跳到主要內容

臺灣博碩士論文加值系統

(44.221.66.130) 您好!臺灣時間:2024/06/20 23:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳俊豪
研究生(外文):CHEN, JYUN-HAO
論文名稱:應用於光伏儲能直流電網系統之交錯式升壓整合雙向CLLLC諧振轉換器研製
論文名稱(外文):Implementation of an Interleaved Boost-Integrated Bidirectional CLLLC Resonant Converter for DC Grid with Photovoltaic and Energy Storage System
指導教授:陳政裕陳政裕引用關係
指導教授(外文):CHEN, JENG-YUE
口試委員:邱國珍陳一通莊賦祥
口試委員(外文):CHIOU, GWO-JENCHEN, YIE-TONEJUANG, FUH-SHYANG
口試日期:2021-07-23
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:電機工程系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:127
中文關鍵詞:交錯式Boost雙向諧振轉換器電流漣波寬輸入電壓範圍零電壓切換零電流切換
外文關鍵詞:Interleaved boostBidirectional resonant converterCurrent rippleWide input voltage rangeZero Voltage SwitchingZero Current Switching
相關次數:
  • 被引用被引用:0
  • 點閱點閱:132
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要...i
Abstract...ii
誌謝...iii
目錄...iv
表目錄...vi
圖目錄...vii
第一章 緒論...1
1.1 研究動機與目的...1
1.2 文獻探討...3
1.3 論文貢獻...5
1.4 論文大綱...6
第二章 三埠電能轉換器架構...7
2.1 三埠電能相關特性...7
2.1.1 再生能源...7
2.1.2 直流電網...8
2.1.3 電池儲釋能源...9
2.2 硬性切換與柔性切換差異...9
2.3 雙向直流-直流轉換器...10
2.3.1 雙向直流-直流轉換器原理...10
2.3.2 非隔離型雙向直流-直流轉換器...11
2.3.3 雙向隔離型直流-直流轉換器...12
2.4 三埠隔離型轉換器架構...15
2.4.1 轉換器操作模式分類...16
第三章 IBIB-CLLLC諧振轉換器操作模式與分析...18
3.1 轉換器操作模式與控制方法...18
3.2 IBIB-CLLLC諧振轉換器模式I與模式II分析...19
3.2.1 電路架構與操作模式介紹...19
3.2.2 變頻控制工作階段分析...20
3.2.3 轉換器工作於Region I工作階段分析...21
3.2.4 轉換器工作於Region II工作階段分析...24
3.2.5 基本波分析法(FHA)...27
3.2.6 電壓增益特性分析...30
3.3 IBIB-CLLLC諧振轉換器模式III分析...38
3.3.1 電路架構與操作模式介紹...38
3.3.2 工作階段分析...39
3.3.3 電壓增益分析...43
3.3.4 輸入電流漣波特性...48
第四章 轉換器電路參數設計...50
4.1 電路規格與參數設計...50
4.1.1 三埠電能轉換器規格...50
4.1.2 變壓器匝數比...51
4.1.3 輸入電感設計...51
4.2 諧振參數設計...52
4.2.1 高頻變壓器設計...52
4.2.2 激磁電感的限制...53
4.2.3 電感係數k值的選擇...53
4.2.4 品質因數Q值的選擇...55
4.2.5 諧振參數計算...56
4.2.6 功率開關選擇...59
4.2.7 輸出濾波電容設計...59
4.3 輔助電路設計...60
4.3.1 電壓電流取樣電路...60
4.3.2 開關驅動電路...61
4.3.3 數位控制電路...63
第五章 IBIB-CLLLC諧振轉換器模擬與實驗結果...65
5.1 前言...65
5.2 IBIB-CLLL諧振轉換器規格...66
5.3 模擬結果與分析...67
5.3.1 轉換器模式I電路模擬...67
5.3.2 轉換器模式II電路模擬...70
5.3.3 轉換器模式III電路模擬...73
5.4 實驗結果與分析...77
5.4.1 模式I電路實驗量測...77
5.4.2 模式II電路實驗量測...82
5.4.3 模式I與模式II定電壓定電流模式電路實驗量測...88
5.4.4 模式III電路實驗量測...93
5.4.5 模式III定電壓模式電路實驗量測...100
5.5 IBIB-CLLLC諧振轉換器效率...103
第六章 結論與未來展望...110
6.1 結論...110
6.2 未來展望...111
參考文獻...112
P. N. Vovos, A. E. Kiprakis, A. R. Wallace, and G. P. Harrison, "Centralized and distributed voltage control: Impact on distributed generation penetration," IEEE Transactions on power systems, vol. 22, no. 1, pp. 476-483, 2007.
[2]S. Mukhopadhyay and B. Singh, "Distributed generation—Basic policy, perspective planning, and achievement so far in india," in 2009 IEEE Power & Energy Society General Meeting, 2009: IEEE, pp. 1-7.
[3]N. Hatziargyriou, "The microgrids concept," 2014.
[4]K. Hajar, A. Hably, S. Bacha, A. Elrafhi, and Z. Obeid, "An application of a centralized model predictive control on microgrids," in 2016 IEEE Electrical Power and Energy Conference (EPEC), 2016: IEEE, pp. 1-6.
[5]Y. Ito, Y. Zhongqing, and H. Akagi, "DC microgrid based distribution power generation system," in The 4th International Power Electronics and Motion Control Conference, 2004. IPEMC 2004., 2004, vol. 3: IEEE, pp. 1740-1745.
[6]I. U. Nutkani, W. Peng, P. C. Loh, and F. Blaabjerg, "Autonomous economic operation of grid connected DC microgrid," in 2014 IEEE 5th International Symposium on Power Electronics for Distributed Generation Systems (PEDG), 2014: IEEE, pp. 1-5.
[7]Z. Ma, A. Pesaran, V. Gevorgian, D. Gwinner, and W. Kramer, "Energy storage, renewable power generation, and the grid: NREL capabilities help to develop and test energy-storage technologies," IEEE Electrification Magazine, vol. 3, no. 3, pp. 30-40, 2015.
[8]M. Nehrir et al., "A review of hybrid renewable/alternative energy systems for electric power generation: Configurations, control, and applications," IEEE transactions on sustainable energy, vol. 2, no. 4, pp. 392-403, 2011.
[9]S.-J. Jang, T.-W. Lee, W.-C. Lee, and C.-Y. Won, "Bi-directional dc-dc converter for fuel cell generation system," in 2004 IEEE 35th Annual Power Electronics Specialists Conference (IEEE Cat. No. 04CH37551), 2004, vol. 6: IEEE, pp. 4722-4728.
[10]A. Mehdipour and S. Farhangi, "Comparison of three isolated bi-directional DC/DC converter topologies for a backup photovoltaic application," in 2011 2nd International Conference on Electric Power and Energy Conversion Systems (EPECS), 2011: IEEE, pp. 1-5.
[11] Z. Zhang, Z. Zhang, S. Xie, and C. Yang, "A control strategy for paralleled bi-directional DC-DC converters used in energy storage systems," in 2016 IEEE energy conversion congress and exposition (ECCE), 2016: IEEE, pp. 1-6.
[12]W. Wang, P. Wang, T. Ma, H. Liu, and H. Wu, "A simple decoupling control method for isolated three-port bidirectional converter in low-voltage DC microgrids," in 2015 IEEE Energy Conversion Congress and Exposition (ECCE), 2015: IEEE, pp. 3192-3196.
[13]J. L. Duarte, M. Hendrix, and M. G. Simões, "Three-port bidirectional converter for hybrid fuel cell systems," IEEE Transactions on Power Electronics, vol. 22, no. 2, pp. 480-487, 2007.
[14]H. Krishnaswami and N. Mohan, "Three-port series-resonant DC–DC converter to interface renewable energy sources with bidirectional load and energy storage ports," IEEE Transactions on Power Electronics, vol. 24, no. 10, pp. 2289-2297, 2009.
[15]D. O. Garrido, V. M. Stierli, L. E. Piris-Botalla, G. G. Oggier, and Y. G. O. García, "Implementation and Experimental Validation of a Bidirectional Three-Port DC-DC Converter for Hybrid Electric Systems Applications," in 2018 Argentine Conference on Automatic Control (AADECA), 2018: IEEE, pp. 1-6.
[16]Z. Chen, "Three-port ZVS converter with PWM plus secondary-side phase-shifted for photovoltaic-storage hybrid systems," in 2014 IEEE Applied Power Electronics Conference and Exposition-APEC 2014, 2014: IEEE, pp. 3066-3071.
[17]Y. Lu, H. Wu, X. Dong, Y. Xing, and K. Sun, "A three-port converter based DC grid-connected PV system with autonomous output voltage sharing control," in 2017 IEEE Applied Power Electronics Conference and Exposition (APEC), 2017: IEEE, pp. 2057-2061.
[18]Y. Lu, K. Sun, H. Wu, X. Dong, and Y. Xing, "A three-port converter based distributed DC grid connected PV system with autonomous output voltage sharing control," IEEE Transactions on Power Electronics, vol. 34, no. 1, pp. 325-339, 2018.
[19]X. Sun, Y. Shen, W. Li, and H. Wu, "A PWM and PFM hybrid modulated three-port converter for a standalone PV/battery power system," IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 3, no. 4, pp. 984-1000, 2015.
[20]R. Patil and H. Anantwar, "Comparitive analysis of fuzzy based MPPT for buck and boost converter topologies for PV application," in 2017 International Conference On Smart Technologies For Smart Nation (SmartTechCon), 2017: IEEE, pp. 1479-1484.
[21]茂迪股份有限公司, "XS60GB-310 雙玻太陽能模組."
[22]T. Dragičević, X. Lu, J. C. Vasquez, and J. M. Guerrero, "DC microgrids—Part II: A review of power architectures, applications, and standardization issues," IEEE transactions on power electronics, vol. 31, no. 5, pp. 3528-3549, 2015.
[23]K. Yiu, "Battery technologies for electric vehicles and other green industrial projects," in 2011 4th International Conference on Power Electronics Systems and Applications, 2011: IEEE, pp. 1-2.
[24]A. Moshirvaziri, "Lithium-ion battery modeling for electric vehicles and regenerative cell testing platform," University of Toronto, 2013.
[25]J. Edler and N. Kondrath, "Bidirectional Interleaved Buck/Boost DC-DC Converter Design to Improve Power Density in High-Current Applications," in 2019 IEEE 62nd International Midwest Symposium on Circuits and Systems (MWSCAS), 2019: IEEE, pp. 403-406.
[26]X. Zhang, W. Chen, X. Ruan, and K. Yao, "A novel ZVS PWM phase-shifted full-bridge converter with controlled auxiliary circuit," in 2009 Twenty-Fourth Annual IEEE Applied Power Electronics Conference and Exposition, 2009: IEEE, pp. 1067-1072.
[27]H. Bai and C. Mi, "Eliminate reactive power and increase system efficiency of isolated bidirectional dual-active-bridge DC–DC converters using novel dual-phase-shift control," IEEE Transactions on power electronics, vol. 23, no. 6, pp. 2905-2914, 2008.
[28]M. Kim, M. Rosekeit, S.-K. Sul, and R. W. De Doncker, "A dual-phase-shift control strategy for dual-active-bridge DC-DC converter in wide voltage range," in 8th International Conference on Power Electronics-ECCE Asia, 2011: IEEE, pp. 364-371.
[29]K. Tan, R. Yu, S. Guo, and A. Q. Huang, "Optimal design methodology of bidirectional LLC resonant DC/DC converter for solid state transformer application," in IECON 2014-40th Annual Conference of the IEEE Industrial Electronics Society, 2014: IEEE, pp. 1657-1664.
[30]X. Yudi, M. Xingkui, Z. Zhe, and Y. Shi, "New hybrid control for wide input full-bridge LLC resonant DC/DC converter," in 2018 3rd International Conference on Intelligent Green Building and Smart Grid (IGBSG), 2018: IEEE, pp. 1-4.
[31]H. Li et al., "A 6.6 kW SiC bidirectional on-board charger," in 2018 IEEE Applied Power Electronics Conference and Exposition (APEC), 2018: IEEE, pp. 1171-1178.
[32]Q. Deng, Y. He, C. Lei, and J. Liu, "Research on CLLLC Bi-directional Resonant Based on Time-domain Analysis."
[33]Z. U. Zahid, Z. M. Dalala, R. Chen, B. Chen, and J.-S. Lai, "Design of bidirectional DC–DC resonant converter for vehicle-to-grid (V2G) applications," IEEE Transactions on Transportation Electrification, vol. 1, no. 3, pp. 232-244, 2015.
[34]H.-T. Chang, T.-J. Liang, and W.-C. Yang, "Design and Implementation of Bidirectional DC-DC CLLLC Resonant Converter," in 2018 IEEE Energy Conversion Congress and Exposition (ECCE), 2018: IEEE, pp. 2712-2719.
[35]J. Huang et al., "Robust circuit parameters design for the CLLC-type DC transformer in the hybrid AC–DC microgrid," IEEE transactions on industrial electronics, vol. 66, no. 3, pp. 1906-1918, 2018.
[36]吳欣諺, "應用於電動車電池充放電之雙向混合控制諧振轉換器," 碩士, 電機工程系碩士班, 國立虎尾科技大學, 雲林縣, 2020. [Online]. Available: https://hdl.handle.net/11296/jsxb7g
[37]H. Huang, "Designing an LLC resonant half-bridge power converter," in 2010 Texas Instruments Power Supply Design Seminar, SEM1900, Topic, 2010, vol. 3, pp. 2010-2011.
[38]T. Electronics, "Mn-Zn Ferrite Cores for Switching Power Supplies PQ series," 2014.
[39]UnitedSiC, "UJ3C065080K3S," DataSheet, 2019.
[40]Toshiba. "TLP352." [Online], Available: https://toshiba.semicon-storage.com/tw/semiconductor/product/optoelectronics/detail.TLP352.html. (accessed Sept. 18. , 2020).
[41]T. INSTRUMENTS. "TMS320x28335." [Online], Available: https://www.ti.com/product/TMS320F28335 (accessed Sept. 20, 2020).

電子全文 電子全文(網際網路公開日期:20260803)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊