跳到主要內容

臺灣博碩士論文加值系統

(100.28.2.72) 您好!臺灣時間:2024/06/13 12:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林泓彣
研究生(外文):LIN,HONG-WEN
論文名稱:6061鋁合金超疏水表面之 製備與特性分析
論文名稱(外文):Fabrication and Characterization of Superhydrophobic 6061 Aluminum Alloys
指導教授:吳文昌吳文昌引用關係
指導教授(外文):WU,WEN-CHANG
口試委員:孫亦文,胡啟章
口試委員(外文):SUN,I-WEN,HU, CHI-CHANG
口試日期:2021-07-12
學位類別:碩士
校院名稱:南臺科技大學
系所名稱:化學工程與材枓工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:78
中文關鍵詞:超疏水接觸角蝕刻陽極處理鋁合金
外文關鍵詞:Superhydrophobiccontact angleetchinganodizingaluminum alloy
相關次數:
  • 被引用被引用:0
  • 點閱點閱:177
  • 評分評分:
  • 下載下載:41
  • 收藏至我的研究室書目清單書目收藏:0
本研究結合蝕刻技術及陽極處理一步法,在6061鋁合金表面以硬脂酸製備出具有良好疏水性及抗腐蝕性的超疏水氧化膜。其中藉由調整陽極處理時的電解液浴溫、電壓、時間,探討對超疏水氧化層的影響。在實驗中藉由SEM及AFM等設備觀察在不同參數下,各種參數對表面形態與粗糙度的影響,並配合接觸角量測儀檢討不同條件下對於表面疏水性之影響。
結果顯示在蝕刻時間10分鐘時可製造出理想微奈米雙尺寸結構以及良好的粗糙度,陽極處理過程中發現當陽極處理時間45分鐘、電解液溫度在40℃時並且在電壓35 V時可製造出良好的超疏水氧化層,其接觸角高達162.2 ± 1.4°,並且滑動角小於3°,所展現的效果與蓮花葉片的疏水效果相當。在3.5 wt % NaCl 溶液之極化曲線測試中超疏水氧化層耐腐蝕電位為-0.849 V,耐腐蝕電流6.223×10-6A/cm2相較於未處理的鋁合金耐腐蝕電位-1.006 V,耐腐蝕電流1.211×10-4A/cm2有明顯的差異,證實超疏水氧化層具有優異的抗腐蝕能力,並且具有良好的機械穩定性及耐久性。
本研究提供一個簡單、快速的方法在鋁合金表面製造出穩固且疏水效果持久的氧化層,不僅為鋁合金增加疏水能力與抗腐蝕能力,同時也賦予了鋁合金表面自潔效果,可使鋁合金的應用範圍與附加價值更加提升。

In this study, a superhydrophobic oxide film with good hydrophobicity and corrosion resistance was prepared on 6061 aluminum alloy by etching and stearic acid anodizing in one step method. A superhydrophobic oxide film can be prepared on the surface of 6061-T6 aluminum alloy by stearic acid. Different conditions like anodizing temperature, voltage, and time were used to investigate the influence on superhydrophobic oxide film. Furthermore, the morphology of 6061 aluminum alloy were analyzed using scanning electron microscopy (SEM) and atomic force microscope(AFM). The water contact angle (WCA) was measured to study the hydrophobicity.
In the study, it was found that the ideal hierarchical micro-nano structure can be produced when the etching time in 10 minutes. These surfaces exhibit fantastic wetting behavior and increase the roughness of the surface. In different electrolyte compositions, anodizing voltage of 35 V, electrolyte temperature in 40℃ and anodizing time of 45 minutes are the optimal conditions which can prepare the best superhydrophobic oxide film on substrate. The contact angle is as high as 162.2 ± 1.4°and sliding angle lower than 3°. This effect is equivalent to the hydrophobic effect of lotus leaves.
The corrosion resistance properties were calculated from Tafel curve. As for anticorrosion properties, the Ecorr of the superhydrophobic oxide film (-0.849 V) was more positive than that of the untreated bare Al surface (-1.006 V). In addition, Icorr of the superhydrophobic oxide film (6.223×10-6A/cm2) decreased compared to the untreated bare Al surface (1.211×10-4A/cm2). It is proved that the superhydrophobic oxide layer has excellent corrosion resistance, and has good mechanical stability and durability.
This study provides a simple, and effective way to fabricate superhydrophobic surface with corrosion resistance and self-cleaning for a great number of potential applications.

摘要 iv
Abstract v
目錄 vii
表目錄 x
圖目錄 xi
第1章 緒論 1
1.1 前言 1
1.2 鋁合金分類 3
1.3 鋁合金的應用 4
1.4 文獻回顧 6
1.5 研究動機 10
第2章 原理 11
2.1 陽極處理 11
2.1.1 陽極氧化鋁 11
2.1.2 陽極氧化鋁膜形成的過程 12
2.1.3 孔洞層的生長機制 13
2.1.4 陽極氧化鋁膜之種類 13
2.1.5 陽極氧化鋁膜之特性 15
2.1.6 陽極氧化鋁膜的應用 16
2.2 潤濕性 18
2.2.1 接觸角與滑動角 18
2.2.2 潤濕性名詞之定義 19
2.2.3 疏水表面的相關理論 20
2.2.4 超疏水性表面的製作方法 23
2.3 極化曲線 23
第3章 實驗裝置與步驟 25
3.1 實驗簡介 25
3.2 實驗藥品與儀器 26
3.2.1 實驗藥品 26
3.2.2 實驗儀器 27
3.3 實驗步驟 28
3.4 儀器分析 30
3.4.1 高解析場發射型掃描式電子顯微鏡(FE-SEM)及EDS 30
3.4.2 接觸角量測儀 30
3.4.3 原子力顯微鏡 32
3.4.4 耐腐蝕性分析 33
第4章 結果與討論 35
4.1 蝕刻前處理對鋁合金表面之影響 35
4.1.1 不同蝕刻時間對鋁合金表面之影響 35
4.1.2 不同蝕刻時間對鋁合金表面粗糙度之影響 37
4.2 陽極處理與硬脂酸鋁之反應生成機構 39
4.3 超疏水鋁合金表面之元素及組成分析 41
4.4 不同陽極處理溫度對超疏水氧化鋁膜之影響 43
4.4.1 不同陽極處理溫度對鋁合金表面形態之影響 43
4.4.2 不同陽極處理溫度對鋁合金表面疏水性之影響 45
4.5 不同陽極處理電壓對超疏水氧化鋁膜之影響 47
4.5.1 不同陽極處理電壓對鋁合金表面形態之影響 47
4.5.2 不同陽極處理電壓對鋁合金表面疏水性之影響 51
4.6 不同陽極處理時間對超疏水氧化鋁膜之影響 53
4.6.1 不同陽極處理時間對鋁合金表面形態之影響 53
4.6.2 不同陽極處理時間對鋁合金表面疏水性之影響 57
4.7 耐腐蝕測試 60
4.7.1 不同陽極處理電壓對鋁合金表面耐腐蝕性之影響 60
4.7.2 不同陽極處理時間對鋁合金表面耐腐蝕性之影響 63
4.8 自潔性質及防汙效果 65
4.8.1 抗沾黏測試 65
4.8.2 自潔性測試 66
4.9 耐久性測試 68
4.9.1 機械穩定性測試 68
4.9.2 耐久度測試 70
第5章 結論 72
參考文獻 74


[1] 郭鶴桐、王為,鋁陽極氧化的回顧與展望,材料保護,1,43-45,2000。
[2] Chantal Badre , P. Dubot, Daniel Lincot, Thierry Pauporte, Mireille Turmine., Effects of nanorod structure and conformation of fatty acid self-assembled layers on superhydrophobicity of zinc oxide surface, Journal of Colloid and Interface Science, 316, 233-237, 2007.
[3] Tao Liu, Yansheng Yin, Shougang Chen, Xueting Chang, Sha Cheng., Super-hydrophobic surfaces improve corrosion resistance of copper in seawater, Electrochimica Acta, 52, 3709-3713, 2007.
[4] I-ChunChung, Chen-Kuei Chung, Yan-Kuin Su., Crack Formation and Corrosion Behavior of 6061 Al Alloy in Sulfuric Acid, Journal of the Chinese Society of Mechanical Engineers, 39, 287-293, 2018.
[5] E.A.Starke Jr., Aluminum: Alloying: Properties and Applications, Encyclopedia of Materials: Science and Technology (Second Edition), 2001.
[6] Wael Abdallah, Jill S. Buckley, Andrew Carnegie, John Edwards, Bernd Herold, Edmund Fordham, Arne Graue, Tarek Habashy, Nikita Seleznev, Claude Signer, Hassan Hussain, Bernard Montaron, Murtaza Ziauddin., Fundamentals of Wettability, Schlumberger Wettability Workshop, 2007.
[7] Thierry Darmanin and Fre´de´ ric Guittard., Superhydrophobic and superoleophobic properties in nature, Materials Today, 18, 273-285, 2015.
[8] Taolei Sun, Lin Feng, Xuefeng Gao and Lei Jiang., Bioinspired Surfaces with Special Wettability, American Chemical Society, 38, 644-652, 2005.

[9] W. Barthlott, C. Neinhuis., Purity of the sacred lotus, or escape from contamination in biological surfaces, Planta, 202, 1-8, 1997.
[10] Sumit Barthwal, Si-Hyung Lim., Rapid Fabrication of Dual-Scale Micro-nanostructured Superhydrophobic Aluminum Surface with Delayed Condensation and Ice Formation Properties, Soft Matter, 39, 1-27, 2019.
[11] Kapil Manoharan, Shantanu Bhattacharya., Superhydrophobic surfaces review:Functional application, fabrication techniques and limitations, Journal of Micromanufacturing, 2, 59-78, 2019.
[12] I. J. Polmear., Light Alloys, Arnold, 1995.
[13] Robert E, Sanders Jr., Technology Innovation in Aluminium Products, The Journal of The Minerals, 53, 21-25, 2001.
[14] E. A. Starke, S. Mridha., Aluminum Alloys: Alloy, Heat Treatment, and Temper Designation, Encyclopedia of Materials: Science and Technology, 2011.
[15] W. S. Miller, L. Zhuang, J. Bottema, A. J. Wittebrood, P. De Smet, A. Haszler, A. Vieregge., Recent development in aluminium alloys for the automotive industry, Materials Science and Engineering, 280, 37-49, 2000.
[16]Jonathan M. Cullen, Julian M. Allwood., Mapping the Global Flow of Aluminum: From Liquid Aluminum to End-Use Goods, Environmental Science & Technology, 47, 3057-3064, 2013.
[17] Kerstin Koch, Bharat Bhushan, Wilhelm Barthlott., Multifunctional surface structures of plants: An inspiration for biomimetics, Progress in Materials Science, 54, 137-178, 2009.
[18] S. Ghaffari, M. Aliofkhazraei, Gh. Barati Darband, A. Zakeri, E. Ahmadi., Review of superoleophobic surfaces: Evaluation, fabrication methods, and industrial applications, Surfaces and Interfaces, 17, 100340-100378, 2019.

[19] A. Venkateswara Raoa, Sanjay S. Latthea, Satish A. Mahadika, Charles Kappenstein., Mechanically stable and corrosion resistant superhydrophobic sol–gel coatings on copper substrate, Applied Surface Science, 257, 5772-5776, 2011.
[20] Xuewu Lia, Qiaoxin Zhang, Zheng Guo, Tian Shi, Jingui Yu,Mingkai Tang, Xingjiu Huang., Fabrication of superhydrophobic surface with improved corrosioninhibition corrosion inhibition on 6061 aluminum alloy substrate, Applied Surface Science, 342, 76-83, 2015.
[21] N. Xu, D.K. Sarkar, X-Grant Chen, W.P. Tong., Corrosion performance of superhydrophobic nickel stearate/nickel hydroxide thin films on aluminum alloy by a simple one-step electrodeposition process, Surface and Coatings Technology, 302, 173-184,2016.
[22] Yan Liua, Jindan Liu, Shuyi Li, Yaming Wang, Zhiwu Han, Luquan Ren., One-step method for fabrication of biomimetic superhydrophobicsurface on aluminum alloy, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 466, 125-131, 2015.
[23] Binbin Zhang, Xia Zhao, Yantao Li, Baorong Hou., Fabrication of durable anticorrosion superhydrophobic surfaces on aluminum substrates via a facile one-step electrodeposition approach, The Royal Society of Chemistry, 42, 35455-35465, 2016.
[24] Hamid Saffari, Beheshteh Sohrabi, Mohammad Reza Noori, Hamid Reza Talesh Bahrami., Optimal condition for fabricating superhydrophobic Aluminum surfaces with controlled anodizing processes, Applied Surface Science, 435, 1322-1328, 2018.
[25] Fengyi Wang, Zhiguang Guo., Insitu growth of durable superhydrophobic MgeAl layered double hydroxides nanoplatelets on aluminum alloys for corrosionresistance, Journal of Alloys and Compounds, 767, 382-391, 2018.
[26] G. D. Sulka., Introduction to anodization of metals, Nanostructured Anodic Metal Oxides, 2020.
[27] G.D Bengouh, J.M Stuart., Improved Process of Protecting Surfaces of Aluminium or Aluminium Alloys, British Patent, 1923.
[28] F Keller, M. S Hunter, D. L Robinson., Structural Features of Oxide Coatings on Aluminum, The Electrochemical Society, 411, 411-419, 1953.
[29] 劉如熹、辛嘉芬、陳浩銘,奈米材料的製作與應用,全華圖書股份有限公司, 2008。
[30] H Masuda, M Satoh., Fabrication of Gold Nanodot Array Using Anodic Porous Alumina as an Evaporation Mask, Japanese Journal of Applied Physics, 35, 126-129, 1996.
[31] Peng Bi, Hongliang Li, Guochen Zhao, Minrui Ran , Lili Cao, Hanjie Guo, Yanpeng Xue., Robust Super-Hydrophobic Coating Prepared by Electrochemical Surface Engineering for Corrosion Protection, Coatings, 9, 452, 2019.
[32] J. L. Iuliucci., Electrical properties of growing porous anodic, Durham, University of New Hampshire Scholars' Repository, 2011.
[33] G.Patermarakis, Development of a theory for the determination of the composition of the anodizing solution inside the pores during the growth of porous anodic Al2O3 films on aluminium by a transport phenomenon analysis, Journal of Electroanalytical Chemistry, 447, 25-41, 1998.
[34] Gerrard Eddy Jai Poinern , Nurshahidah Ali, De-rek Fawcett.,Progress in Nano-Engineered Anodic Aluminum Oxide Membrane Development, Materials, 4, 487-526, 2011.
[35] P. L. Chen, J. K. Chang, F.M. Pan, C.T. Kuo.,Tube number density control of carbon nanotubes on anodic aluminum oxide template, Diamond and Related Materials, 14, 804-809, 2005.
[36] G. D Sulka, J Kapusta-Kołodziej, A Brzózka, M Jaskuła, Fabrication of Nanoporous TiO2 by Electrochemical Anodization, Electrochimica Acta, 55, 4359-4367, 2010.
[37] 黎振杰,以陽極氧化法及聚合物塗佈製備鋁基材超疏水表面,南臺科技大學化學工程與材枓工程系碩士學位論文,2015。
[38] V. F. Henley, The Anodic Oxidation of Aluminium and Its Alloy, Pergamon , 1982.
[39] M. J. Dignam, Oxide Films on Aluminum: I . Ionic Conduction and Structure, The Electrochemical Society, 1962.
[40] M. Norek, Porous anodic alumina formed on AA6063 aluminum alloy, Inżynieria Materiałowa, 212, 163-171, 2016.
[41] 李明真,7075鋁合金陽極氧化行為與耐腐蝕性之研究,南臺科技大學化學工程與材枓工程系碩士學位論文, 2017。
[42] 尤盈喻,利用陽極氧化處理及聚合物塗佈配合超音波製備7075鋁合金超疏水表面與特性分析,南臺科技大學化學工程與材枓工程系碩士學位論文,2019。
[43] 张世举、程延海、邢方方、李梦晗、朱真才,接觸角與表面自由能的研究現狀與展望,煤礦機械,10,8-10, 2011。
[44] Yuehua Yuan, T. Randall Lee., Contact Angle and Wetting Properties, Surface Science Techniques, 51, 1-34, 2013.
[45] A. B. Naim., Pairwise Hydrophobic Interaction (HI), Springer, 1980.
[46] Qiuying Wen, Zhiguang Guo., Recent Advances in the Fabrication of Superhydrophobic, The Chemical Society of Japan, 45, 1134-1149, 2016.
[47] I. Sas, R. E. Gorga, J. A. Joines, K. A. Thoney., Literature Review on Superhydrophobic Self-Cleaning Surfaces Produced, Journal of Polymer Science Part B Polymer Physics, 50, 824-845, 2012.
[48] T. Young., III. An essay on the cohesion of fluids, The Royal Society of Chemistry, 95, 65-87, 1805.
[49] R. Wenzel., Resistance of solid surfaces to wetting by water, American Chemical Society, 28, 988-994, 1936.
[50] A. Cassie, S. Baxter.,Wettability of porous surfaces, Transactions of the Faraday society, 40, 546-551, 1944.
[51] Xiaojuan Dong, Jianbing Meng, Yizhong Hu, Xiuting Wei, Xiaosheng Luan ,Haian Zhou.,Fabrication of Self-Cleaning Superhydrophobic Surfaces with Improved Corrosion Resistance on 6061 Aluminum Alloys, Micromachines, 11, 159-172, 2020.
[52] 田福助,電化學理論與應用,新科技書局,2004。
[53] 陳士堃,雙極板腐蝕性質量測,逢甲大學-材料科學與工程學系,2007 。
[54] D. A. Jones.,Principles And Prevention Of Corrosion, Prentice Hill, 1996.
[55] 鮮祺振,腐蝕控制,徐氏基金會,1998。
[56] G. Hoogers.,Fuel Cell Technology Handbook, Chemical Rubber Company, 2002.
[57] W. F. Smith., Principles of Material Science and Engineering, McGraw-Hill, 1986.
[58] Dongguang Zhang, Linghan Li, Yali Wu, Bin Zhu, Honglie Song., One-step method for fabrication of bioinspired hierarchical superhydrophobic surface with robust stability, Applied Surface Science, 473, 493-499, 2019.
[59] Yinghao Wu, Wenjie Zhao, Wurong Wang, Wenjie Sui., Fabricating binary anti-corrosion structures containing superhydrophobic surface and sturdy barrier layer for Al alloys, The Royal Society of Chemistry, 6, 5100-5110, 2016.
[60] I. C. Chung, C. K. Chung, Y. K. Su, Effect of current density and concentration on microstructure and corrosion behavior of 6061 Al alloy in sulfuric acid, Surface and Coatings Technology, 313, 299-306, 2017.
[61] Seyed Masoud Emarati, Mahdi Mozammel., Theoretical, fundamental and experimental study of Liquid-repellency and corrosion resistance of fabricated superamphiphobic surface on Al alloy 2024, Chemical Engineering Journal, 387, 124046-124062, 2020.
[62] M. Stern, A. L. Geary., Electrochemical Polarization: I . A Theoretical Analysis of the Shape of Polarization Curves, Journal of The Electrochemical Society, 104, 56-63, 1957.
[63] Lichao Gao, Thomas J. McCarthy., A Perfectly Hydrophobic Surface (θA/θR = 180°/180°), Journal of the American Chemical Society, 128, 9052-9053, 2006.
[64] Cansen Liu, Fenghua Su, Jizhao Liang., Facile Fabrication of a Robust and Corrosion Resistant Superhydrophobic Aluminum Alloy Surface by a Novel Method, The Royal Society of Chemistry, 98, 55556-55564, 2014.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊