar Cells Prepared by the Selenization Technique.”, Twenty Second IEEE PVSC, pp.893-897, October, 1991.
18.半導體科技,http://ssttpro.acesuppliers.com/meg/meg_1_07917 90532005117234004316_4140.html.
19.M. A. Contreras, J. Tuttle, A. Gabor, A. Tennant, K. Ramanathan, S. Asher, A. Franz, J. Keane, L. Wang, J. Scofield, and R. Noufi, Proc., Piscataway, “Photovolt. Energy Conv.”, IEEE, p68, 1994.
20.D. Hamemamm, “Solid State Mater.” Sci., 14, Crit, Rev. pp.377, 2000 “Eighth IEEE Photovoltaic Specialists Conference.” pp. 440–445, 1988.
21.D. Schmid, M. Ruckh, F. Crunwald and J. W. Schock, J. Appl, “Phys.”, 73, p.2902, 1993.
22.B. J. Stanbery, “Copper indium selenides and related materials for photovoltaic devices.”, Critical Reviews in Solid State and Materials Sciences, 27, pp.73-117, 2002.
23.R. W. Birkmire, L.C.Dinetta, P. G. Lasswell, J. D. Meakin and J. E. Phillips, “Solar Cells.”, 16, p.419, 1995,
24.S. Zweigart, D. Schmid, J. Kessler, H. Dittrich and H. W. Schock , J. Cryst. Growth, “Studies of the growth-mechanism of polycrystalline CuInSe2 thin-films prepared by a sequential progress.”p.146, pp.233-238 , 1986.
25.B. M. Basol, V. K. Kapur and R. C. Kullberg, “Solar Cells.”, 27, p.299, 1989.
26.K. W. Mitchell, G. A. Pollack and A. V. Mason, “Proceedings of the 20th Institute of Electrical and Electronics Engineers Photovoltaic Specialists Conference.”, Institute of Electrical and Electronics Engineers, New York, p.1578, 1988.
27.L.-C. Yang and A. Rocket, “Cu-Mo Contact to CuInSe2 for Improved Adhesion in Photovotaic Devices.”, J. Appl. Phys., 75(2), p.1185 , 1994.
28.R. J. Matson M.A. Contreras, J.R. Tuttle, A.B. Swartzlander, P.A. Parilla, R. Noufi, “Effects of the Concentration of Ga on Junction Formation in Thin-film ZnO/CdS/CuInXGal-XSe2 /Mo Photovoltaic Devices.”, Mater. Res. Soc. Symp. Proc., 426, 183 , Mat., 1996.
29.張皓哲,CuGaSe2/Si 異質磊晶之界面結構設計及太陽電池元件模擬,全華,台北市,2017。
30.陳力俊等編著,材料電子顯微鏡學,儀科中心出版,Chapter 11,新竹, 1990。
31.汪建民等著,材料分析,中國材料科學學會,pp.121-125 & pp.169-173,2001,4月。
32.Ametek Process & Analytical Instruments, “User’s Manual.”, 2003.
33.林麗娟,“X光繞射原理及其應用”,工業材料雜誌,86期,1994,2月。
34.B. D. Cullity and S. R. Stock, “Elements of X-ray Diffraction (3rd ed) ,Prentice Hall.”, New Jersey, p.170, 2001.
35.李珠,感應耦合電漿質譜儀技術及其在材料分析上的應用,工業材料雜誌,181期,2002,1月。
36.Blackie, Glasgow , K. E. Jarvis, A. L. Gray and R. S. Houk, “Handbook of Inductively Coupled Plasma Mass Spectrometry", 1992.
37.L.-C. Yang, G. S. Chen, and A. Rockett, “Surface polarities of sputtered epitaxial CuInSe2 and Cu1In3Se5 thin films grown on GaAs (001) substrates.’’, May, 2005.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top