跳到主要內容

臺灣博碩士論文加值系統

(44.221.66.130) 您好!臺灣時間:2024/06/21 00:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:趙晏辰
研究生(外文):CHAO, YEN-CHEN
論文名稱:陰極電弧蒸鍍氮化鋁鈦鋯及氮化鋁鈦矽鋯多層薄膜之機械性質與切削性能分析
論文名稱(外文):Mechanical Properties and Cutting Performance of Multilayered AlTiN/ZrN and AlTiSiN/ZrN Coatings Synthesized by Cathodic Arc Evaporation
指導教授:張銀祐
指導教授(外文):CHANG, YIN-YU
口試委員:李志偉邱薆蕙
口試委員(外文):LEE, JYH-WEICHIOUS, AI-HUEI
口試日期:2021-07-19
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:機械與電腦輔助工程系碩士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:122
中文關鍵詞:陰極電弧蒸鍍氮化物薄膜機械性質銑削加工
外文關鍵詞:CAENitride CoatingMechanical propertiesEnd Milling
相關次數:
  • 被引用被引用:0
  • 點閱點閱:103
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
AlTiN薄膜由於其優異的機械性能(包括高硬度,耐磨性和耐蝕性以及出色的熱穩定性)而廣泛用作切削工具、壓鑄模具和汽車零件等各種工業應用中的保護性塗層,為了滿足現代工具在高速乾切應用中不斷增長的需求。本研究使用陰極電弧蒸鍍技術(CAE)鍍製AlTiZrN、AlTiZrSiN多層薄膜,並採用漸進層設計以改善薄膜殘留應力及提升附著性能,針對薄膜結構、表面性質、機械性質與切削性能等進行分析探討。
本實驗藉由使用場發射掃描式電子顯微鏡(FE-SEM)與高解析穿透式電子顯微鏡(HR-TEM)觀察並分析薄膜之微觀結構並搭配X光能量分散光譜分析儀(EDS)測量薄膜元素成份,接著利用X光繞射分析儀(XRD)觀察薄膜之晶體結構及結晶相分析,再使用三維表面輪廓儀與水接觸角儀檢測薄膜的表面性能。機械性質分析先利用洛氏壓痕試驗機及刮痕試驗機評估薄膜與基材之間的附著性能,接著使用微小微克氏壓痕試驗機及奈米壓痕試驗機測量薄膜硬度值及彈性係數,再透過球對盤磨耗試驗機(Ball-On-Disk)觀察薄膜抗磨耗性能。最後將薄膜鍍製在碳化鎢銑刀上,對304不鏽鋼進行循環切削測試,探討薄膜對刀具磨損情況及刀具壽命的影響。
根據研究結果顯示,XRD顯示AlTiSiN/ZrN薄膜由於添加Si元素後,薄膜由強度較強的繞射峰轉變為強度較弱且較寬廣的繞射峰,晶粒尺寸也變小,接著FE-TEM觀察薄膜截面形貌,觀察到薄膜由柱狀晶結構轉為緻密的奈米複合結構,且頂層沒有觀察到明顯之柱狀晶結構。機械性質方面,單層AlTiN薄膜有最高之硬度(31.59GPa)及H3/E*2值(0.293),而AlTiN/ZrN 1:1薄膜有最佳之抗破裂韌性KIC值(1.08MPa√m),在連續乾式磨擦鉻鋼球300m後,AlTiN及AlTiN/ZrN 2:1薄膜有大量沾黏情況發生。最後由SUS 304不鏽鋼切削試驗,結果顯示AlTiN/ZrN 1:1薄膜有最低的刀刃磨耗,且從球對盤磨耗分析中可以得知有較低之磨耗率及優異的抗沾黏特性,且有較佳的抗破裂韌性,因此可以有效降低切削沾黏磨損及發生熱裂紋情況進而提升刀具壽命,更優於單層AlTiN薄膜刀具。


AlTiN coatings are widely used as protective coatings in various industrial applications such as cutting tools, die casting moulds, and automobile parts, owing to their excellent properties, namely high hardness, wear and erosion resistance, and excellent thermal stability. To meet the increasing requirements of modern tools in high-speed anddry-cutting applications.
The microstructure of the deposited coatings was characterized using field emission scanning electron microscopy (FE-SEM) and high-resolution transmission electron microscopy (HR-TEM), and the chemical composition was measured using energy dispersive X-ray spectrometry (EDS). X-ray diffraction (XRD) was used to determine the crystal structure and crystalline phases of the films. The surface characteristics of the coatings were detected using three-dimensional surface profile microscopy and water contact angle measurements. A Rockwell indentation tester and Scratch Test were used to evaluate the adhesion strength between the coating and the substrate. The coating hardness value and Young’s modulus were measured by nanoindentation. In addition, to investigate the tribological performance, a ball-on-disk tribometer was used to evaluate the wear resistance of the coating. For the cutting experiment, SUS304 stainless steel was machined by the coated end mills under oil mist conditions using a CNC milling machine.
The XRD results show that the diffraction peak of AlTiSiN/ZrN coating changes from strong to weak and broadens, and the grain size of the coating decreases. The cross-section morphology of the thin film was observed using FE-TEM; the coating changed from a columnar crystal structure to a dense nanocomposite structure, and no obvious columnar crystal structure was observed at the top layer. In terms of mechanical properties, the single-layer AlTiN coating has the highest hardness (31.59GPa) and H3 / E * 2 value (0.293), while the AlTiN/ZrN 1:1 coating has the best fracture toughness KIC(1.08MPa√m)). After 300 m continuous dry friction with a chromium steel ball, there was considerable adhesion in AlTiN and the AlTiN/ZrN 2:1 coatings. Finally, the cutting experiment of SUS 304 stainless steel showed that the AlTiN/ZrN 1:1 coating has the lowest flank wear. From the ball-on-disc test analysis, it is observed that the AlTiN/ZrN 1:1 coating has a lower wear rate, excellent adhesive resistance, and better fracture toughness. Therefore, it can effectively reduce the cutting flank wear and hot crack and further improve the tool lives, which is better than that of a single-layer AlTiN tool coating.


摘要..................................................................i
Abstract.............................................................ii
誌謝.................................................................iv
目錄..................................................................v
表目錄..............................................................vii
圖目錄.............................................................viii
第一章 緒論...........................................................1
1.1 前言..............................................................1
1.2 研究動機與目的.....................................................2
第二章 文獻回顧........................................................3
2.1 陰極電弧蒸鍍系統(cathodic arc evaporation, CAE)....................3
2.1.1 陰極電弧蒸鍍原理.................................................3
2.2 薄膜成長機制.......................................................8
2.3 薄膜結構...........................................................9
2.4 多元氮化物硬質薄膜.................................................11
2.4.1 多層薄膜強化機制.................................................11
2.4.2 高熵合金(HEA)強化機制............................................13
2.4.3 氮化鋁鈦(AlTiN)薄膜..............................................16
2.4.4 氮化鋁鈦鋯(AlTiZrN)薄膜..........................................22
2.4.5 氮化鋁鈦矽(AlTiSiN)薄膜..........................................27
2.5 刀具磨損機制.......................................................31
2.6 切削沃斯田鐵型不鏽鋼................................................34
第三章 實驗方法........................................................36
3.1 實驗流程...........................................................36
3.2 薄膜設計與實驗方法..................................................37
3.2.1 前處理及鍍膜步驟..................................................37
3.2.2 新型電漿增強電磁控弧源............................................39
3.2.3 漸進層AlTiN薄膜製程設計...........................................40
3.2.4 多層AlTiN/ZrN薄膜製程設計.........................................41
3.2.5 多層AlTiSiN/ZrN薄膜製程設計.......................................42
3.3 薄膜微結構分析......................................................43
3.3.1 場發射掃描式電子顯微鏡(Field Emission Scanning Electron Microscope, FE-SEM) ........................43
3.3.2 場發射穿透式電子顯微鏡(Field Emission Transmission Electron Microscope, FE-TEM)........................44
3.3.3 X光繞射分析儀(X-Ray Diffractometer, XRD)..........................46
3.4 薄膜表面性質分析.....................................................49
3.4.1 三維表面輪廓儀(3D Surface Profilometer)............................49
3.4.2 接觸角量測儀(Contact Angle, WCA)...................................50
3.5 薄膜機械性質分析......................................................52
3.5.1 洛氏硬度試驗機(Rockwell Hardness Tester)............................52
3.5.2 刮痕試驗儀(Scratch Tester)..........................................54
3.5.3 微小維克氏硬度試驗機(Micro Vickers Hardness Tester)..................55
3.5.4 奈米壓痕試驗機(Nano-indentation).....................................57
3.5.5 球對盤磨耗試驗機(Ball-on-disc wear Tester)...........................58
3.6 CNC高速數控工具機切削加工...............................................59
第四章 結果與討論..........................................................61
4.1 常溫薄膜微結構分析......................................................61
4.1.1 SEM薄膜表面與成份分析................................................61
4.1.2 SEM微結構分析........................................................63
4.1.3 X光繞射分析..........................................................64
4.1.4 TEM薄膜微結構分析....................................................67
4.2 常溫薄膜表面性質分析....................................................75
4.2.1 表面粗糙度分析........................................................75
4.2.2 接觸角量測分析........................................................76
4.3 常溫薄膜機械性質分析....................................................78
4.3.1 洛氏壓痕分析.........................................................78
4.3.2 刮痕試驗分析.........................................................79
4.3.3 微小維克氏硬度分析....................................................81
4.3.4 奈米壓痕分析..........................................................82
4.3.5 破裂韌性分析..........................................................83
4.3.6 薄膜殘留應力分析......................................................85
4.3.7 球對盤磨耗試驗分析....................................................86
4.4 切削加工測試............................................................92
第五章 結論................................................................102
第六章 未來展望............................................................104
參考文獻 ..................................................................105
Extended Abstract.........................................................116

1. PalDey, S. and S.C. Deevi, Single layer and multilayer wear resistant coatings of (Ti,Al)N: a review. Materials Science and Engineering: A, 2003. 342(1): p. 58-79.
2.Knotek, O., F. Löffler, and G. Krämer, Cutting performance of multicomponent and multilayer coatings on cemented carbides and cermets for interrupted cut machining. International Journal of Refractory Metals and Hard Materials, 1996. 14(1): p. 195-202.
3.Knotek, O., et al., Wear resistance of arc-evaporated and magnetron-sputtered coatings on cemented carbides. Surface and Coatings Technology, 1989. 39-40: p. 445-453.
4.莊智丞, 多元多層氮化鋁鈦/氮化鉻鉬硬質薄膜之機械性質與磨潤性能, in 機械與電腦輔助工程系碩士班. 2019, 國立虎尾科技大學: 雲林縣. p. 100.
5.Tjong, S.C. and H. Chen, Nanocrystalline materials and coatings. Materials Science and Engineering: R: Reports, 2004. 45(1): p. 1-88.
6.Koskinen, J., 4.02 - Cathodic-Arc and Thermal-Evaporation Deposition, in Comprehensive Materials Processing, S. Hashmi, et al., Editors. 2014, Elsevier: Oxford. p. 3-55.
7.Xu, Y.X., et al., Effect of CrN addition on the structure, mechanical and thermal properties of Ti-Al-N coating. Surface and Coatings Technology, 2013. 235: p. 506-512.
8.Reiter, A.E., et al., Investigation of the properties of Al1−xCrxN coatings prepared by cathodic arc evaporation. Surface and Coatings Technology, 2005. 200(7): p. 2114-2122.
9.Chang, Y.-Y., W.-T. Chiu, and J.-P. Hung, Mechanical properties and high temperature oxidation of CrAlSiN/TiVN hard coatings synthesized by cathodic arc evaporation. Surface and Coatings Technology, 2016. 303: p. 18-24.
10.Li, L.H., et al., Influence of ion energies on the surface morphology of carbon films. Surface and Coatings Technology, 2005. 196(1): p. 241-245.
11.Aksenov, I., Apparatus to rid the plasma of a vacuum arc of macroparticles. Instrum. Exp. Tech., 1978. 21(5): p. 1416-1418.
12.張詠傑, 陰極電弧系統之新型電磁控弧源設計與沉積氮化鋁鈦硬質薄膜機械性質研究, in 機械與電腦輔助工程系碩士班. 2018, 國立虎尾科技大學: 雲林縣. p. 65.
13.Gaspari, F., 2.4 Thin Films, in Comprehensive Energy Systems, I. Dincer, Editor. 2018, Elsevier: Oxford. p. 88-116.
14.Lévy, F., Film Growth and Epitaxy: Methods, in Reference Module in Materials Science and Materials Engineering. 2016, Elsevier.
15.Herr, U., Thin-film Growth: Phase Transition, in Encyclopedia of Materials: Science and Technology, K.H.J. Buschow, et al., Editors. 2001, Elsevier: Oxford. p. 9293-9296.
16.Winkler, A., Kinetics of Ultra-Thin Organic Film Growth, in Encyclopedia of Interfacial Chemistry, K. Wandelt, Editor. 2018, Elsevier: Oxford. p. 195-215.
17.Khatibi, A., Growth and Heat Treatment Studies of Al-Cr-O and Al-Cr-ON Thin Films. 2013.
18.Thornton, J.A., Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings. Journal of Vacuum Science and Technology, 1974. 11(4): p. 666-670.
19.Anders, A., A structure zone diagram including plasma-based deposition and ion etching. Thin Solid Films, 2010. 518(15): p. 4087-4090.
20.Chu, X. and S.A. Barnett, Model of superlattice yield stress and hardness enhancements. Journal of Applied Physics, 1995. 77(9): p. 4403-4411.
21.Ziebert, C., et al., Nanoscale PVD Multilayer Coatings, in Encyclopedia of Materials: Science and Technology, K.H.J. Buschow, et al., Editors. 2011, Elsevier: Oxford. p. 1-8.
22.Du, J.W., et al., Mechanical properties, thermal stability and oxidation resistance of TiN/CrN multilayer coatings. Vacuum, 2020. 179: p. 109468.
23.Anderson, P.M. and C. Li, Hall-Petch relations for multilayered materials. Nanostructured Materials, 1995. 5(3): p. 349-362.
24.Jien-Wei, Y., Recent progress in high entropy alloys. Ann. Chim. Sci. Mat, 2006. 31(6): p. 633-648.
25.葉家顯, 財團法人國家實驗研究院科技政策研究與資訊中心, 2017.
26.Bobzin, K., High-performance coatings for cutting tools. CIRP Journal of Manufacturing Science and Technology, 2017. 18: p. 1-9.
27.Matthews, A., Titanium nitride PVD coating technology. Surface engineering, 1985. 1(2): p. 93-104.
28.Dong, Y., et al., Effect of annealing in Ar on the microstructure and properties of thick nano-grained TiN ceramic coatings. Ceramics International, 2017. 43(12): p. 9303-9309.
29.Chang, Y.-Y., S.-J. Yang, and D.-Y. Wang, Structural and mechanical properties of AlTiN/CrN coatings synthesized by a cathodic-arc deposition process. Surface and Coatings Technology, 2006. 201(7): p. 4209-4214.
30.Hörling, A., et al., Thermal stability of arc evaporated high aluminum-content Ti 1− x Al x N thin films. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2002. 20(5): p. 1815-1823.
31.Dejun, K. and G. Haoyuan, Friction-wear behaviors of cathodic arc ion plating AlTiN coatings at high temperatures. Tribology International, 2015. 88: p. 31-39.
32.Chang, Y.-Y. and D.-Y. Wang, Characterization of nanocrystalline AlTiN coatings synthesized by a cathodic-arc deposition process. Surface and Coatings Technology, 2007. 201(15): p. 6699-6701.
33.Giuliani, F., et al., Deformation behaviour of TiN and Ti–Al–N coatings at 295 to 573 K. Thin Solid Films, 2019. 688: p. 137363.
34.Zhou, M., et al., Phase transition and properties of Ti–Al–N thin films prepared by r.f.-plasma assisted magnetron sputtering. Thin Solid Films, 1999. 339(1): p. 203-208.
35.Vaz, F., et al., Thermal oxidation of Ti1 − xAlxN coatings in air. Journal of the European Ceramic Society, 1997. 17(15): p. 1971-1977.
36.Uny, F., et al., Deposition and characterization of (Ti, Al)N coatings deposited by thermal LPCVD in an industrial reactor. Surface and Coatings Technology, 2019. 358: p. 923-933.
37.Chen, L., et al., Thermal stability and oxidation resistance of Ti–Al–N coatings. Surface and Coatings Technology, 2012. 206(11): p. 2954-2960.
38.Zou, C.W., et al., Structure and mechanical properties of Ti–Al–N coatings deposited by combined cathodic arc middle frequency magnetron sputtering. Journal of Alloys and Compounds, 2011. 509(5): p. 1989-1993.
39.Kim, G., B. Kim, and S. Lee, High-speed wear behaviors of CrSiN coatings for the industrial applications of water hydraulics. Surface and Coatings Technology, 2005. 200(5): p. 1814-1818.
40.Kim, G.S., et al., Effect of Si content on the properties of TiAl–Si–N films deposited by closed field unbalanced magnetron sputtering with vertical magnetron sources. Thin Solid Films, 2006. 506-507: p. 128-132.
41.Hörling, A., et al., Mechanical properties and machining performance of Ti1−xAlxN-coated cutting tools. Surface and Coatings Technology, 2005. 191(2): p. 384-392.
42.Chen, L., et al., The influence of age-hardening on turning and milling performance of Ti–Al–N coated inserts. Surface and Coatings Technology, 2008. 202(21): p. 5158-5161.
43.Bouzakis, K.D., et al., An effective way to improve the cutting performance of coated tools through annealing. Surface and Coatings Technology, 2001. 146-147: p. 436-442.
44.Bouzakis, K.D., et al., Quantification of properties modification and cutting performance of (Ti1−xAlx)N coatings at elevated temperatures. Surface and Coatings Technology, 1999. 120-121: p. 34-43.
45.Bouzakis, K.D., et al., The effect of annealing duration at deposition temperature on the strength properties gradation of PVD films and on the wear behaviour of coated cemented carbide inserts. Surface and Coatings Technology, 2006. 200(14): p. 4500-4510.
46.Luo, Q., et al., Tribological investigation of TiAlCrN and TiAlN/CrN coatings grown by combined steered-arc/unbalanced magnetron deposition. Vacuum, 1999. 53(1): p. 123-126.
47.Zhou, H., et al., AlTiCrN coatings deposited by hybrid HIPIMS/DC magnetron co-sputtering. Vacuum, 2017. 136: p. 129-136.
48.Kulkarni, A.P., G.G. Joshi, and V.G. Sargade, Dry Turning of AISI 304 Austenitic Stainless Steel Using AlTiCrN Coated Insert Produced by HPPMS Technique. Procedia Engineering, 2013. 64: p. 737-746.
49.Chang, Y.-Y. and M.-C. Cai, Mechanical property and tribological performance of AlTiSiN and AlTiBN hard coatings using ternary alloy targets. Surface and Coatings Technology, 2019. 374: p. 1120-1127.
50.Wang, S.Q., et al., Effect of Si addition on microstructure and mechanical properties of Ti–Al–N coating. International Journal of Refractory Metals and Hard Materials, 2010. 28(5): p. 593-596.
51.Chen, L., et al., Influence of Si doping on the microstructure and hardness of an AlTiSiN coating deposited by low pressure chemical vapor deposition. Ceramics International, 2021.
52.Zhu, Y.-C., et al., Influence of boron ion implantation on the wear resistance of TiAlN coatings. Surface and Coatings Technology, 2002. 158-159: p. 664-668.
53.Mei, F., et al., Greater improvement of carbon and boron co-doping on the mechanical properties, wear resistance and cutting performance of AlTiN coating than that of doping alone. Surface and Coatings Technology, 2021. 406: p. 126738.
54.Yang, B., et al., Effect of Zr on structure and properties of Ti–Al–N coatings with varied bias. International Journal of Refractory Metals and Hard Materials, 2013. 38: p. 81-86.
55.Li, D.J., et al., Multilayered coatings with alternate ZrN and TiAlN superlattices. Applied Physics Letters, 2007. 91(25): p. 251908.
56.Jaroš, M., J. Musil, and S. Haviar, Interrelationships among macrostress, microstructure and mechanical behavior of sputtered hard Ti(Al,V)N films. Materials Letters, 2019. 235: p. 92-96.
57.Biksa, A., et al., Wear behavior of adaptive nano-multilayered AlTiN/MexN PVD coatings during machining of aerospace alloys. Tribology International, 2010. 43(8): p. 1491-1499.
58.Münz, W.D., L.A. Donohue, and P.E. Hovsepian, Properties of various large-scale fabricated TiAlN- and CrN-based superlattice coatings grown by combined cathodic arc–unbalanced magnetron sputter deposition. Surface and Coatings Technology, 2000. 125(1): p. 269-277.
59.Pilloud, D., et al., Reactively sputtered zirconium nitride coatings: structural, mechanical, optical and electrical characteristics. Surface and Coatings Technology, 2003. 174-175: p. 338-344.
60.Ramos, H.J. and N.B. Valmoria, Thin-film deposition of ZrN using a plasma sputter-type negative ion source. Vacuum, 2004. 73(3): p. 549-554.
61.Atar, E., E.S. Kayali, and H. Cimenoglu, Sliding wear behaviour of ZrN and (Zr, 12wt% Hf)N coatings. Tribology International, 2006. 39(4): p. 297-302.
62.Gariboldi, E., Drilling a magnesium alloy using PVD coated twist drills. Journal of Materials Processing Technology, 2003. 134(3): p. 287-295.
63.Budke, E., et al., Decorative hard coatings with improved corrosion resistance. Surface and Coatings Technology, 1999. 112(1): p. 108-113.
64.Oganyan, M., et al., Influence of the application of wear-resistant coatings on force parameters of the cutting process and the tool life during end milling of titanium alloys. Materials Today: Proceedings, 2021. 38: p. 1428-1432.
65.Chen, L., et al., Influence of Zr on structure, mechanical and thermal properties of Ti–Al–N. Thin Solid Films, 2011. 519(16): p. 5503-5510.
66.Mayrhofer, P.H., D. Music, and J.M. Schneider, Influence of the Al distribution on the structure, elastic properties, and phase stability of supersaturated Ti1−xAlxN. Journal of Applied Physics, 2006. 100(9): p. 094906.
67.Chang, Y.-Y. and C.-J. Wu, Mechanical properties and impact resistance of multilayered TiAlN/ZrN coatings. Surface and Coatings Technology, 2013. 231: p. 62-66.
68.Vaz, F., et al., Oxidation resistance of (Ti, Al, Si)N coatings in air. Surface and Coatings Technology, 1998. 98(1): p. 912-917.
69.Chang, Y.-Y., Y.-J. Yang, and S.-Y. Weng, Effect of interlayer design on the mechanical properties of AlTiCrN and multilayered AlTiCrN/TiSiN hard coatings. Surface and Coatings Technology, 2020. 389: p. 125637.
70.Hahn, R., et al., Toughness of Si alloyed high-entropy nitride coatings. Materials Letters, 2019. 251: p. 238-240.
71.Vennemann, A., et al., Oxidation resistance of titanium–aluminium–silicon nitride coatings. Surface and Coatings Technology, 2003. 174-175: p. 408-415.
72.Zhu, L., et al., High temperature oxidation behavior of Ti0.5Al0.5N coating and Ti0.5Al0.4Si0.1N coating. Vacuum, 2012. 86(12): p. 1795-1799.
73.Pfeiler, M., et al., Improved oxidation resistance of TiAlN coatings by doping with Si or B. Surface and Coatings Technology, 2009. 203(20): p. 3104-3110.
74.陳佑維, 銑削316不鏽鋼之最佳化刀具幾何設計研究, in 機械與電腦輔助工程系碩士班. 2018, 國立虎尾科技大學: 雲林縣. p. 61.
75.Inspektor, A. and P.A. Salvador, Architecture of PVD coatings for metalcutting applications: A review. Surface and Coatings Technology, 2014. 257: p. 138-153.
76.Halling, J., The tribology of surface films. Thin Solid Films, 1983. 108(2): p. 103-115.
77.Chapter 7 Applications, in Tribology Series, K. Holmberg and A. Matthews, Editors. 1994, Elsevier. p. 335-388.
78.Groche, P., G. Nitzsche, and A. Elsen, Adhesive wear in deep drawing of aluminum sheets. Manufacturing Technology, 2008. 57: p. 295-298.
79.Groche, P., G. Nitzsche, and A. Elsen, Adhesive wear in deep drawing of aluminum sheets. CIRP Annals, 2008. 57(1): p. 295-298.
80.25 - Friction and wear, in Smithells Metals Reference Book (Eighth Edition), W.F. Gale and T.C. Totemeier, Editors. 2004, Butterworth-Heinemann: Oxford. p. 25-1-25-26.
81.Saini, M.S., et al., Study on Wear Resistance of Al-Si Alloy using A 3-Body Dry Abrasive Wear Testing Machine.
82.Saini, M.S., et al., STUDY ON WEAR RESISTANCE OF Al-Si ALLOY USING A 3- BODY DRY ABRASIVE WEAR TESTING MACHINE. Engineering Research & Technology, 2016. 4(10): p. 1-6.
83.Palani, S., et al., Dry Sliding Wear Behaviour of Aluminium Alloy 6061-Redmud Metal Matrix Composites by Stir Casting Method.
84.Doi, T., E. Uhlmann, and I.D. Marinescu, Handbook of ceramics grinding and polishing. 2015: William Andrew.
85.Shi, Y. and X. Wu, Research on oxidation wear behavior of a new hot forging die steel. Journal of Materials Engineering and Performance, 2018. 27(1): p. 176-185.
86.Davim, J.P., Modern machining technology: A practical guide. 2011: Elsevier.
87.Fernández-Abia, A.I., J.B. García, and L.N. López de Lacalle, 2 - High-performance machining of austenitic stainless steels, in Machining and machine-tools, J.P. Davim, Editor. 2013, Woodhead Publishing. p. 29-90.
88.VAMPOLA, P.B.L., SUPERTVRDÉ MATERIÁLY A JEJICH EFEKTIVNÍ VYUŽITÍ.
89.Singh Bedi, S., et al., Influence of cutting speed on dry machinability of AISI 304 stainless steel. Materials Today: Proceedings, 2021. 38: p. 2174-2180.
90.He, Q., et al., Study of wear performance and tribological characterization of AlTiN PVD coatings with different Al/Ti ratios during ultra-high speed turning of stainless steel 304. International Journal of Refractory Metals and Hard Materials, 2021. 96: p. 105488.
91.Jusman, Y., S.C. Ng, and N.A. Abu Osman, Investigation of CPD and HMDS sample preparation techniques for cervical cells in developing computer-aided screening system based on FE-SEM/EDX. The Scientific World Journal. 2014.
92.陳建淼 and 洪連輝, 穿透式電子顯微鏡. 科學Online, 2009.
93.Wang, Y., et al., Real-time synchrotron x-ray studies of low-and high-temperature nitridation of c-plane sapphire. Physical Review B, 2006. 74(23): p. 235304.
94.DIFFACTION, S.-V.M.-C., Bragg’s Law.
95.Alderton, D., X-Ray Diffraction (XRD), in Encyclopedia of Geology (Second Edition), D. Alderton and S.A. Elias, Editors. 2021, Academic Press: Oxford. p. 520-531.
96.Ma, C.H., J.H. Huang, and H. Chen, Residual stress measurement in textured thin film by grazing-incidence X-ray diffraction. Thin Solid Films, 2002. 418(2): p. 73-78.
97.張育唐 and 陳藹然, 接觸角. 科學Online, 2011.
98.Owens, D.K. and R. Wendt, Estimation of the surface free energy of polymers. Journal of applied polymer science, 1969. 13(8): p. 1741-1747.
99.Annamalai, M., et al., Surface energy and wettability of van der Waals structures. Nanoscale, 2016. 8(10): p. 5764-5770.
100.Hatic, D., et al. Rockwell Adhesion Test-Approach to Standard Modernization. in EuroVis (Posters). 2020.
101.ISO 20502:2005, Fine ceramics (advanced ceramics, advanced technical ceramics) — Determination of adhesion of ceramic coatings by scratch testing. ISO/TC 206 Fine ceramics, 2005: p. 31.
102.Bravo-Bárcenas, D., et al., Characterisation of CoB–Co2B coatings by the scratch test. Surface Engineering, 2016. 32(8): p. 570-577.
103.Lenz, B., et al., Application of CNN networks for an automatic determination of critical loads in scratch tests on a-C:H:W coatings. Surface and Coatings Technology, 2020. 393: p. 125764.
104.Karimi, A., et al., Fracture mechanisms in nanoscale layered hard thin films. Thin Solid Films, 2002. 420-421: p. 275-280.
105.Jedrzejowski, P., J.E. Klemberg-Sapieha, and L. Martinu, Relationship between the mechanical properties and the microstructure of nanocomposite TiN/SiN1.3 coatings prepared by low temperature plasma enhanced chemical vapor deposition. Thin Solid Films, 2003. 426(1): p. 150-159.
106.Zhang, S., et al., Toughness measurement of thin films: a critical review. Surface and Coatings Technology, 2005. 198(1): p. 74-84.
107.Lawn, B.R., A.G. Evans, and D. Marshall, Elastic/plastic indentation damage in ceramics: the median/radial crack system. Journal of the American Ceramic Society, 1980. 63(9‐10): p. 574-581.
108.Baker, S.P., Nanoindentation Techniques, in Encyclopedia of Materials: Science and Technology, K.H.J. Buschow, et al., Editors. 2001, Elsevier: Oxford. p. 5908-5915.
109.Miletić, A., et al., Microstructure and mechanical properties of nanostructured Ti–Al–Si–N coatings deposited by magnetron sputtering. Surface and Coatings Technology, 2014. 241: p. 105-111.
110.Kanoun, M.B. and S. Goumri-Said, Effect of alloying on elastic properties of ZrN based transition metal nitride alloys. Surface and Coatings Technology, 2014. 255: p. 140-145.
111.Wu, H., et al., Nano-mechanical characterization of plasma surface tungstenized layer by depth-sensing nano-indentation measurement. Applied Surface Science, 2015. 324: p. 160-167.
112.Zhirkov, I., A. Petruhins, and J. Rosen, Effect of cathode composition and nitrogen pressure on macroparticle generation and type of arc discharge in a DC arc source with Ti–Al compound cathodes. Surface and Coatings Technology, 2015. 281: p. 20-26.
113.Zhang, J., et al., Microstructure, mechanical and thermal properties of TiAlTaN/TiAlSiN multilayer. Vacuum, 2021. 187: p. 110138.
114.Tanaka, Y., et al., Structure and properties of Al–Ti–Si–N coatings prepared by the cathodic arc ion plating method for high speed cutting applications. Surface and Coatings Technology, 2001. 146-147: p. 215-221.
115.Lei, Z., et al., Oxidation resistance of TiAlN/ZrN multilayer coatings. Vacuum, 2016. 127: p. 22-29.
116.Kravchenko, Y.O., et al., Micro-mechanical investigation of (Al50Ti50)N coatings enhanced by ZrN layers in the nanolaminate architecture. Applied Surface Science, 2020. 534: p. 147573.
117.Vepřek, S. and S. Reiprich, A concept for the design of novel superhard coatings. Thin Solid Films, 1995. 268(1): p. 64-71.
118.Chang, Y.-Y. and L.-C. Chao, Effect of substrate bias voltage on the mechanical properties of AlTiN/CrTiSiN multilayer hard coatings. Vacuum, 2021. 190: p. 110241.
119.Yang, B., et al., Synthesis and characterization of AlTiSiN/CrSiN multilayer coatings by cathodic arc ion-plating. Applied Surface Science, 2014. 314: p. 581-585.
120.Carvalho, S., et al., Microstructure of (Ti,Si,Al)N nanocomposite coatings. Surface and Coatings Technology, 2004. 177-178: p. 369-375.
121.Aschauer, E., et al., Nano-structural investigation of Ti-Al-N/Mo-Si-B multilayer coatings: A comparative study by APT and HR-TEM. Vacuum, 2018. 157: p. 173-179.
122.Blanco, D., et al., Novel fatty acid anion-based ionic liquids: Contact angle, surface tension, polarity fraction and spreading parameter. Journal of Molecular Liquids, 2019. 288: p. 110995.
123.Gerth, J. and U. Wiklund, The influence of metallic interlayers on the adhesion of PVD TiN coatings on high-speed steel. Wear, 2008. 264(9): p. 885-892.
124.Jones, A.M., et al., The effects of deposition temperature and interlayer thickness on the adhesion of ion-assisted titanium nitride films produced with yttrium metal interlayers. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 1993. 80-81: p. 1397-1401.
125.Fukumoto, N., et al., Effects of bilayer thickness and post-deposition annealing on the mechanical and structural properties of (Ti,Cr,Al)N/(Al,Si)N multilayer coatings. Surface and Coatings Technology, 2009. 203(10): p. 1343-1348.
126.Kretschmer, A., et al., Improving phase stability, hardness, and oxidation resistance of reactively magnetron sputtered (Al,Cr,Nb,Ta,Ti)N thin films by Si-alloying. Surface and Coatings Technology, 2021. 416: p. 127162.
127.Choi, H., et al., Effect of Si addition on the microstructure, mechanical properties and tribological properties of Zr–Si–N nanocomposite coatings deposited by a hybrid coating system. Surface and Coatings Technology, 2014. 259: p. 707-713.
128.Patscheider, J., T. Zehnder, and M. Diserens, Structure–performance relations in nanocomposite coatings. Surface and Coatings Technology, 2001. 146-147: p. 201-208.
129.Mae, T., et al., The effects of Si addition on the structure and mechanical properties of ZrN thin films deposited by an r.f. reactive sputtering method. Surface and Coatings Technology, 2001. 142-144: p. 954-958.
130.Park, J.H., et al., Synthesis and mechanical properties of Cr–Si–N coatings deposited by a hybrid system of arc ion plating and sputtering techniques. Surface and Coatings Technology, 2004. 188-189: p. 425-430.
131.Kim, S.H., J.K. Kim, and K.H. Kim, Influence of deposition conditions on the microstructure and mechanical properties of Ti–Si–N films by DC reactive magnetron sputtering. Thin Solid Films, 2002. 420-421: p. 360-365.
132.Zhang, H., et al., Improvement on the mechanical, tribological properties and cutting performance of AlTiN-based coatings by compositional and structural design. Surface and Coatings Technology, 2021. 422: p. 127503.
133.Tillmann, W. and M. Dildrop, Influence of Si content on mechanical and tribological properties of TiAlSiN PVD coatings at elevated temperatures. Surface and Coatings Technology, 2017. 321: p. 448-454.
134.Lin, J., et al., The structure and mechanical and tribological properties of TiBCN nanocomposite coatings. Acta Materialia, 2010. 58(5): p. 1554-1564.
135.Zhang, S., et al., Toughening of hard nanostructural thin films: a critical review. Surface and Coatings Technology, 2005. 198(1): p. 2-8.
136.Huang, J.-H., Y.-F. Chen, and G.-P. Yu, Evaluation of the fracture toughness of Ti1-xZrxN hard coatings: Effect of compositions. Surface and Coatings Technology, 2019. 358: p. 487-496.
137.He, J., et al., Plastic properties of nano-scale ceramic–metal multilayers. Surface and Coatings Technology, 1998. 103: p. 276-280.
138.Tabakov, V. The influence of machining condition forming multilayer coatings for cutting tools. in Key Engineering Materials. 2012. Trans Tech Publ.
139.Tabakov, V.P. and A. Vereschaka. Development of Technological Means for Formation of Multilayer Composite Coatings, Providing Increased Resistance of Carbide Tools, for Different Machining Conditions. in Key Engineering Materials. 2014. Trans Tech Publ.
140.Xi, Y., et al., Film thickness effect on texture and residual stress sign transition in sputtered TiN thin films. Ceramics International, 2017. 43(15): p. 11992-11997.
141.Stueber, M., et al., Concepts for the design of advanced nanoscale PVD multilayer protective thin films. Journal of Alloys and Compounds, 2009. 483(1-2): p. 321-333.
142.Vogli, E., et al., Influence of Ti/TiAlN-multilayer designs on their residual stresses and mechanical properties. Applied Surface Science, 2011. 257(20): p. 8550-8557.
143.Engwall, A.M., Z. Rao, and E. Chason, Origins of residual stress in thin films: Interaction between microstructure and growth kinetics. Materials & Design, 2016. 110: p. 616-623.
144.Gonzalo, O., et al., Influence of the Coating Residual Stresses on the Tool Wear. Procedia Engineering, 2011. 19: p. 106-111.
145.Breidenstein, B., et al., Influence of the residual stress state of coatings on the wear behavior in external turning of AISI 4140 and Ti–6Al–4V. Production Engineering, 2016. 10(2): p. 147-155.
146.Junaidh, A.P., et al., Influence of Process Parameters on the Machining Characteristics of Austensite Stainless Steel (AISI 304). Materials Today: Proceedings, 2018. 5(5, Part 2): p. 13321-13333.
147.Fox-Rabinovich, G.S., et al., Nano-crystalline filtered arc deposited (FAD) TiAlN PVD coatings for high-speed machining applications. Surface and Coatings Technology, 2004. 177-178: p. 800-811.
148.Sousa, V.F., et al., Characteristics and wear mechanisms of TiAlN-based coatings for machining applications: A comprehensive review. Metals, 2021. 11(2): p. 260.
149.Vereschaka, A.A. and S.N. Grigoriev, Study of cracking mechanisms in multi-layered composite nano-structured coatings. Wear, 2017. 378-379: p. 43-57.
150.Vereschaka, A.S., et al. Improving the efficiency of the cutting tool made of ceramic when machining hardened steel by applying nano-dispersed multi-layered coatings. in Key Engineering Materials. 2014. Trans Tech Publ.
151.Tabakov, V., M.Y. Smirnov, and A. Tsirkin, Productivity of end mills with multilayer wear-resistant coatings. UlSTU: Ulyanovsk, 2005.
152.Schulz, H., et al., Performance of oxide PVD-coatings in dry cutting operations. Surface and Coatings Technology, 2001. 146-147: p. 480-485.
153.趙良展, 奈米多層氮化鋁鈦/氮化鉻鈦矽硬質薄膜之機械性質與切削加工性能, in 機械與電腦輔助工程系碩士班. 2019, 國立虎尾科技大學: 雲林縣. p. 123.
154.Veprek, S., et al., Avoiding the high-temperature decomposition and softening of (Al1−xTix)N coatings by the formation of stable superhard nc-(Al1−xTix)N/a-Si3N4 nanocomposite. Materials Science and Engineering: A, 2004. 366(1): p. 202-205.
155.Carvalho, S., et al., Microstructure and mechanical properties of nanocomposite (Ti,Si,Al)N coatings. Thin Solid Films, 2001. 398-399: p. 391-396.
156.Siwawut, S., et al., Cutting performances and wear characteristics of WC inserts coated with TiAlSiN and CrTiAlSiN by filtered cathodic arc in dry face milling of cast iron. The International Journal of Advanced Manufacturing Technology, 2018. 97(9): p. 3883-3892.
157.Carvalho, S., et al., Microstructure, mechanical properties and cutting performance of superhard (Ti,Si,Al)N nanocomposite films grown by d.c. reactive magnetron sputtering. Surface and Coatings Technology, 2004. 177-178: p. 459-468.

電子全文 電子全文(網際網路公開日期:20260816)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊