跳到主要內容

臺灣博碩士論文加值系統

(44.192.254.59) 您好!臺灣時間:2023/01/27 18:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:潘柏翔
研究生(外文):PAN, PO-HSIANG
論文名稱:以旋轉塗佈法製備鈣鈦礦無鉛壓電陶瓷厚膜
論文名稱(外文):Develop Perovskite Lead-Free Piezoelectric Ceramic Thick Films by the Spin Coating Method
指導教授:鄭建民鄭建民引用關係
指導教授(外文):CHENG, CHIEN-MIN
口試委員:朱聖緣陳開煌
口試委員(外文):CHU, SHENG-YUANCHEN, KAI-HUANG
口試日期:2021-01-21
學位類別:碩士
校院名稱:南臺科技大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:83
中文關鍵詞:無鉛壓電陶瓷厚膜旋轉塗佈
外文關鍵詞:lead-free piezoelectricsthick filmsspin coating
相關次數:
  • 被引用被引用:0
  • 點閱點閱:168
  • 評分評分:
  • 下載下載:41
  • 收藏至我的研究室書目清單書目收藏:0
本研究在Pt/Ti/SiO2/Si基板上利用旋轉塗佈法(Spin coating Method) 分別製作BaTiO3 (BT)及(Ba0.92Ca0.08)(Ti0.95Sn0.05)O3 (BCTS)無鉛壓電陶瓷厚膜,再把BT當作BCTS的磊晶層,並藉由XRD、FE-SEM、PFM來分析探討材料晶相、表面微觀結構以及壓電特性。本研究分為三大部分:
第一部分:將BT利用固態反應法製備無鉛壓電陶瓷粉末,以三種不同溫度進行燒結,以最佳燒結溫度的粉末通過旋轉塗佈法沉積在Pt/Ti/SiO2/Si基板上,以三種不同溫度及四種不同持溫進行快速熱退火(Rapid Thermal Annealing, RTA),形成BT/Pt/Ti/SiO2/Si結構。
第二部分:將BCTS利用固態反應法製備無鉛壓電陶瓷粉末,以四種不同溫度進行燒結,在以最佳粉末通過旋轉塗佈法沉積在Pt/Ti/SiO2/Si基板上,以四種不同溫度及四種不同持溫進行RTA,形成BCTS/Pt/Ti/SiO2/Si結構。
第三部分:延續第一及第二部分的最佳參數,將BT利用旋轉塗佈法沉積在Pt/Ti/SiO2/Si基板上,當作磊晶層,並形成BT/Pt/Ti/SiO2/Si結構,再將BCTS利用旋轉塗佈法沉積在BT/Pt/Ti/SiO2/Si基板上來當作壓電層,形成BCTS/BT/Pt/Ti/SiO2/Si結構。
由研究結果中得出BT厚膜最佳參數為:燒結溫度為1320℃/4h、RTA為700℃/10 min、結晶度為0.471、晶格常數為a = 3.985 Å、c = 4.015 Å為正方晶系、理論密度為6.075 g/cm3、平均粒徑為0.575 μm、表面粗糙度為94.1 nm、d33為44.66 pm/V、介電損耗為0.38。BCTS厚膜最佳參數為:燒結溫度為1350℃/4h、RTA為750℃/15 min、結晶度為0.583、晶格常數為a = 3.978 Å、c = 4.005 Å為正方晶系、理論密度為6.002 g/cm3、平均粒徑為0.533 μm 、表面粗糙度為127 nm、d33為98.35 pm/V、介電損耗為0.28。再以BCTS和BT的最佳參數來製作出BCTS/BT厚膜,其最佳參數為:結晶度為0.592、晶格常數為a = 3.982 Å、c = 4.011 Å為正方晶系、理論密度為6.09 g/cm3、平均粒徑為0.528 μm、表面粗糙度為113 nm、d33為121.92 pm/V、介電損耗為0.25,因此可知當加入BaTiO3當作磊晶層時,由XRD可看出是完整鈣鈦礦結構屬於正方晶相而且有效的提升BCTS/BT的結晶度以及理論密度,且由FE-SEM中也可看出有加入磊晶層的晶粒較為緻密。

By the spin coating method, BaTiO3 (BT) and Ba0.92Ca0.08Ti0.95Sn0.05O3 (BCTS) lead-free piezoelectric ceramic thick films were deposited on the Pt/Ti/SiO2/Si substrates, respectively. And we also used BT as the epitaxial layer of BCTS to improve its piezoelectric and dielectric properties. For measurement, the X-ray diffraction (XRD), field emission scanning electon microscope (FESEM), and piezoresponse force microscope (PFM) were used to analyze and observe their crystal phases, surface microstructure, and piezoelectric properties, respectively. This study will be divided into three major topics as follow:
A. By the solid state reaction, the BT lead-free piezoelectric ceramics were sintered by three different temperatures. The BT powder with optimum sintering temperature then was spin coating on the Pt/Ti/SiO2/Si substrate to form BT/Pt/Ti/SiO2/Si thick films. Finally, the rapid thermal annealing (RTA) treatment was used to improve their grain growth and performance.
B. Same as part A, but only the BT was changed to BCTS and thus form BCTS/Pt/Ti/SiO2/Si thick films.
C. Using the best fabrication parameters of part A and part B, the BT epitaxial layer was spin coating on the the Pt/Ti/SiO2/Si substrate, and then the BCTS piezoelectric layer was spin coating on the BT epitaxial layer to form a BCTS/BT/Pt/Ti/SiO2/Si thick film structure. Finally, the rapid thermal annealing (RTA) treatment was used to improve their grain growth and performance again.
For the BT/Pt/Ti/SiO2/Si thick films, the best fabrication parameters and results were: sintering parameter was 1320℃/4h; RTA parameter was 700℃/10 min; crystalline was 0.471; tetragonal phase and its lattice constants were a = 3.985 Å and c = 4.015 Å, respectively; theoretical density was 6.075 g/cm3; average grain size was 0.575 μm; surface roughness was 94.1 nm; d33 was 44.66 pm/V; dielectric loss was 0.38. For the BCTS/Pt/Ti/SiO2/Si thick films, the best fabrication parameters and results were: sintering parameter was 1350℃/4h; RTA parameter was 750℃/15 min; crystalline was 0.583; tetragonal phase and its lattice constants were a = 3.978 Å and c = 4.005 Å, respectively; theoretical density was 6.002 g/cm3; average grain size was 0.533 μm; surface roughness was 127 nm; d33 was 98.35 pm/V; dielectric loss was 0.28. However, for the BCTS/BT/Pt/Ti/SiO2/Si thick films, the best fabrication parameters and results were: crystalline was 0.592; tetragonal phase and its lattice constants were a = 3.982 Å and c = 4.011 Å, respectively; theoretical density was 6.09 g/cm3; average grain size was 0.528 μm; surface roughness was 113 nm; d33 was 121.92 pm/V; dielectric loss was 0.25. Thus, we can be concluded that as the BT was added as an epitaxial layer, the BCTS revealed complete perovskite structure of tetragonal phase, furthermore, not only the crystalline and theoretical density could be improved effectively, but also dense and uniform grains growth could be obtained.

目錄
摘要 iv
Abstract vi
誌謝 viii
目錄 ix
表目錄 xii
圖目錄 xiii
第一章 緒論 1
1.1 前言 1
1.2 含鉛壓電陶瓷 2
1.3 無鉛壓電陶瓷 4
1.3.1 鈦酸鉍鈉系無鉛壓電陶瓷 5
1.3.2 鈮酸鈉鉀系無鉛壓電陶瓷 6
1.3.3 鈦酸鋇系無鉛壓電陶瓷 6
1.4 研究動機 8
1.5 論文架構 9
第二章 理論基礎 10
2.1 壓電材料 10
2.1.1 壓電晶體 10
2.1.2 壓電陶瓷 10
2.1.3 高分子聚合物材料 11
2.1.4 壓電複合材料 11
2.1.5 正壓電效應 12
2.1.6 逆壓電效應 13
2.1.7 極化機制 14
2.1.8 壓電常數 17
2.1.9 晶體結構與特性 19
2.2 燒結原理 21
2.3 鈦酸鋇基本性質 23
2.4 沉積原理 26
2.5 射頻磁控濺鍍原理 28
2.5.1 磁控濺鍍 29
2.5.2 射頻濺鍍 29
2.6 溶膠凝膠法原理 30
2.7 旋轉塗佈法原理 31
2.8 快速熱退火原理 32
2.9 電極材料對薄(厚)膜性質的影響 33
2.10 X射線繞射儀原理 34
2.11 高解析場發射掃描式電子顯微鏡原理 36
2.12 原子力顯微鏡原理 36
2.13 壓電式電子顯微鏡原理 39
第三章 實驗方法 40
3.1 實驗流程 41
3.1.1 基板清洗 41
3.1.2 鍍製黏著層與下電極層 42
3.1.3 無鉛壓電陶瓷前驅溶液配置 43
3.1.4 旋轉塗佈與快速熱退火 45
3.2 分析儀器 46
3.2.1 X射線繞射儀 46
3.2.2 高解析場發射掃描式電子顯微鏡 46
3.2.3 原子力顯微鏡 46
3.2.4 阻抗分析儀 46
3.2.5 壓電式原子力顯微鏡 47
第四章 結果與討論 48
4.1 BT無鉛壓電陶瓷厚膜特性比較 49
4.2 BCTS無鉛壓電陶瓷厚膜特性比較 58
4.3 無鉛壓電陶瓷厚膜特性比較 65
第五章 結論與未來展望 70
5.1 結論 70
5.2 未來展望 72
參考文獻 73

[1]葉思武,新陶瓷學,復文書局,第66-78頁,1992年。
[2]P. S. Anderson, S. Guerin, B. E. Hayden, M. A. Khan, A. J. Bell, Y. Han, M. Pasha, K. R. Whittle, and I. M. Reaney, “Synthesis of the ferroelectric solid solution, Pb(Zr1-xTix)O3 on a single substrate using a modified molecular beam epitaxy technique,” Appl. Phys. Lett., Vol. 90, pp. 159-162, 2007.
[3]N. Izyumskaya, V. Avrutin, X. Gu, B. Xiao, S. Chevtchenko, J. G. Yoon, and H. Morkoc, “Structural and electrical properties of Pb(Zr, Ti)O3 films grown by molecular beam epitaxy,” Appl. Phys. Lett., Vol. 91, pp. 182906-1- 182906-3, 2007.
[4]G. Zhou, A. V. Cuervo Covian, K. H. Lee, H. Han, C. S. Tan, J. Liu, and G. Xia “Improved thin film quality and photoluminescence of n-doped epitaxial germanium-on-silicon using MOCVD,” Opt. Mater. Express, Vol. 10, no. 1, pp. 1-13, 2020.
[5]Y. Zhang, Z. Chen, W. Li, H. Lee, M. R. Karim, A. R. Arehart, S. A. Ringel, S. Rajan, H. Zhao, “Probing unintentional Fe impurity incorporation in MOCVD homoepitaxy GaN:Toward GaN vertical power devices,” J. Appl. Phys., Vol. 127, no. 21, pp. 215707-1-215707-9, 2020.
[6]R. Cecchini, C. Martella, C. Wiemer, A. Lamperti, A. Debernardi, L. Lazzarini, A. Molle, and M. Longo, “Vapor phase epitaxy of antimonene-like nanocrystals on germanium by an MOCVD process,” Appl. Surf. Sci., Vol. 279, pp. 147729-1-147729-6, 2021.
[7]J. Li, T. Luo, H. Wen, J. Deng, M. Wu, Y. Li, G. Wang and Y. Pei, “Design and regularity research of MOCVD heating plate based on experiments and simulations,” Vacuum., Vol. 174, pp. 109174-1-109174-9, 2020.
[8]J. Pries, S. Wei, F. Hoff, P. Lucas, and M. Wuttig, “Control of effective cooling rate upon magnetron sputter deposition of glassy Ge15Te85,” Scr. Mater., Vol. 178, pp. 223-226, 2020.
[9]H. Jacobsen, H. J. Quenzer, B. Wagner, K. Ortner, and T. Jung, “Thick PZT layers deposited by gas flow sputtering,” Sens. Actuat., Vol. 135, pp. 23-27, 2007.
[10]N. Saoula, L. Bait, S. Sail, M. Azibi, A. Hammouche, and N. Madaoui, “Reactive magnetron sputter deposition of Titanium oxynitride TiNxOy coating:influence of substrate bias voltage on the structure, composition, and properties,” Prot. Met. Phys. Chem. Surf., Vol. 55, no. 4, pp. 743-747, 2019.
[11]K. Tanaka, J. Fankhauser, H. Zaid, A. Aleman, M. Sato, D. Yu, A. Ebnonnasir, C. Li, M. Kobashi, M. Goorsky, S. Kodambaka, “Kinetics of Zr-Al intermetallic compound formation during ultra-high vacuum magnetron sputter-deposition of Zr/Al2O3(0001) thin films,” Acta Mater., Vol. 152, pp. 34-40, 2018.
[12]P. Xiao, Y. Zhou, L. Gan, Z. Pan, J. Chen, D. Luo, R. Yao, J. Chen, H. Liang, and H. Ning, “Study of inkjet-printed silver films based on nanoparticles and metal-organic decomposition inks with different curing methods,” Micromachines, Vol. 11, no. 7, pp. 677-1-11, 2020.
[13]C. L. Dai, F. Y. Xiao, C. Y. Lee, Y. C. Cheng, P. Z. Chang, and S. H. Chang, “Thermal effects in PZT: diffusion of Titanium and recrystallization of platinum,” Mater. Sci. Eng. Vol. 384, pp. 57-63, 2004.
[14]M. Yasuhito, N. Junichi, Y. Lwao, N.-H. Daisuke, and T. Tetsuo, “Fabrication of BaSnO3 thin films on SiO2 glass substrates using excimer laser-assisted metal organic decomposition,” Appl. Surf. Sci., Vol. 506, pp. 144915-1-144915-24, 2019.
[15]W. Li, J. Hao, W. Bai, and J. Zhai, “Orientation dependence of the dielectric and piezoelectric properties for the Ba0.98Ca0.02Ti0.96Sn0.04O3 thin films,” J. Sol-Gel Sci. Technol., Vol. 66, pp. 220-224, 2013.
[16]W. Zhang, J. Bao, H. Zhu, X. Zhang, Z. jiang, and F. Hu, “Highly(h00)-oriented KNN homo-multilayer films grown on Si by sol-gel process via an alternating non-alkoxide and alkoxide route,” Ceram. Int., Vol. 47, no. 1, pp. 87-93, 2021.
[17]R. Balachandran, H. K. Yow, M. Jayachandran, Wan Yusmawati Wan Yusof, and V. Saaminathan, “Particle size analysis of Barium Titanate powder by slow-rate Sol-Gel process route,” IEEE International Conference on Semiconductor Electronics (ICSE), pp. 406-409, 2006.
[18]黃彥翔,新式真空滲透法備製高品質PZT壓電厚膜與特性分析,國立成功大學奈米暨微機電系統工程系碩士論文,第1-4頁,2009年。
[19]E. Cross, “Lead-Free at Last,” Nature, Vol. 432, no. 7013, pp. 24-25, 2004.
[20]X. Gao, C. Qiu, G. Li, M. Ma, S. Yang, Z. Xu, and F. Li, “High output power density of a Shear-Mode piezoelectric energy harvester based on Pb(In1/2Nb2/3)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals,” Appl. Energy, Vol. 271, pp. 115193, 2020.
[21]A. J. Moulson and J. M. Herbert, “Electroceramics,” 2nd Ed., John Wiley and Sons, Inc., New York, Ch. 6, 1996.
[22]F. Gao, L. H. Cheng, R. Z. Hong, J. Liu, C. J. Wang, and C. Tian, “Crystal structure and piezoelectric properties of xPb(Mn1/3Nb2/3)O3 - (0.2-x)Pb(Zn1/3Nb2/3)O3 - 0.8Pb(Zr0.52Ti0.48)O3 ceramics,” Ceram. Int., Vol. 35, pp. 1719-1723, 2009.
[23]Z. Yang, X. Chao, R. Zhang, Y. Chang, and Y. Chen, “Fabrication and electrical characteristics of piezoelectric PMN-PZN-PZT ceramic transformers,” Mater. Sci. Eng. B., Vol. 138, pp. 277-283, 2007.
[24]Z. Yang, X. Zong, H. Li, and Y. Chang, “Structure and electrical properties of new Pb(Zr, Ti)O3 - Pb(Fe2/3W1/3)O3 - Pb(Mn1/3Nb2/3)O3 ceramics,” Mater. Lett., Vol. 59, pp. 3476-3480, 2005.
[25]H. Zhang, J. Zhou, J. Shen, W. Jin, J. Zhou, and W. Chen, “High-field nonlinear properties and characteristics of domain wall motion in Fe2O3 doped PMnS-PZN-PZT ceramic,” Ferroelectrics, Vol. 560 pp.110-122, 2020.
[26]吳朗,電子陶瓷,全欣資訊圖書,第8-10,79-81頁,1992年。
[27]J. Wu, Y. Wang, D. Xiao, J. Zhu, P. Yu, L. Wu, and W. Wu, “Piezoelectric properties of LiSbO3-Modified (K0.48Na0.52)NbO3 lead-free ceramics,” Jpn. J. Appl. Phys., Vol. 46, pp. 7375-7377, 2007.
[28]Y. Wantanabe, K. Sumida, S. Yamada, S. Sago, S. I. Hirano, and K. Kikuta, “Effect of Mn-doping on the piezoelectric properties of (K0.5Na0.5)(Nb0.67Ta0.33)O3 lead-free ceramics,” Jpn. J. Appl. Phys., Vol. 47, pp. 3556-3558, 2008.
[29]Y. F. Chang, Z. P. Yang, and L. L. Wei, “Microstructure density and dielectric properties of lead-free (K0.44Na0.52Li0.04)(Nb0.96-xTaxSb0.04)O3 piezoelectric ceramics,” J. Am. Ceram. Soc., Vol. 90, pp. 1656-1658, 2007.
[30]D. M. Lin, K. W. Kwok, K. H. Lam, and H. L. W. Chan, “Structure and electrical properties of K0.5Na0.5NbO3-LiSbO3 lead-free piezoelectric ceramics,” J. Appl. Phys., Vol. 101, pp. 074111, 2007.
[31]S. J. Zhang, R. Xia, T. R. Shrout, G. Z. Zang, and J. F. Wang, “Piezoelectric properties in perovskite 0.948(K0.5Na0.5)NbO3-0.052LiSbO3 lead-free ceramics,” J. Appl. Phys., Vol. 100, pp. 104108, 2006.
[32]R. Z. Zuo, X. S. Fang, and C. Ye, “Phase structures and electrical properties of new lead-free (Na0.5K0.5)NbO3 - (Bi0.5Na0.5)TiO3 ceramics,” Appl. Phys. Lett., Vol. 90, pp. 092904, 2007.
[33]J. Wu, D. Xiao, W. Wu, J. Zhu, and J. Wang, “Effect of dwell time during sintering on piezoelectric properties of (Ba0.85Ca0.15)(Ti0.9Zr0.1)O3 lead-free ceramics,” J. Alloys Comp., Vol. 509, pp. L359-L361, 2011.
[34]S. Su, R. Zuo, S. Lu, Z. Xu, X. Wang, and L. Li, “Poling dependence and stability of piezoelectric properties of Ba(Zr0.2Ti0.8)O3 - (Ba0.7Ca0.3)TiO3 ceramics with huge piezoelectric coefficients,” Curr. Appl. Phys., Vol. 11, pp. S120-S123, 2011.
[35]B. Andersen, E. Ringgaard, T. Bove, A. Albareda, and R. Pérez, “Performance of piezoelectric ceramic multilayer components based on head and soft PZT,” ResearchGate, Actuators 2000 Seventh Int. Conf. New Actuators, pp. 423-426, 2000.
[36]Y. Nakashima, W. Sakamoto, H. Maiwa, T. Shimura, and T. Yogo, “Lead-free piezoelectric (K, Na)NbO3 thin films derived from metal alkoxide precursors,” Jpn. J. Appl. Phy., Vol. 46, pp. L311-L313, 2007.
[37]T. Li, G. Wang, K. Li, G. Du, Y. Chen, Z. Zhou, D. Rémiens, and X. Dong, “Electrical properties of lead-free KNN film on SRO/STO by RF magnetron sputtering,” Ceram. Int., Vol. 40, pp. 1195-1198, 2014.
[38]M. D. Nguyen, M. Dekkers, E. P. Houwman, H. T. Vu, H. N. Vu, and G. Rijnders, “Lead-free (K0.5Na0.5)NbO3 thin films by pulsed laser deposition driving MEMS-based piezoelectric cantilevers,” Mater. Lett., Vol. 164, pp. 413-416, 2016.
[39]L. Wang, K. Yao, and W. Ren, “Piezoelectric K0.5Na0.5NbO3 thick films derived from polyvinylpyrrolidone-modified chemical solution deposition,” Appl. Phys. Lett., Vol. 93, pp. 092903, 2008.
[40]P. C. Goh, K. Yao, and Z. Chen, “Lead-free piezoelectric (K0.5Na0.5)NbO3 thin films derived from chemical solution modified with stabilizing agents,” Appl. Phys. Lett., Vol. 97, pp. 102901, 2010.
[41]W. L. Li, T. D. Zhang, D. Xu, Y. F. Hou, W. P. Cao, and W. D. Fei, “LaNiO3 seed layer induced enhancement of piezoelectric properties in (100)-oriented (1-x)BZT-xBCT thin films,” J. Eur. Ceram. Soc., Vol. 35, pp. 2041-2049, 2015.
[42]A. Piorra, A. Petraru, H. Kohlstedt, M. Wuttig, and E. Quandt, “Piezoelectric properties of 0.5(Ba0.7Ca0.3TiO3)-0.5[Ba(Zr0.2Ti0.8)O3] ferroelectric lead-free laser deposition thin films,” J. Appl. Phys., Vol. 109, no. 10, pp. 104101, 2011.
[43]X. J. Zheng, Y. F. Rong, D. Z. Zhang, T. Zhang, and L. He, X. Feng, “Enhancement on effective piezoelectric coefficient d33 of Bi3.15Dy0.85Ti3O12 ferroelectric thin films,” Mater. Lett., Vol. 64, pp.618-621, 2010.
[44]A. Jalalian, A. M. Grishin, X. L. Wang, Z. X. Cheng, and S. X. Dou, “Large piezoelectric coefficient and ferroelectric nanodomain switching in Ba(Ti0.8Zr0.2)O3-0.5(Ba0.7Ca0.3)TiO3 nanofibers and thin film,” Appl. Phys. Lett., Vol. 104, pp. 103112-1-103112-5, 2014.
[45]W. Li, J. Hao, W. Bai and J. Zhai, “Orientation dependence of the dielectric and piezoelectric properties for the Ba0.98Ca0.02Ti0.96Sn0.04O3 thin films,” J. Sol-Gel Sci. Technol., pp. 220-224, 2013.
[46]Y. Hiruma, H. Nagata, and T. Takenaka, “Thermal depoling process and piezoelectric properties of Bismuth Sodium Titanate ceramics,” J. Appl. Phys., Vol. 105, pp. 084112, 2009.
[47]王永齡,功能陶瓷性能與應用,科學出版社,第1-5頁,2003年。
[48]T. Takenaka and H. Nagata, “Lead-free piezoelectric ceramics of (Bi1/2Na1/2)TiO3 - 1/2(Bi2O3Sc2O3) system,” J. Eur. Ceram. Soc., Vol. 25, pp. 2693-2700, 2005.
[49]A. Sanson and R. W. Whatmore, “Properties of Bi4Ti3O12 - (Na1/2Bi1/2) TiO3 piezoelectric ceramics,” Jpn. J. Appl. Phys., Vol. 41, pp. 7127-7130, 2002.
[50]劉國雄,鄭晃忠,李勝隆,林樹均,葉均蔚,工程材料科學,全華圖書,第85-90頁,2006年。
[51]B. Jaffe and S. Marzullo, “Properties of piezoelectric ceramic in the solid-solution series lead Titanate-lead Zirconate-lead oxide: Tin oxide and lead Titanate-lead Hafnate,” J. Res. Natl. Bur. Stand., Vol. 55, pp. 239-245, 1955.
[52]H. Ishii, H. Nagata, and T. Takenaka, “Morphotropic phase boundary and electrical properties of Bismuth sodium Titanate-potassium Niobate solid-solution ceramics,” Jpn. J. Appl. Phys., Vol. 40, pp. 5660-5663, 2001.
[53]Kittel(編),洪連輝(譯),劉立基(譯),魏榮君(翻譯),固態物理導論,高立圖書,第9-22頁,2009年。
[54]詹志揚,BaTi0.95Zr0.05O3之添加對Li0.03(K0.5Na0.5)0.97Sb0.04Nb0.96O3無鉛壓電陶瓷之研究,南台科技大學電子工程系碩士論文,第8頁,2014年。
[55]L. Egerton and D. M. Dillon, “Piezoelectric and dielectric properties of ceramics 51 in system potassium-sodium Niobate,” J. Am. Ceram. Soc., Vol. 42, pp. 438-442, 1959.
[56]M. Takhashi, N. Tsubouchi, M. Ypnezawa, T. Ohno, and T. Akashi, “Piezoelectric properties of ternary ceramic compounds consisting either of Pb(Mn1/3Nb2/3)O3 or Pb(Mn1/2Nb1/2)O3 with PbTiO3 - PbZrO3,” J. J. Soc. Powder and Power Metall., Vol. 20, pp. 274-284, 1974.
[57]W. J. Huppmann and G. Petzow, “Sintering process,” New York: Plenum Press, pp. 189, 1980.
[58]T. Takenaka, H. Nagata, and Y. Hiruma, “Current developments and prospective of lead-free piezoelectric ceramics,” Jpn. J. Appl. Phys., Vol. 47, pp. 3787-3801, 2008.
[59]P. Yang, K. M. Kim, Y.-G. Joh, D. H. Kim, J.-Y. Lee, J. Zhu, and H. Y. Lee, “Effect of BaTiO3 buffer layer on multiferroic properties of BiFeO3 thin films,” J. Appl. Phys., Vol. 105, pp. 061618, 2009.
[60]Y. Gagou, J. Belhadi, B. Asbani, M. E. Marssi, J.-L. Dellis, Y. I. Yuzyuk, I. P. Raevski, and J. F. Scott, “Intrinsic dead layer effects in relaxed epitaxial BaTiO3 thin film grown by pulsed laser deposition,” Mater. Des., Vol. 122, pp. 157-163, 2017.
[61]J. Yao, M. Ye, Y. Sun, Y. Yuan, H. Fan, Y. Zhang, C. Chen, C. Liu, K. Qu, G. Zhong, T. Jia, Z. Fan, S. Ke, Y. Zhao, C. Duan, P. Gao, and J. Li, “Atomic-scale insight into the reversibility of polar order in ultrathin epitaxial Nb:SrTiO3/BaTiO3 heterostructure and its implication to resistive switching,” Acta Mater., Vol. 188, pp. 23-29, 2020.
[62]B. M. Coffey, E. L. Lin, P.-Y. Chen, and J. G. Ekerdt, “Area-selective atomic layer deposition of crystalline BaTiO3,” Chem. Mater., Vol. 31, pp. 5558-5565, 2019.
[63]J. Pawlak, A. Zywczak, G. Szwachta, J. Kanak, M. Gajewska, and M. Przybylski, “Structure and magnetism of LSMO/BTO/MgO/LSMO multilayers,” Acta Phys. Pol., Vol. 133, pp. 548-551, 2017.
[64]L. Zhao, B. P. Zhang, N. Wang, and J. Y. Chen, “High piezoelectric in CuO-modified Ba(Ti0.9Sn0.1)O3 lead-free ceramics with modulated phase structure,” J. Eur. Ceram. Soc., Vol. 37, no. 4, pp. 1411-1419, 2016.
[65]陳展慶,以溶膠凝膠法製備非當量鈮酸鈉鉀與鋰摻雜之壓電薄膜及其特性探討,國立成功大學電機工程研究所碩士論文,第8頁,2014。
[66]周卓明,壓電力學,全華科技圖書股份有限公司,第一版,第1-13到1-17頁、第1-25頁,2003年。
[67]L. Egerton and D. M. Dillon, “Piezoelectric and dielectric properties of ceramics 51 in system potassium-sodium Niobate,” J. Am. Ceram. Soc., Vol 42, pp. 438-442, 1959.
[68]I. Bunge and M. Popescu, “Physics of solid dielectric,” Elsevier Amsterdam, New York, Ch. 6, pp. 207-208, 1984.
[69]李建邦,摻雜不同維度奈米碳材之液晶的低頻介電特性,國立交通大學影像與生醫光電研究所碩士論文,第11-12頁,2013。
[70]欒桂東、張金鋒、王仁乾,壓電換能器和壓電換能器陣,北京大學出版社,第43-74頁 1987年。
[71]陳穎杰,無鉛壓電陶瓷微壓力厚膜之研究,南臺科技大學電子工程系碩士論文,第13-14頁,2020年。
[72]W. Yunyi, Z. Duanming, Y. Jun, and W. Yunbo, “Effect of Bi2O3 seed layer on crystalline orientation and ferroelectric properties of Bi3.25La0.75 Ti3O12 thin films prepared by RF-magnetron sputtering method”, J. Appl. Phys., Vol. 105, pp. 061613, 2009.
[73]汪建民,陶瓷技術手冊,中華民國產業科技發展協進會,中華民國冶金學會,第533頁,1999年。
[74]李偉齊,(Ba0.7Sr0.3)(Ti0.9Zr0.1)O3薄膜介電特性之研究,南台科技大學電子工程系碩士論文,第7-8頁,2015年。
[75]王俞婷,Mg4Nb2O9相陶瓷填入對低溫共燒陶瓷基板之影響研究,國立交通大學材料科學與工程系碩士論文,第11頁,2006年。
[76]R. M. German, “Liquid phase sintering,” Plenum Press, pp. 65-151, 1985.
[77]J. Nowotny, “Electronic ceramic materials,” Trans. Tech. Publications. Ltd., 1991.
[78]邱碧秀,電子陶瓷材料,徐氏基金會,1990。
[79]吳朗,電子陶瓷,全欣資訊圖書,第20-88頁,1994。
[80]H. F. Kay and P. Vousden, “Symmetry changes in Barium Titanate at low temperature and their relation to its ferroelectric properties,” Phil. Mag., pp. 1019-1040, 1949.
[81]吳朗,電工材料,全華出版,1997。
[82]郭益男,反應性射頻磁控濺鍍氧化鋅薄膜之光激發光特性之研究,中山大學電機工程系碩士論文,第60頁,2004年。
[83]H. F. Cheng, “Structural and optical properties of laser deposited ferroelectric (Sr0.2Ba0.8)TiO3 thin films,” J. Appl. Phys., Vol. 79, pp. 7965-7971, 1996.
[84]K. Tsuchiya, T. Kitagawa and E. Nakamachi, “Development of RF magnetron sputtering method to fabricate PZT thin film actuator,” Precision Eng., pp. 258-264, 2003.
[85]汪建民,陶瓷技術手冊,中華民國產業科技發展協進會,中華民國冶金學會,第536頁,1999。
[86]A. Jadhavar, A. Bhorde, V. Waman, A. Funde, A. Pawbake, R. Wayar, D. Patil, and S. Jadkar, “Synthesis of Indium Tin oxide (ITO) as a transparent conducting layer for solid cells by sputtering,” Int. J. Eng. Sci., Vol. 3, pp. 126-130, 2015.
[87]游毓珈,熱處理效應對溶膠凝膠法製備之氧化鎢薄膜電致色變特性分析,國立臺灣師範大學工業教育學系碩士論文,第15-16頁,2007年。
[88]高慶華,鋯鈦酸鉛(Pb(ZrTi)O3,PZT)奈米管鐵電極化特性研究,國立成功大學物理研究所碩士論文,2008年。
[89]D. Bornside, C. Macosko and L. Scriven, “Spin costing: one-dimensional model,” J. Appl. Phys., Vol. 66, pp. 5185-5193, 1989.
[90]江漢翔,以快速熱退火加強鐵鈀薄膜磁特性之研究,國立台灣科技大學機械工程系碩士論文,第23-24頁,2013年。
[91]鄭守智,快速熱退火於矽晶碇線鋸加工之製程影響研究,國立台灣科技大學機械工程系碩士論文,第59頁,2012年。
[92]A. Grill, W. Kane, J. Viggiano, M. Brady, and R. Laibowitz, “Base electrodes for high dielectric constant oxide materials in silicon technology,” J. Mater. Res., vol. 7, No. 12, pp. 3260-3265, 1992.
[93]余人皓,(BaTiO3/BaSnO3)n多層膜結構對BaTiO3薄膜結構和電性影響之研究,國立成功大學材料科學及工程學系碩士論文,第24頁,2009年。
[94]張智凱,少量LiF摻雜對(Ba0.95Ca0.05)(Ti0.93Sn0.07)O3無鉛壓電陶瓷與薄片特性之影響,南臺科技大學電子工程系碩士論文,第22頁,2018年。
[95]許家源,以原子力顯微鏡之區域陽極氧化技術製作氧化鎳奈米結構的電阻式隨機存取記憶元件,國立臺灣海洋大學光電科學系碩士論文,第30頁,2013年。
[96]邱彥凱,多頭原子力顯微鏡探針應用於奈米及動態檢測,國立清華大學工程與系統科學系碩士論文,第19頁,2015年。
[97]劉凡瑋,原子力顯微鏡矽探針在掃描中之相變化研究,國立成功大學材料科學及工程學系碩士論文,第4-9頁,2011年。
[98]R. P. Herber, G. A. Schneider, S. Wagner, and M. J. Hoffmann, “Characterization of ferroelectric domains in morphotropic potassium sodium niobate with scanning probe microscopy,” Appl. Phys. Lett., pp. 252905-1-252905-3, 2007.
[99]P. Guthner, and K. Dransfeld, “Local poling of ferroelectric polymers by scanning force microscopy,” Appl. Phys. Lett., pp. 1137-1139, 1992.
[100]陳聯祥,以射頻磁控濺鍍技術製備鋯鈦酸鋇鐵電薄膜記憶元件之研究,國立中山大學電機工程系碩士論文,第9頁,2005年。
[101]K. Inabe, S. Kobayashi, K. Uehara, A. Okada, S. L. Reddy, and T. Endo, “High resolution X-Ray diffraction analyses of (La, Sr)MnO3/ZnO/Sapphire(0001) double heteroepitaxial films,” Adv. Mater. Phys. Chem., Vol. 3, pp. 72-89, 2013.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊