跳到主要內容

臺灣博碩士論文加值系統

(100.28.0.143) 您好!臺灣時間:2024/07/19 17:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:廖湄蓁
研究生(外文):Liao mei chen
論文名稱:鰻魚萃取物功能性研究初探
論文名稱(外文):A Study on the Nutraceutical Functions of Eel Essence
指導教授:許珊菁
指導教授(外文):Shan-Ching, Hsu. Ph.D.
口試委員:魏國晋童嬿臻
口試日期:2021-01-21
學位類別:碩士
校院名稱:實踐大學
系所名稱:食品營養與保健生技學系碩士班
學門:醫藥衛生學門
學類:營養學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:107
中文關鍵詞:鰻魚
外文關鍵詞:Eel, Diet-induced-obesity, LDL, HDL, Transcriptome
相關次數:
  • 被引用被引用:0
  • 點閱點閱:307
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
日本鰻 (Anguilla japonica) 養殖為臺灣重要產業,鰻魚肉含優質蛋白質及各種人體必需胺基酸、脂肪酸 (EPA/DHA)、特殊營養素肌肽及其他化學成分,胺基酸組成以麩胺酸、支鏈胺基酸、丙胺酸、離胺酸及精氨酸含量較多,因此鰻魚被視為滋補食品而作為東方醫學的一種食療法。實驗設計為利用 C57BL/6J 小鼠 (8 週齡) 分別餵飼 AC ( 7%脂肪提供總熱量百分比16%) 及管餵鰻魚萃取物(AEE ; 767mg/kg bw),HC ( 30%脂肪提供總熱量百分比54%) 及管餵鰻魚萃取物(HEE ; 767mg/kg bw)共 4 組實驗,小鼠餵養 8 週後,實驗目的為探討在一般飲食 (AC) 及高脂 (HC) 飲食下,鰻魚萃取物對於小鼠生理代謝的調節。實驗結果發現高油脂組體重與體脂肪率顯著較正常油脂組增加,亦顯著增加飼料與能量利用效率。攝取鰻魚萃取物顯著提高能量利用效率與體脂肪比率。與 AC 組比較,HC 組血清中膽固醇、三酸甘油酯、葡萄糖、胰島素與 LDL 的濃度顯著增加,但是兩組間血清中 HDL 的濃度沒有明顯差異。攝取鰻魚萃取物顯著降低血清中 LDL 的濃度、Glutamic Oxaloacetic Transaminase 活性也顯著下降,並增加血清中 HDL 的濃度。AEE 組與 AC 組比較,兩組的攝食量與體重沒有改變,但 AEE 組比 AC 組有較高的體脂肪率與腹部脂肪重量。高油脂組與攝取鰻魚萃取物組小鼠的前肢拉力與游泳力竭時間顯著增加。體內脂肪酸調節狀況取決於細胞和生物體的代謝需求為一種動態恆定作用, ACOT1 (acyl-CoA thioesterase 1) 的功能為催化 acyl-CoAs 轉為 fatty acids 和 CoA,為調節脂肪酸氧化恆定重要的酵素,避免脂肪酸過度氧化。經由轉錄體學(Transcriptome) 發現,鰻魚萃取物添加影響肝臟中脂肪酸代謝恆定、胺基酸代謝與核酸生合成基因途徑。攝取鰻魚萃取物後,肝臟中 ACOT1 的基因表現顯著降低,推測鰻魚精的添加降低體內脂肪酸過度氧化。研究結論為鰻魚萃取物增加小鼠的前肢拉力及游泳運動表現,降低血清中的 LDL 濃度與增加 HDL 濃度,對調節脂肪氧化與發炎功能推測具有保護作用。
Japanese eel (Anguilla japonica) farming is an important industry in Taiwan. Eel meat contains high-quality protein and various essential amino acids, fatty acids (EPA/DHA), special nutrients, carnosine, and other chemical components. The more of amino acid composed content are glutamine, branched-chain amino acids, alanine, lysine and arginine. That why, eel is regarded as a nourishing food and used as a diet therapy in Oriental medicine. The purpose of this experiment is to evaluated the Nutraceutical functions of eel essence. In this experiment, 4 groups of C57BL/6J mice were respectively fed diets containing either normal fat (16 kcal%, AC), high fat (54 kcal%, HC), AC group or HC group were fed by oral gavage the eel essence (3743 mg/kg body weight, AEE and HEE), for 8 weeks, based on a 2 × 2 factorial design, to test the significance of the effect of fat quantity, the effect of eel l essence and their interaction. Compared to the AC group, the HC group and the HEE group had significantly more body weight, more fat composition percentage, higher feed efficiency and higher energy efficiency. The HC group was a diet-induced obesity animal model. Full spectrum of Metabolic syndrome (MS) was observed un HC group, including higher abdominal fat accumulation, hyperlipidemia, hyperinsulinemia and higher serum LDL concentration. Improvement of some MS risk factors could be observed in the groups fed eel essence, including higher serum HDL concentration and lower serum LDL concentration. But higher abdominal fat accumulation was not improved in HEE group. On the other hand, the higher strength of Whole-limbs grip measurement and longer time of exhaustion of swimming was observed in High fat diet and eel essence groups. Hepatic acyl-CoA thioesterase 1 (ACOT1) catalyzes the conversion of acyl-CoAs to fatty acids (FAs) and CoA, ACOT1 regulates fasting hepatic FA metabolism by balancing oxidative flux and capacity. After transcriptome sequencing analysis, it was found that the effect of eel essence was on fatty acid metabolic, fatty acid catabolic, amino acid metabolic, and/or nucleoside bisphosphate metabolic pathway. The gene expression of hepatic ACOT1 was significantly decreased in the HEE group. It is speculated that the excessive fatty acids oxidation was reduced by the eel essence. In conclusion, the role of eel essence in the regulating fat oxidation and protective inflammation was demonstrated by the well physical performance and lower LDL.
摘要 I
Abstract II
總目錄 III
圖目錄 VI
表目錄 VIII
縮寫對照表 1
第一章 緒論 1
第一節 前言 1
第二節 文獻回顧 3
一. 鰻魚 3
1.1 鰻魚蛋白質 3
1.1.1 萃取的游離態胺基酸鰻魚精 3
1.2 鰻魚油脂 5
1.2.1、鰻魚油中多元不飽脂肪酸的優點 5
二、 相關疾病 8
2.1 肥胖與脂肪組織 8
2.1.1 脂肪酸 9
2.1.2脂聯素 10
2.1.3瘦素 11
2.2 代謝症候群(MetS) 12
2.3 第2型糖尿病(T2D) 13
2.4非酒精性脂肪肝病(NAFLD) 14
2.5心血管疾病 (CVD) 14
2.6肌少症(Sarcopenia) 16
第三節 研究假說及實驗架構 19
一. 研究假說 19
二. 研究架構 20
第二章 實驗設計與材料方法 21
第一節 實驗設計 21
第二節 材料與方法 23
一. 動物飼養 23
二. 鰻魚萃取液( EE) 23
三. 飼料配製 26
3.1 AIN-93G 飼料(Research diets item number D10012G) 26
3.2 高脂飼料(Research diets item number D19080702) 26
四. 體組成分析 29
五. 葡萄糖耐量試驗(OGTT) 29
5.1 20%葡萄糖水濃度管餵劑量 29
5.2 血糖測量和血液採樣 30
5.3 餵食葡萄糖水步驟 30
5.4 用血糖機測量血糖濃度 30
六 動物運動表現分析 30
6.1 前肢拉力和力竭試驗分析 30
6.2 游泳試驗測試 31
七. 動物犧牲後的臨床生化分析-血液生化指標分析 31
7.1 試驗期間血液生化指標分析 31
7.2 犧牲後血液生化指標分析 32
八. 動物犧牲與取樣 32
九. 小鼠肝臟RNAseq 32
9.1 肝臟組織RNA 抽取與純化定量 32
9.2 Transcriptome sequencing (RNA-Seq )分析 32
9.3 Transcriptome sequencing (RNA-Seq )數據分析 33
十. 統計分析 34
第三章 實驗結果 35
第一節 動物生理狀況 35
一. 小鼠飼養期間體重變化、攝食量、熱量攝取、飼料利用效率、攝水量 35
1.1 體重變化 35
1.2 攝食量與熱量 35
1.3 飼料利用效率 35
1.4 攝水量 35
第二節 儀器運用分析小鼠表現 35
一. 小鼠體組成分析 35
1.1 高低油脂飼料 35
1.2 有無添加鰻魚精 35
二. 動物運動表現分析 36
2.1 前肢拉力試驗分析 36
2.2 游泳耐力測試 36
第三節 小鼠血液生化分析 36
一. 血糖分析 36
1.1 葡萄糖耐量試驗 36
1.2 OGTT曲線下葡萄糖面積 36
二. 臨床生化分析 37
2.1 血清膽固醇含量 37
2.2 血清葡萄糖含量 37
2.3 血清三酸甘油脂含量 37
三. 血清生化指標 37
3.1 低密度脂蛋白 37
3.2 高密度脂蛋白 37
3.3 血清天冬氨酸轉氨酶與丙氨酸轉氨酶 38
3.4 血清尿素氮濃度 38
3.5 血清肌酐酸 38
3.6 血清白蛋白 38
3.7 血清總蛋白 38
3.8 血清胰島素 38
3.9 胰島素阻抗性 38
第四節 動物犧牲與取樣 38
一. 器官組織分析 38
1.1 棕色脂肪 38
1.2 肝臟組織 39
1.3 腹睪脂 39
1.4 大腸 39
1.5 腎臟 39
二. 小鼠肝臟RNAseq 分析 39
第四章 討論 74
第五章 結論 78
第六章 參考文獻 80


Anthony, J. C., Anthony, T. G., Kimball, S. R., & Jefferson, L. S. (2001). Signaling pathways involved in translational control of protein synthesis in skeletal muscle by leucine. The Journal of nutrition, 131(3), 856S-860S.
Awazawa, M., Ueki, K., Inabe, K., Yamauchi, T., Kaneko, K., Okazaki, Y., . . . Kadowaki, T. (2009). Adiponectin suppresses hepatic SREBP1c expression in an AdipoR1/LKB1/AMPK dependent pathway. Biochemical and biophysical research communications, 382(1), 51-56.
Baharuddin, N., Halim, N., & Sarbon, N. (2016). Effect of degree of hydrolysis (DH) on the functional properties and angiotensin I-converting enzyme (ACE) inhibitory activity of eel (Monopterus sp.) protein hydrolysate. International Food Research Journal, 23(4).
Balakumar, P., & Taneja, G. (2012). Fish oil and vascular endothelial protection: bench to bedside. Free Radical Biology and Medicine, 53(2), 271-279.
Bassil, M. S., & Gougeon, R. (2013). Muscle protein anabolism in type 2 diabetes. Current Opinion in Clinical Nutrition & Metabolic Care, 16(1), 83-88.
Bauer, J., Biolo, G., Cederholm, T., Cesari, M., Cruz-Jentoft, A. J., Morley, J. E., . . . Teta, D. (2013). Evidence-based recommendations for optimal dietary protein intake in older people: a position paper from the PROT-AGE Study Group. Journal of the American Medical Directors Association, 14(8), 542-559.
Bauer, J. M., Verlaan, S., Bautmans, I., Brandt, K., Donini, L. M., Maggio, M., . . . Wijers, S. L. (2015). Effects of a vitamin D and leucine-enriched whey protein nutritional supplement on measures of sarcopenia in older adults, the PROVIDE study: a randomized, double-blind, placebo-controlled trial. Journal of the American Medical Directors Association, 16(9), 740-747.
Beaudart, C., Dawson, A., Shaw, S., Harvey, N. C., Kanis, J., Binkley, N., . . . Bruyère, O. (2017). Nutrition and physical activity in the prevention and treatment of sarcopenia: systematic review. Osteoporosis International, 28(6), 1817-1833.
Beaudart, C., Rabenda, V., Simmons, M., Geerinck, A., De Carvalho, I. A., Reginster, J.-Y., . . . Bruyère, O. (2018). Effects of protein, essential amino acids, B-hydroxy B-methylbutyrate, creatine, dehydroepiandrosterone and fatty acid supplementation on muscle mass, muscle strength and physical performance in older people aged 60 years and over. A systematic review of the literature. The journal of nutrition, health & aging, 22(1), 117-130.
Berg, A. H., Combs, T. P., Du, X., Brownlee, M., & Scherer, P. E. (2001). The adipocyte-secreted protein Acrp30 enhances hepatic insulin action. Nature medicine, 7(8), 947-953.
Boirie, Y., Dangin, M., Gachon, P., Vasson, M.-P., Maubois, J.-L., & Beaufrère, B. (1997). Slow and fast dietary proteins differently modulate postprandial protein accretion. Proceedings of the National Academy of Sciences, 94(26), 14930-14935.
Bonora, E., Targher, G., Alberiche, M., Bonadonna, R. C., Saggiani, F., Zenere, M. B., . . . Muggeo, M. (2000). Homeostasis model assessment closely mirrors the glucose clamp technique in the assessment of insulin sensitivity: studies in subjects with various degrees of glucose tolerance and insulin sensitivity. Diabetes care, 23(1), 57-63.
Boudina, S., Sena, S., Theobald, H., Sheng, X., Wright, J. J., Hu, X. X., . . . Zaha, V. G. (2007). Mitochondrial energetics in the heart in obesity-related diabetes: direct evidence for increased uncoupled respiration and activation of uncoupling proteins. Diabetes, 56(10), 2457-2466.
Breton, C. (2013). The hypothalamus-adipose axis is a key target of developmental programming by maternal nutritional manipulation. J Endocrinol, 216(2), R19-31.
Buchanan, J., Mazumder, P. K., Hu, P., Chakrabarti, G., Roberts, M. W., Yun, U. J., . . . Abel, E. D. (2005). Reduced cardiac efficiency and altered substrate metabolism precedes the onset of hyperglycemia and contractile dysfunction in two mouse models of insulin resistance and obesity. Endocrinology, 146(12), 5341-5349.
Cai, L., Li, W., Wang, G., Guo, L., Jiang, Y., & Kang, Y. J. (2002). Hyperglycemia-induced apoptosis in mouse myocardium: mitochondrial cytochrome C–mediated caspase-3 activation pathway. Diabetes, 51(6), 1938-1948.
Calvani, R., Martone, A. M., Marzetti, E., Onder, G., Savera, G., Lorenzi, M., . . . Landi, F. (2014). Pre-hospital dietary intake correlates with muscle mass at the time of fracture in older hip-fractured patients. Frontiers in aging neuroscience, 6, 269.
Calvani, R., Miccheli, A., Landi, F., Bossola, M., Cesari, M., Leeuwenburgh, C., . . . Marzetti, E. (2013). Current nutritional recommendations and novel dietary strategies to manage sarcopenia. The Journal of frailty & aging, 2(1), 38.
Cannon, B., & Nedergaard, J. (2004). Brown adipose tissue: function and physiological significance. Physiological reviews, 84(1), 277-359.
Cao, H. (2014). Adipocytokines in obesity and metabolic disease. Journal of endocrinology, 220(2), T47-T59.
Cheng, I., Liao, J.-X., Ciou, J.-Y., Huang, L.-T., Chen, Y.-W., & Hou, C.-Y. (2020). Characterization of Protein Hydrolysates from Eel (Anguilla marmorata) and Their Application in Herbal Eel Extracts. Catalysts, 10(2), 205.
Correia-da-Silva, M., Sousa, E., Pinto, M. M., & Kijjoa, A. (2017). Anticancer and cancer preventive compounds from edible marine organisms. Paper presented at the Seminars in cancer biology.
Cruz-Jentoft, A. J., Landi, F., Schneider, S. M., Zúñiga, C., Arai, H., Boirie, Y., . . . Michel, J.-P. (2014). Prevalence of and interventions for sarcopenia in ageing adults: a systematic review. Report of the International Sarcopenia Initiative (EWGSOP and IWGS). Age and ageing, 43(6), 748-759.
Cuthbertson, D., Smith, K., Babraj, J., Leese, G., Waddell, T., Atherton, P., . . . Rennie, M. J. (2005). Anabolic signaling deficits underlie amino acid resistance of wasting, aging muscle. The FASEB Journal, 19(3), 422-424.
Cypess, A. M., Lehman, S., Williams, G., Tal, I., Rodman, D., Goldfine, A. B., . . . Doria, A. (2009). Identification and importance of brown adipose tissue in adult humans. New England Journal of Medicine, 360(15), 1509-1517.
Cypess, A. M., Weiner, L. S., Roberts-Toler, C., Elía, E. F., Kessler, S. H., Kahn, P. A., . . . Doria, A. (2015). Activation of human brown adipose tissue by a β3-adrenergic receptor agonist. Cell metabolism, 21(1), 33-38.
de Castro, G. S., & Calder, P. C. (2018). Non-alcoholic fatty liver disease and its treatment with n-3 polyunsaturated fatty acids. Clinical nutrition, 37(1), 37-55.
Dedeyne, L., Deschodt, M., Verschueren, S., Tournoy, J., & Gielen, E. (2017). Effects of multi-domain interventions in (pre) frail elderly on frailty, functional, and cognitive status: a systematic review. Clinical interventions in aging, 12, 873.
Després, J.-P. (2012). Body fat distribution and risk of cardiovascular disease: an update. Circulation, 126(10), 1301-1313.
Din, J. N., Harding, S. A., Valerio, C. J., Sarma, J., Lyall, K., Riemersma, R. A., . . . Flapan, A. D. (2008). Dietary intervention with oil rich fish reduces platelet-monocyte aggregation in man. Atherosclerosis, 197(1), 290-296.
Dongol, B., Shah, Y., Kim, I., Gonzalez, F. J., & Hunt, M. C. (2007). The acyl-CoA thioesterase I is regulated by PPARα and HNF4α via a distal response element in the promoter. Journal of lipid research, 48(8), 1781-1791.
Draznin, B. (2010). Mitogenic action of insulin: friend, foe or ‘frenemy’? Diabetologia, 53(2), 229.
Ebbesson, S. O., Tejero, M. E., Nobmann, E. D., Lopez‐Alvarenga, J. C., Ebbesson, L., Romenesko, T., . . . MacCluer, J. W. (2007). Fatty acid consumption and metabolic syndrome components: the GOCADAN study. Journal of the cardiometabolic syndrome, 2(4), 244-249.
Ekstedt, M., Franzén, L. E., Mathiesen, U. L., Thorelius, L., Holmqvist, M., Bodemar, G., & Kechagias, S. (2006). Long‐term follow‐up of patients with NAFLD and elevated liver enzymes. Hepatology, 44(4), 865-873.
Finck, B. N., Lehman, J. J., Leone, T. C., Welch, M. J., Bennett, M. J., Kovacs, A., . . . Lopaschuk, G. D. (2002). The cardiac phenotype induced by PPARα overexpression mimics that caused by diabetes mellitus. The Journal of clinical investigation, 109(1), 121-130.
Franklin, M. P., Sathyanarayan, A., & Mashek, D. G. (2017). Acyl-CoA thioesterase 1 (ACOT1) regulates PPARα to couple fatty acid flux with oxidative capacity during fasting. Diabetes, 66(8), 2112-2123.
Frayn, K., Karpe, F., Fielding, B., Macdonald, I., & Coppack, S. (2003). Integrative physiology of human adipose tissue. International journal of obesity, 27(8), 875-888.
Garg, A., & Misra, A. (2004). Lipodystrophies: rare disorders causing metabolic syndrome. Endocrinology and Metabolism Clinics, 33(2), 305-331.
Geerling, J. J., Boon, M. R., Kooijman, S., Parlevliet, E. T., Havekes, L. M., Romijn, J. A., . . . Rensen, P. C. (2014). Sympathetic nervous system control of triglyceride metabolism: novel concepts derived from recent studies. Journal of lipid research, 55(2), 180-189.
Grieger, J. A., & Clifton, V. L. (2015). A review of the impact of dietary intakes in human pregnancy on infant birthweight. Nutrients, 7(1), 153-178.
Haufe, S., Witt, H., Engeli, S., Kaminski, J., Utz, W., Fuhrmann, J., . . . Boschmann, M. (2016). Branched-chain and aromatic amino acids, insulin resistance and liver specific ectopic fat storage in overweight to obese subjects. Nutrition, Metabolism and Cardiovascular Diseases, 26(7), 637-642.
Heilbronn, L. K., Gan, S. K., Turner, N., Campbell, L. V., & Chisholm, D. J. (2007). Markers of mitochondrial biogenesis and metabolism are lower in overweight and obese insulin-resistant subjects. The Journal of Clinical Endocrinology & Metabolism, 92(4), 1467-1473.
Holland, W. L., Miller, R. A., Wang, Z. V., Sun, K., Barth, B. M., Bui, H. H., . . . Rutkowski, J. M. (2011). Receptor-mediated activation of ceramidase activity initiates the pleiotropic actions of adiponectin. Nature medicine, 17(1), 55-63.
Holter, M. M., Dutia, R., Stano, S. M., Prigeon, R. L., Homel, P., McGinty, J. J., . . . Laferrère, B. (2017). Glucose metabolism after gastric banding and gastric bypass in individuals with type 2 diabetes: weight loss effect. Diabetes Care, 40(1), 7-15.
Huerta-Yépez, S., Tirado-Rodriguez, A. B., & Hankinson, O. J. B. M. D. H. I. d. M. (2016). Role of diets rich in omega-3 and omega-6 in the development of cancer. 73(6), 446-456.
Hunt, M. C., & Alexson, S. E. (2002). The role Acyl-CoA thioesterases play in mediating intracellular lipid metabolism. Progress in lipid research, 41(2), 99-130.
Imai, Y., Boyle, S., Varela, G. M., Caron, E., Yin, X., Dhir, R., . . . Ahima, R. S. J. P. g. (2012). Effects of perilipin 2 antisense oligonucleotide treatment on hepatic lipid metabolism and gene expression. 44(22), 1125-1131.
Jefcoate, C. R., & Lee, J. (2018). Cholesterol signaling in single cells: lessons from STAR and sm-FISH. Journal of molecular endocrinology, 60(4), R213-R235.
Kalupahana, N. S., Claycombe, K., Newman, S. J., Stewart, T., Siriwardhana, N., Matthan, N., . . . Moustaid-Moussa, N. (2010). Eicosapentaenoic acid prevents and reverses insulin resistance in high-fat diet-induced obese mice via modulation of adipose tissue inflammation. The Journal of nutrition, 140(11), 1915-1922.
Katsanos, C. S., Kobayashi, H., Sheffield-Moore, M., Aarsland, A., & Wolfe, R. R. (2006). A high proportion of leucine is required for optimal stimulation of the rate of muscle protein synthesis by essential amino acids in the elderly. American Journal of Physiology-Endocrinology and Metabolism, 291(2), E381-E387.
Khanh, N., & Ngan, H. (2010). Current practices of rice field eel Monopterus albus (zuiew, 1973) culture in Vietnam. Aquaculture Asia Magazine, 15(3).
Kim, S.-A., Lee, J.-k., Kang, D., & Shin, S. (2019). Oily Fish Consumption and the Risk of Dyslipidemia in Korean Adults: A Prospective Cohort Study Based on the Health Examinees Gem (HEXA-G) Study. Nutrients, 11(10), 2506.
Kissebah, A. H., Vydelingum, N., Murray, R., Evans, D. J., Kalkhoff, R. K., & Adams, P. W. (1982). Relation of body fat distribution to metabolic complications of obesity. The Journal of Clinical Endocrinology & Metabolism, 54(2), 254-260.
Kullmann, S., Valenta, V., Wagner, R., Tschritter, O., Machann, J., Häring, H.-U., . . . Heni, M. (2020). Brain insulin sensitivity is linked to adiposity and body fat distribution. Nature Communications, 11(1), 1841. doi:10.1038/s41467-020-15686-y
Kumar, V., Selby, A., Rankin, D., Patel, R., Atherton, P., Hildebrandt, W., . . . Hiscock, N. (2009). Age‐related differences in the dose–response relationship of muscle protein synthesis to resistance exercise in young and old men. The Journal of physiology, 587(1), 211-217.
Létourneau, D., Lefebvre, A., Lavigne, P., & LeHoux, J.-G. (2015). The binding site specificity of STARD4 subfamily: breaking the cholesterol paradigm. Molecular and cellular endocrinology, 408, 53-61.
Landi, F., Calvani, R., Tosato, M., Martone, A. M., Ortolani, E., Savera, G., . . . Marzetti, E. J. N. (2016). Protein intake and muscle health in old age: from biological plausibility to clinical evidence. 8(5), 295.
Landi, F., Calvani, R., Tosato, M., Martone, A. M., Ortolani, E., Savera, G., . . . Marzetti, E. (2016). Anorexia of aging: risk factors, consequences, and potential treatments. Nutrients, 8(2), 69.
Landi, F., Laviano, A., & Cruz-Jentoft, A. J. (2010). The anorexia of aging: Is it a geriatric syndrome? Journal of the American Medical Directors Association, 11(3), 153-156.
Landi, F., Russo, A., Liperoti, R., Tosato, M., Barillaro, C., Pahor, M., . . . Onder, G. (2010). Anorexia, physical function, and incident disability among the frail elderly population: results from the ilSIRENTE study. Journal of the American Medical Directors Association, 11(4), 268-274.
LeMieux, M. J., Kalupahana, N. S., Scoggin, S., & Moustaid-Moussa, N. (2015). Eicosapentaenoic acid reduces adipocyte hypertrophy and inflammation in diet-induced obese mice in an adiposity-independent manner. The Journal of nutrition, 145(3), 411-417.
Li, L.-J., Gao, L.-B., Lv, M.-L., Dong, W., Su, X.-W., Liang, W.-B., & Zhang, L. (2011). Association between SNPs in pre-miRNA and risk of chronic obstructive pulmonary disease. Clinical biochemistry, 44(10-11), 813-816.
Liu, J., Wang, Y., & Lin, L. (2019). Small molecules for fat combustion: targeting obesity. Acta Pharmaceutica Sinica B, 9(2), 220-236.
Liu, S., Song, Y., Ford, E. S., Manson, J. E., Buring, J. E., & Ridker, P. M. (2005). Dietary calcium, vitamin D, and the prevalence of metabolic syndrome in middle-aged and older US women. Diabetes care, 28(12), 2926-2932.
Martone, A. M., Onder, G., Vetrano, D. L., Ortolani, E., Tosato, M., Marzetti, E., & Landi, F. (2013). Anorexia of aging: a modifiable risk factor for frailty. Nutrients, 5(10), 4126-4133.
Martínez-Fernández, L., Laiglesia, L. M., Huerta, A. E., Martínez, J. A., & Moreno-Aliaga, M. J. (2015). Omega-3 fatty acids and adipose tissue function in obesity and metabolic syndrome. Prostaglandins & other lipid mediators, 121, 24-41.
Marzetti, E., Anne Lees, H., Eva Wohlgemuth, S., & Leeuwenburgh, C. J. B. (2009). Sarcopenia of aging: underlying cellular mechanisms and protection by calorie restriction. 35(1), 28-35.
Marzetti, E., Calvani, R., Tosato, M., Cesari, M., Di Bari, M., Cherubini, A., . . . research, e. (2017). Sarcopenia: an overview. 29(1), 11-17.
Mauvoisin, D., & Mounier, C. (2011). Hormonal and nutritional regulation of SCD1 gene expression. Biochimie, 93(1), 78-86.
Miyamoto, L., Ebihara, K., Kusakabe, T., Aotani, D., Yamamoto-Kataoka, S., Sakai, T., . . . Hayashi, T. (2012). Leptin Activates Hepatic 5′-AMP-activated Protein Kinase through Sympathetic Nervous System and α1-Adrenergic Receptor a potential mechanism for improvement of fatty liver in lipodystrophy by leptin. Journal of Biological Chemistry, 287(48), 40441-40447.
Molendi-Coste, O., Legry, V., & Leclercq, I. A. (2011). Why and how meet n-3 PUFA dietary recommendations? Gastroenterology research and practice, 2011.
Moloudizargari, M., Mortaz, E., Asghari, M. H., Adcock, I. M., Redegeld, F. A., & Garssen, J. (2018). Effects of the polyunsaturated fatty acids, EPA and DHA, on hematological malignancies: a systematic review. Oncotarget, 9(14), 11858.
Morley, L. A., Gomez, T. H., Goldman, J. L., Flores, R., & Robinson, M. A. J. J. o. t. A. A. f. L. A. S. (2018). Accuracy of 5 Point-of-Care Glucometers in C57BL/6J Mice. 57(1), 44-50.
Mozaffarian, D., & Wu, J. H. (2011). Omega-3 fatty acids and cardiovascular disease: effects on risk factors, molecular pathways, and clinical events. Journal of the American College of Cardiology, 58(20), 2047-2067.
Nagy, C., & Einwallner, E. J. J. (2018). Study of in vivo glucose metabolism in high-fat diet-fed mice using oral glucose tolerance test (OGTT) and insulin tolerance test (ITT). (131), e56672.
Nair, A. B., Jacob, S. J. J. o. b., & pharmacy, c. (2016). A simple practice guide for dose conversion between animals and human. 7(2), 27.
Nanri, A., Mizoue, T., Noda, M., Takahashi, Y., Matsushita, Y., Poudel-Tandukar, K., . . . Tsugane, S. (2011). Fish intake and type 2 diabetes in Japanese men and women: the Japan Public Health Center–based Prospective Study–. The American journal of clinical nutrition, 94(3), 884-891.
Nishino, N., Tamori, Y., Tateya, S., Kawaguchi, T., Shibakusa, T., Mizunoya, W., . . . Matsuki, Y. J. T. J. o. c. i. (2008). FSP27 contributes to efficient energy storage in murine white adipocytes by promoting the formation of unilocular lipid droplets. 118(8), 2808-2821.
Odior, E. (2011). Government expenditure on health, economic growth and long waves in A CGE micro-simulation analysis: the case of Nigeria. European Journal of Economics Finance and Administrative Sciences, 3(2011), 101-113.
Olofsson, C. S., Salehi, A., Göpel, S. O., Holm, C., & Rorsman, P. (2004). Palmitate stimulation of glucagon secretion in mouse pancreatic α-cells results from activation of L-type calcium channels and elevation of cytoplasmic calcium. Diabetes, 53(11), 2836-2843.
Ooi, E. M., Ng, T. W., Watts, G. F., & Barrett, P. H. R. (2013). Dietary fatty acids and lipoprotein metabolism: new insights and updates. Current opinion in lipidology, 24(3), 192-197.
Paddon-Jones, D., & Rasmussen, B. B. (2009). Dietary protein recommendations and the prevention of sarcopenia: protein, amino acid metabolism and therapy. Current opinion in clinical nutrition and metabolic care, 12(1), 86.
Pandey, M. K., Gupta, S. C., Nabavizadeh, A., & Aggarwal, B. B. (2017). Regulation of cell signaling pathways by dietary agents for cancer prevention and treatment. Paper presented at the Seminars in cancer biology.
Pennings, B., Koopman, R., Beelen, M., Senden, J. M., Saris, W. H., & Van Loon, L. J. (2011). Exercising before protein intake allows for greater use of dietary protein–derived amino acids for de novo muscle protein synthesis in both young and elderly men. The American journal of clinical nutrition, 93(2), 322-331.
Puri, V., & Czech, M. P. J. T. J. o. c. i. (2008). Lipid droplets: FSP27 knockout enhances their sizzle. 118(8), 2693-2696.
Qureshi, G., Brown, R., Salciccioli, L., Qureshi, M., Rizvi, S., Farhan, S., & Lazar, J. (2007). Relationship between aortic atherosclerosis and non-invasive measures of arterial stiffness. Atherosclerosis, 195(2), e190-e194.
Rangel-Huerta, O. D., & Gil, A. (2018). Omega 3 fatty acids in cardiovascular disease risk factors: an updated systematic review of randomised clinical trials. Clinical nutrition, 37(1), 72-77.
Reeves, P. G. J. T. J. o. n. (1997). Components of the AIN-93 diets as improvements in the AIN-76A diet. 127(5), 838S-841S.
Rezai-Zadeh, K., & Münzberg, H. (2013). Integration of sensory information via central thermoregulatory leptin targets. Physiology & behavior, 121, 49-55.
Rimm, E. B., Appel, L. J., Chiuve, S. E., Djoussé, L., Engler, M. B., Kris-Etherton, P. M., . . . Lichtenstein, A. H. (2018). Seafood long-chain n-3 polyunsaturated fatty acids and cardiovascular disease: a science advisory from the American Heart Association. Circulation, 138(1), e35-e47.
Rizzo, G. S., & Sen, S. (2015). Maternal obesity and immune dysregulation in mother and infant: A review of the evidence. Paediatric respiratory reviews, 16(4), 251-257.
Rodriguez-Agudo, D., Calderon-Dominguez, M., Ren, S., Marques, D., Redford, K., Medina-Torres, M. A., . . . Lipids, C. B. o. (2011). Subcellular localization and regulation of StarD4 protein in macrophages and fibroblasts. 1811(10), 597-606.
Rodriguez-Agudo, D., Ren, S., Wong, E., Marques, D., Redford, K., Gil, G., . . . Pandak, W. M. J. J. o. l. r. (2008). Intracellular cholesterol transporter StarD4 binds free cholesterol and increases cholesteryl ester formation. 49(7), 1409-1419.
Rondanelli, M., Perna, S., Faliva, M. A., Peroni, G., Infantino, V., & Pozzi, R. (2015). Novel insights on intake of meat and prevention of sarcopenia: all reasons for an adequate consumption. Nutricion hospitalaria, 32(5), 2136-2143.
Rosenbaum, M., Goldsmith, R., Bloomfield, D., Magnano, A., Weimer, L., Heymsfield, S., . . . Leibel, R. L. (2005). Low-dose leptin reverses skeletal muscle, autonomic, and neuroendocrine adaptations to maintenance of reduced weight. The Journal of clinical investigation, 115(12), 3579-3586.
Schaffer, J. E. (2003). Lipotoxicity: when tissues overeat. Current opinion in lipidology, 14(3), 281-287.
Seierstad, S., Seljeflot, I., Johansen, O., Hansen, R., Haugen, M., Rosenlund, G., . . . Arnesen, H. (2005). Dietary intake of differently fed salmon; the influence on markers of human atherosclerosis. European journal of clinical investigation, 35(1), 52-59.
Sen, S., Iyer, C., Klebenov, D., Histed, A., Aviles, J. A., & Meydani, S. N. (2013). Obesity impairs cell-mediated immunity during the second trimester of pregnancy. American journal of obstetrics and gynecology, 208(2), 139. e131-139. e138.
Sharrett, A. R., Ballantyne, C., Coady, S., Heiss, G., Sorlie, P., Catellier, D., & Patsch, W. (2001). Coronary heart disease prediction from lipoprotein cholesterol levels, triglycerides, lipoprotein (a), apolipoproteins AI and B, and HDL density subfractions: The Atherosclerosis Risk in Communities (ARIC) Study. Circulation, 104(10), 1108-1113.
Shrivastava, S., & Shrivastava, P. (2018). World Health Organization releases the list of blueprint priority diseases. Journal of the Scientific Society, 45(1), 49-49.
Silbernagel, G., Kovarova, M., Cegan, A., Machann, J., Schick, F., Lehmann, R., . . . Fritsche, A. (2012). High hepatic SCD1 activity is associated with low liver fat content in healthy subjects under a lipogenic diet. The Journal of Clinical Endocrinology & Metabolism, 97(12), E2288-E2292.
Simopoulos, A. P. (2002). The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomedicine & pharmacotherapy, 56(8), 365-379.
Sims, E. A., Danforth Jr, E., Horton, E. S., Bray, G. A., Glennon, J., & Salans, L. (1973). Endocrine and metabolic effects of experimental obesity in man. Paper presented at the Proceedings of the 1972 Laurentian Hormone Conference.
Sokolowska, E., & Błachnio-Zabielska, A. U. (2019). The role of ceramides in insulin resistance. Frontiers in Endocrinology, 10, 577.
Stefan, N., Häring, H.-U., & Schulze, M. B. (2018). Metabolically healthy obesity: the low-hanging fruit in obesity treatment? The lancet Diabetes & endocrinology, 6(3), 249-258.
Stern, J. H., Rutkowski, J. M., & Scherer, P. E. (2016). Adiponectin, leptin, and fatty acids in the maintenance of metabolic homeostasis through adipose tissue crosstalk. Cell metabolism, 23(5), 770-784.
Tang, J. E., & Phillips, S. M. (2009). Maximizing muscle protein anabolism: the role of protein quality. Current Opinion in Clinical Nutrition & Metabolic Care, 12(1), 66-71.
Tarantino, G., Citro, V., & Capone, D. (2020). Nonalcoholic fatty liver disease: a challenge from mechanisms to therapy. Journal of Clinical Medicine, 9(1), 15.
Togashi, Y., Shirakawa, J., Okuyama, T., Yamazaki, S., Kyohara, M., Miyazawa, A., . . . Terauchi, Y. J. S. r. (2016). Evaluation of the appropriateness of using glucometers for measuring the blood glucose levels in mice. 6(1), 1-9.
Tolman, K. G., Fonseca, V., Dalpiaz, A., & Tan, M. H. (2007). Spectrum of liver disease in type 2 diabetes and management of patients with diabetes and liver disease. Diabetes care, 30(3), 734-743.
Trayhurn, P. (2005). Endocrine and signalling role of adipose tissue: new perspectives on fat. Acta Physiologica Scandinavica, 184(4), 285-293.
Traylor, D. A., Gorissen, S. H., & Phillips, S. M. (2018). Perspective: protein requirements and optimal intakes in aging: are we ready to recommend more than the recommended daily allowance? Advances in Nutrition, 9(3), 171-182.
Tsatsoulis, A., & Paschou, S. (2020). Metabolically Healthy Obesity: Criteria, Epidemiology, Controversies, and Consequences. Current Obesity Reports.
Unger, R. H., & Scherer, P. E. (2010). Gluttony, sloth and the metabolic syndrome: a roadmap to lipotoxicity. Trends in Endocrinology & Metabolism, 21(6), 345-352.
Van Popele, N. M., Grobbee, D. E., Bots, M. L., Asmar, R., Topouchian, J., Reneman, R. S., . . . Witteman, J. C. (2001). Association between arterial stiffness and atherosclerosis: the Rotterdam Study. Stroke, 32(2), 454-460.
Wadhera, R. K., Steen, D. L., Khan, I., Giugliano, R. P., & Foody, J. M. (2016). A review of low-density lipoprotein cholesterol, treatment strategies, and its impact on cardiovascular disease morbidity and mortality. Journal of clinical lipidology, 10(3), 472-489.
Walrand, S., Gryson, C., Salles, J., Giraudet, C., Migné, C., Bonhomme, C., . . . Boirie, Y. (2016). Fast-digestive protein supplement for ten days overcomes muscle anabolic resistance in healthy elderly men. Clinical nutrition, 35(3), 660-668.
Wang, L., Manson, J. E., Buring, J. E., Lee, I.-M., & Sesso, H. D. (2008). Dietary intake of dairy products, calcium, and vitamin D and the risk of hypertension in middle-aged and older women. Hypertension, 51(4), 1073-1079.
WHO. (2013a). Global health observatory data repository. In.
WHO. (2013b). Review of social determinants and the health divide in the WHO European Region: Copenhagen: WHO Regional Office for Europe.
WHO. (2015). WHO global strategy on people-centred and integrated health services: interim report. Retrieved from
Wolfe, R. R. (2000). Effects of insulin on muscle tissue. Current Opinion in Clinical Nutrition & Metabolic Care, 3(1), 67-71.
Wolfe, R. R. (2002). Regulation of muscle protein by amino acids. The Journal of nutrition, 132(10), 3219S-3224S.
Wu, J., Boström, P., Sparks, L. M., Ye, L., Choi, J. H., Giang, A.-H., . . . Schaart, G. (2012). Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell, 150(2), 366-376.
Xu, X., Park, J. G., So, J. S., & Lee, A. H. J. H. (2015). Transcriptional activation of Fsp27 by the liver‐enriched transcription factor CREBH promotes lipid droplet growth and hepatic steatosis. 61(3), 857-869.
Xun, P., Hou, N., Daviglus, M., Liu, K., Morris, J. S., Shikany, J. M., . . . He, K. (2011). Fish oil, selenium and mercury in relation to incidence of hypertension: a 20‐year follow‐up study. Journal of internal medicine, 270(2), 175-186.
Yang, S., Chen, C., Wang, H., Rao, X., Wang, F., Duan, Q., . . . Zou, M.-H. (2012). Protective effects of acyl-coA thioesterase 1 on diabetic heart via PPARα/PGC1α signaling. PloS one, 7(11), e50376.
Zhou, Y.-T., Grayburn, P., Karim, A., Shimabukuro, M., Higa, M., Baetens, D., . . . Unger, R. H. (2000). Lipotoxic heart disease in obese rats: implications for human obesity. Proceedings of the National Academy of Sciences, 97(4), 1784-1789.
台灣區鰻魚發展基金會. (2017). 鰻魚營養價值概述. 台灣區鰻魚發展基金會.
陳映山. (2014). 求醫就求老中醫!. 西北國際文化出版.
曾馨誼, 許瑞瑱, & 施坤河. (2018). 2018 國內保健營養食品產值暨產業概況分析. 中華穀類食品工業技術研究所.
衛生福利部食藥署. (2020). J0400201日本鰻鱺魚片(生). 食品營養成分資料庫(新版).
蕭汶淇, & 洪明秀. (2019). 非酒精性脂肪肝炎之藥物研發現況. 國家衛生研究院電子報.
賴和賢, 劉文俊, & 陳慶餘. (2004). 以 Friedewald formula 推估低密度脂蛋白膽固醇濃度在台灣的準確度研究. 臺灣家庭醫學研究, 2(1), 10-19.

電子全文 電子全文(網際網路公開日期:20260218)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top