跳到主要內容

臺灣博碩士論文加值系統

(44.201.92.114) 您好!臺灣時間:2023/03/31 12:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:良妙伶
研究生(外文):LUONG DIEU LINH
論文名稱:台灣與香港股票市場之間動態關係研究
論文名稱(外文):Time-varying Co-movement between Hong Kong and Taiwan Market
指導教授:王若愚王若愚引用關係
指導教授(外文):WANG, JO-YU
口試委員:王若愚賴雅雯吳文臨
口試委員(外文):WANG, JO-YULAI, YA-WENWU, WEN-LIN
口試日期:2021-06-22
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:財務金融系碩士班
學門:商業及管理學門
學類:財務金融學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:英文
論文頁數:54
中文關鍵詞:時變聯動香港市場台灣市場DCC-GARCH 模型
外文關鍵詞:Time-varying co-movementHong Kong marketTaiwan marketDCC-GARCH model
相關次數:
  • 被引用被引用:0
  • 點閱點閱:66
  • 評分評分:
  • 下載下載:10
  • 收藏至我的研究室書目清單書目收藏:0
這項研究的目的是研究香港和台灣股市之間隨時間變化的聯動。 本研究使用恆生指數,恆生指數期貨,台灣加權股票指數和台灣期貨指數日資料進行探討。 研究中動態條件相關GARCH模型用於檢測各種指數之間的關係。 結果表明:(1)當前的收益波動率可以用過去的波動率來解釋,這兩個指標似乎都隨著時間的推移而持續; (2)香港和台灣市場存在隨時間變化而變化的動態條件相關性。 近年來,估計的條件相關性有所增加,顯示了台灣市場和香港市場之間的緊密聯繫。
The purpose of this study is to examine the time-varying co-movement between Hong Kong and Taiwan stock markets. The Hang Seng index, The Hang Seng index futures, Taiwan Capitalization Weighted Stock Index and Taiwan futures exchange are used in this research. Dynamic Conditional Correlation GARCH model is utilized to check the relationship. The result shows that (1) current volatility of returns can be explained by past volatility that appears to continue over time for both four indices; (2) a dynamic conditional correlation exists for the Hong Kong and Taiwan market to change depending on the time change. The estimated conditional correlations have increased in recent years, showing strong linkages between the Taiwan market and the Hong Kong market.
Abstract......i
摘要......ii
Acknowledgments......iii
Table of Contents......iv
List of Tables......vi
List of Figures......vii
Chapter 1. Introduction......1
1.1. Motivation......1
1.2. Objective and structure of the study......2
Chapter 2. Literature Review......3
2.1. Volatility Spillover Between Spot and Futures index......3
2.2. Volatility spillover between international stock markets......5
2.3. Literature review on DCC-GARCH model and the contagion effect......7
Chapter 3. Data and Methodology......10
3.1 Description of the Intraday Dataset......10
3.2 Methodology......16
3.2.1. Dynamic Conditional Correlation GARCH model......16
3.2.2. Contagion effect test with DCC-GARCH coefficient......22
Chapter 4. Empirical Results......24
4.1 Unit Root Test......24
4.2 Correlations Matrix......25
4.3 DCC-GARCH Results......25
4.4 The contagion effect test with DCC-GARCH coefficient......35
4.5 Implications of the results......39
Chapter 5. Conclusion......42
References......44
Extented Abstract......50
1.Balcerzak, A. P. (2009). Limitations of the national economic policy in the face of globalization process. Olsztyn Economic Journal, 4(2), 279-290.
2.Balcerzak, A. P. (2009). Monetary policy under conditions of NAIRU ‘flattening’. Olsztyn Economic Journal, 4(1), 95-105.
3.French, K. R., & Roll, R. (1986). Stock return variances: The arrival of information and the reaction of traders. Journal of financial economics, 17(1), 5-26.
4.Tse, Y. (1999). Price discovery and volatility spillovers in the DJIA index and futures markets. Journal of Futures markets, 19(8), 911-930.
5.Eun, C. S., & Shim, S. (1989). International transmission of stock market movements. Journal of financial and quantitative Analysis, 241-256.
6.Sim, A. B., & Zurbreugg, R. (1999). Intertemporal volatility and price interactions between Australian and Japanese spot and futures stock index markets. Journal of Futures Markets, 19(5), 523-540.
7.Al Rahahleh, N., & Bhatti, M. I. (2017). Co-movement measure of information transmission on international equity markets. Physica A: Statistical Mechanics and its Applications, 470, 119-131.
8.Groenewold, N., Tang, S. H. K., & Yanrui, W. U. (2004). The dynamic interrelationships between the greater China share markets. China Economic Review, 15(1), 45-62.
9.Huang, B. N., Yang, C. W., & Hu, J. W. S. (2000). Causality and cointegration of stock markets among the United States, Japan and the South China Growth Triangle. International Review of Financial Analysis, 9(3), 281-297.
10.Fama, E. F. (2021). Efficient capital markets a review of theory and empirical work. The Fama Portfolio, 76-121.
11.Ross, S. A. (1989). Information and volatility: The no‐arbitrage martingale approach to timing and resolution irrelevancy. The Journal of Finance, 44(1), 1-17.
12.Baele, L. (2005). Volatility spillover effects in European equity markets. Journal of Financial and Quantitative Analysis, 373-401.
13.Kim, S., In, F., & Viney, C. (2001). Modelling linkages between Australian financial futures markets. Australian Journal of Management, 26(1), 19-34.
14.Nazlioglu, S., Erdem, C., & Soytas, U. (2013). Volatility spillover between oil and agricultural commodity markets. Energy Economics, 36, 658-665.
15.Mishra, A. K., Swain, N., & Malhotra, D. K. (2007). Volatility Spillover between Stock and Foreign Exchange Markets: Indian Evidence. International journal of business, 12(3).
16.Stoll, H. R., & Whaley, R. E. (1990). The dynamics of stock index and stock index futures returns. Journal of Financial and Quantitative analysis, 441-468.
17.Chan, K., Chan, K. C., & Karolyi, G. A. (1991). Intraday volatility in the stock index and stock index futures markets. The Review of Financial Studies, 4(4), 657-684.
18.Frijns, B., Tourani‐Rad, A., & Webb, R. I. (2016). On the intraday relation between the VIX and its futures. Journal of Futures Markets, 36(9), 870-886.
19.Zhou, Z., Dong, H., & Wang, S. (2014). Intraday volatility spillovers between index futures and spot market: Evidence from China. Procedia Computer Science, 31, 721-730.
20.Lin, C. C., Chen, S. Y., Hwang, D. Y., & Lin, C. F. (2002). Does index futures dominate index spot? Evidence from Taiwan market. Review of Pacific Basin Financial Markets and Policies, 5(02), 255-275.
21.So, R. W., & Tse, Y. (2004). Price discovery in the Hang Seng index markets: index, futures, and the tracker fund. Journal of Futures Markets: Futures, Options, and Other Derivative Products, 24(9), 887-907.
22.Hamao, Y., Masulis, R. W., & Ng, V. (1990). Correlations in price changes and volatility across international stock markets. The review of financial studies, 3(2), 281-307.
23.Fratzscher, M. (2002). Financial market integration in Europe: on the effects of EMU on stock markets. International Journal of Finance & Economics, 7(3), 165-193.
24.Kao, E. H., Ho, T. W., & Fung, H. G. (2015). Price linkage between the US and Japanese futures across different time zones: An analysis of the minute-by-minute data. Journal of International Financial Markets, Institutions and Money, 34, 321-336.
25.Susmel, R., & Engle, R. F. (1994). Hourly volatility spillovers between international equity markets. Journal of international Money and Finance, 13(1), 3-25.
26.Chou, R. Y., Lin, J. L., & Wu, C. S. (1999). Modeling the Taiwan stock market and international linkages. Pacific Economic Review, 4(3), 305-320.
27.Chan, L., Lien, D., & Weng, W. (2008). Financial interdependence between Hong Kong and the US: A band spectrum approach. International Review of Economics & Finance, 17(4), 507-516.
28.Shen, Y. (2018). International risk transmission of stock market movements. Economic Modelling, 69, 220-236.
29.Vo, X. V., & Ellis, C. (2018). International financial integration: Stock return linkages and volatility transmission between Vietnam and advanced countries. Emerging Markets Review, 36, 19-27.
30.Baele, L. (2005). Volatility spillover effects in European equity markets. Journal of Financial and Quantitative Analysis, 373-401.
31.Worthington, A. C., Katsuura, M., & Higgs, H. (2003). Price linkages in Asian equity markets: Evidence bordering the Asian economic, currency and financial crises. Asia-Pacific Financial Markets, 10(1), 29-44.
32.Zinecker, M., Balcerzak, A. P., Faldzinski, M., Pietrzak, M. B., & Meluzin, T. (2016). Application of DCC-GARCH model for analysis of interrelations among capital markets of Poland, Czech Republic and Germany (No. 4/2016). Institute of Economic Research Working Papers.
33.Égert, B., & Kočenda, E. (2007). Interdependence between Eastern and Western European stock markets: Evidence from intraday data. Economic Systems, 31(2), 184-203.
34.Peng, A. S., Deng, H., & He, C. (2010). Modeling the dynamic conditional correlation between hong kong and tokyo stock markets with multivariate GARCH models (Doctoral dissertation, PhD Thesis). Dalarna County, Sweden: Dalarna University).
35.Cho, J. H., & Parhizgari, A. M. (2009). East Asian financial contagion under DCC-GARCH. International Journal of Banking and Finance, 6(1), 17-30.
36.Celık, S. (2012). The more contagion effect on emerging markets: The evidence of DCC-GARCH model. Economic Modelling, 29(5), 1946-1959.
37.Bonga-Bonga, L. (2018). Uncovering equity market contagion among BRICS countries: an application of the multivariate GARCH model. The Quarterly Review of Economics and Finance, 67, 36-44.
38.Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica: Journal of the econometric society, 987-1007.
39.Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of econometrics, 31(3), 307-327.
40.Orskaug, E. (2009). Multivariate dcc-garch model:-with various error distributions (Master's thesis, Institutt for matematiske fag).
41.Nelson, D. B. (1991). Conditional heteroskedasticity in asset returns: A new approach. Econometrica: Journal of the Econometric Society, 347-370.
42.Zakoian, J. M. (1994). Threshold heteroskedastic models. Journal of Economic Dynamics and control, 18(5), 931-955.
43.Baba, Y., Engle, R. F., Kraft, D. F., & Kroner, K. F. (1990). Multivariate simultaneous generalized ARCH. Manuscript, University of California, San Diego, Department of Economics.
44.Bollerslev, T., Engle, R. F., & Wooldridge, J. M. (1988). A capital asset pricing model with time-varying covariances. Journal of political Economy, 96(1), 116-131.
45.Bollerslev, T. (1990). Modelling the coherence in short-run nominal exchange rates: a multivariate generalized ARCH model. The review of economics and statistics, 498-505.
46.Engle, R. F., & Sheppard, K. (2001). Theoretical and empirical properties of dynamic conditional correlation multivariate GARCH (No. w8554). National Bureau of Economic Research.
47.Belasri, Y., & Ellaia, R. (2017). Estimation of Volatility and Correlation with Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models: An Application to Moroccan Stock Markets. International Journal of Economics and Financial Issues, 7(2), 384.
48.Minović, J. Z. (2009). Modeling Multivariate Volatility Processes: Theory and Evidence. Theoretical & Applied Economics, 16(5).
49.Chiang, T. C., Jeon, B. N., & Li, H. (2007). Dynamic correlation analysis of financial contagion: Evidence from Asian markets. Journal of International Money and finance, 26(7), 1206-1228.
50.Celık, S. (2012). The more contagion effect on emerging markets: The evidence of DCC-GARCH model. Economic Modelling, 29(5), 1946-1959.
51.Cho, J. H., & Parhizgari, A. M. (2009). East Asian financial contagion under DCC-GARCH. International Journal of Banking and Finance, 6(1), 17-30.
52.Bonga-Bonga, L. (2018). Uncovering equity market contagion among BRICS countries: an application of the multivariate GARCH model. The Quarterly Review of Economics and Finance, 67, 36-44.
53.Akkoc, U., & Civcir, I. (2019). Dynamic linkages between strategic commodities and stock market in Turkey: Evidence from SVAR-DCC-GARCH model. Resources Policy, 62, 231-239.
54.Murekachiro, D. (2016). Time series volatility forecasting of the Zimbabwean Stock Exchange. International Journal of Business and Management, 4(3), 41-52.
55.Bonga, W. G. (2019). Stock Market Volatility Analysis using GARCH Family Models: Evidence from Zimbabwe Stock Exchange. MPRA Paper, (94201).
56.Huang, T. L., & Kuo, H. J. (2015). An empirical analysis of information transmission mechanism and the trilateral relationship among the Mainland China, Hong Kong, and Taiwan stock markets. Asia Pacific Management Review, 20(2), 65-78.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top