[1]葉思武,新陶瓷學,復文書局,第66-78頁,1992年。
[2]P. S. Anderson, S. Guerin, B. E. Hayden, M. A. Khan, A. J. Bell, Y. Han, M. Pasha, K. R. Whittle, and I. M. Reaney, “Synthesis of the ferroelectric solid solution, Pb(Zr1-xTix)O3 on a single substrate using a modified molecular beam epitaxy technique,” Appl. Phys. Lett., Vol. 90, pp. 159-162, 2007.
[3]N. Izyumskaya, V. Avrutin, X. Gu, B. Xiao, S. Chevtchenko, J. G. Yoon, and H. Morkoc, “Structural and electrical properties of Pb(Zr, Ti)O3 films grown by molecular beam epitaxy,” Appl. Phys. Lett., Vol. 91, pp. 182906-1- 182906-3, 2007.
[4]G. Zhou, A. V. Cuervo Covian, K. H. Lee, H. Han, C. S. Tan, J. Liu, and G. Xia “Improved thin film quality and photoluminescence of n-doped epitaxial germanium-on-silicon using MOCVD,” Opt. Mater. Express, Vol. 10, no. 1, pp. 1-13, 2020.
[5]Y. Zhang, Z. Chen, W. Li, H. Lee, M. R. Karim, A. R. Arehart, S. A. Ringel, S. Rajan, H. Zhao, “Probing unintentional Fe impurity incorporation in MOCVD homoepitaxy GaN:Toward GaN vertical power devices,” J. Appl. Phys., Vol. 127, no. 21, pp. 215707-1-215707-9, 2020.
[6]R. Cecchini, C. Martella, C. Wiemer, A. Lamperti, A. Debernardi, L. Lazzarini, A. Molle, and M. Longo, “Vapor phase epitaxy of antimonene-like nanocrystals on germanium by an MOCVD process,” Appl. Surf. Sci., Vol. 279, pp. 147729-1-147729-6, 2021.
[7]J. Li, T. Luo, H. Wen, J. Deng, M. Wu, Y. Li, G. Wang and Y. Pei, “Design and regularity research of MOCVD heating plate based on experiments and simulations,” Vacuum., Vol. 174, pp. 109174-1-109174-9, 2020.
[8]J. Pries, S. Wei, F. Hoff, P. Lucas, and M. Wuttig, “Control of effective cooling rate upon magnetron sputter deposition of glassy Ge15Te85,” Scr. Mater., Vol. 178, pp. 223-226, 2020.
[9]H. Jacobsen, H. J. Quenzer, B. Wagner, K. Ortner, and T. Jung, “Thick PZT layers deposited by gas flow sputtering,” Sens. Actuat., Vol. 135, pp. 23-27, 2007.
[10]N. Saoula, L. Bait, S. Sail, M. Azibi, A. Hammouche, and N. Madaoui, “Reactive magnetron sputter deposition of Titanium oxynitride TiNxOy coating:influence of substrate bias voltage on the structure, composition, and properties,” Prot. Met. Phys. Chem. Surf., Vol. 55, no. 4, pp. 743-747, 2019.
[11]K. Tanaka, J. Fankhauser, H. Zaid, A. Aleman, M. Sato, D. Yu, A. Ebnonnasir, C. Li, M. Kobashi, M. Goorsky, S. Kodambaka, “Kinetics of Zr-Al intermetallic compound formation during ultra-high vacuum magnetron sputter-deposition of Zr/Al2O3(0001) thin films,” Acta Mater., Vol. 152, pp. 34-40, 2018.
[12]P. Xiao, Y. Zhou, L. Gan, Z. Pan, J. Chen, D. Luo, R. Yao, J. Chen, H. Liang, and H. Ning, “Study of inkjet-printed silver films based on nanoparticles and metal-organic decomposition inks with different curing methods,” Micromachines, Vol. 11, no. 7, pp. 677-1-11, 2020.
[13]C. L. Dai, F. Y. Xiao, C. Y. Lee, Y. C. Cheng, P. Z. Chang, and S. H. Chang, “Thermal effects in PZT: diffusion of Titanium and recrystallization of platinum,” Mater. Sci. Eng. Vol. 384, pp. 57-63, 2004.
[14]M. Yasuhito, N. Junichi, Y. Lwao, N.-H. Daisuke, and T. Tetsuo, “Fabrication of BaSnO3 thin films on SiO2 glass substrates using excimer laser-assisted metal organic decomposition,” Appl. Surf. Sci., Vol. 506, pp. 144915-1-144915-24, 2019.
[15]W. Li, J. Hao, W. Bai, and J. Zhai, “Orientation dependence of the dielectric and piezoelectric properties for the Ba0.98Ca0.02Ti0.96Sn0.04O3 thin films,” J. Sol-Gel Sci. Technol., Vol. 66, pp. 220-224, 2013.
[16]W. Zhang, J. Bao, H. Zhu, X. Zhang, Z. jiang, and F. Hu, “Highly(h00)-oriented KNN homo-multilayer films grown on Si by sol-gel process via an alternating non-alkoxide and alkoxide route,” Ceram. Int., Vol. 47, no. 1, pp. 87-93, 2021.
[17]R. Balachandran, H. K. Yow, M. Jayachandran, Wan Yusmawati Wan Yusof, and V. Saaminathan, “Particle size analysis of Barium Titanate powder by slow-rate Sol-Gel process route,” IEEE International Conference on Semiconductor Electronics (ICSE), pp. 406-409, 2006.
[18]黃彥翔,新式真空滲透法備製高品質PZT壓電厚膜與特性分析,國立成功大學奈米暨微機電系統工程系碩士論文,第1-4頁,2009年。[19]E. Cross, “Lead-Free at Last,” Nature, Vol. 432, no. 7013, pp. 24-25, 2004.
[20]X. Gao, C. Qiu, G. Li, M. Ma, S. Yang, Z. Xu, and F. Li, “High output power density of a Shear-Mode piezoelectric energy harvester based on Pb(In1/2Nb2/3)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals,” Appl. Energy, Vol. 271, pp. 115193, 2020.
[21]A. J. Moulson and J. M. Herbert, “Electroceramics,” 2nd Ed., John Wiley and Sons, Inc., New York, Ch. 6, 1996.
[22]F. Gao, L. H. Cheng, R. Z. Hong, J. Liu, C. J. Wang, and C. Tian, “Crystal structure and piezoelectric properties of xPb(Mn1/3Nb2/3)O3 - (0.2-x)Pb(Zn1/3Nb2/3)O3 - 0.8Pb(Zr0.52Ti0.48)O3 ceramics,” Ceram. Int., Vol. 35, pp. 1719-1723, 2009.
[23]Z. Yang, X. Chao, R. Zhang, Y. Chang, and Y. Chen, “Fabrication and electrical characteristics of piezoelectric PMN-PZN-PZT ceramic transformers,” Mater. Sci. Eng. B., Vol. 138, pp. 277-283, 2007.
[24]Z. Yang, X. Zong, H. Li, and Y. Chang, “Structure and electrical properties of new Pb(Zr, Ti)O3 - Pb(Fe2/3W1/3)O3 - Pb(Mn1/3Nb2/3)O3 ceramics,” Mater. Lett., Vol. 59, pp. 3476-3480, 2005.
[25]H. Zhang, J. Zhou, J. Shen, W. Jin, J. Zhou, and W. Chen, “High-field nonlinear properties and characteristics of domain wall motion in Fe2O3 doped PMnS-PZN-PZT ceramic,” Ferroelectrics, Vol. 560 pp.110-122, 2020.
[26]吳朗,電子陶瓷,全欣資訊圖書,第8-10,79-81頁,1992年。
[27]J. Wu, Y. Wang, D. Xiao, J. Zhu, P. Yu, L. Wu, and W. Wu, “Piezoelectric properties of LiSbO3-Modified (K0.48Na0.52)NbO3 lead-free ceramics,” Jpn. J. Appl. Phys., Vol. 46, pp. 7375-7377, 2007.
[28]Y. Wantanabe, K. Sumida, S. Yamada, S. Sago, S. I. Hirano, and K. Kikuta, “Effect of Mn-doping on the piezoelectric properties of (K0.5Na0.5)(Nb0.67Ta0.33)O3 lead-free ceramics,” Jpn. J. Appl. Phys., Vol. 47, pp. 3556-3558, 2008.
[29]Y. F. Chang, Z. P. Yang, and L. L. Wei, “Microstructure density and dielectric properties of lead-free (K0.44Na0.52Li0.04)(Nb0.96-xTaxSb0.04)O3 piezoelectric ceramics,” J. Am. Ceram. Soc., Vol. 90, pp. 1656-1658, 2007.
[30]D. M. Lin, K. W. Kwok, K. H. Lam, and H. L. W. Chan, “Structure and electrical properties of K0.5Na0.5NbO3-LiSbO3 lead-free piezoelectric ceramics,” J. Appl. Phys., Vol. 101, pp. 074111, 2007.
[31]S. J. Zhang, R. Xia, T. R. Shrout, G. Z. Zang, and J. F. Wang, “Piezoelectric properties in perovskite 0.948(K0.5Na0.5)NbO3-0.052LiSbO3 lead-free ceramics,” J. Appl. Phys., Vol. 100, pp. 104108, 2006.
[32]R. Z. Zuo, X. S. Fang, and C. Ye, “Phase structures and electrical properties of new lead-free (Na0.5K0.5)NbO3 - (Bi0.5Na0.5)TiO3 ceramics,” Appl. Phys. Lett., Vol. 90, pp. 092904, 2007.
[33]J. Wu, D. Xiao, W. Wu, J. Zhu, and J. Wang, “Effect of dwell time during sintering on piezoelectric properties of (Ba0.85Ca0.15)(Ti0.9Zr0.1)O3 lead-free ceramics,” J. Alloys Comp., Vol. 509, pp. L359-L361, 2011.
[34]S. Su, R. Zuo, S. Lu, Z. Xu, X. Wang, and L. Li, “Poling dependence and stability of piezoelectric properties of Ba(Zr0.2Ti0.8)O3 - (Ba0.7Ca0.3)TiO3 ceramics with huge piezoelectric coefficients,” Curr. Appl. Phys., Vol. 11, pp. S120-S123, 2011.
[35]B. Andersen, E. Ringgaard, T. Bove, A. Albareda, and R. Pérez, “Performance of piezoelectric ceramic multilayer components based on head and soft PZT,” ResearchGate, Actuators 2000 Seventh Int. Conf. New Actuators, pp. 423-426, 2000.
[36]Y. Nakashima, W. Sakamoto, H. Maiwa, T. Shimura, and T. Yogo, “Lead-free piezoelectric (K, Na)NbO3 thin films derived from metal alkoxide precursors,” Jpn. J. Appl. Phy., Vol. 46, pp. L311-L313, 2007.
[37]T. Li, G. Wang, K. Li, G. Du, Y. Chen, Z. Zhou, D. Rémiens, and X. Dong, “Electrical properties of lead-free KNN film on SRO/STO by RF magnetron sputtering,” Ceram. Int., Vol. 40, pp. 1195-1198, 2014.
[38]M. D. Nguyen, M. Dekkers, E. P. Houwman, H. T. Vu, H. N. Vu, and G. Rijnders, “Lead-free (K0.5Na0.5)NbO3 thin films by pulsed laser deposition driving MEMS-based piezoelectric cantilevers,” Mater. Lett., Vol. 164, pp. 413-416, 2016.
[39]L. Wang, K. Yao, and W. Ren, “Piezoelectric K0.5Na0.5NbO3 thick films derived from polyvinylpyrrolidone-modified chemical solution deposition,” Appl. Phys. Lett., Vol. 93, pp. 092903, 2008.
[40]P. C. Goh, K. Yao, and Z. Chen, “Lead-free piezoelectric (K0.5Na0.5)NbO3 thin films derived from chemical solution modified with stabilizing agents,” Appl. Phys. Lett., Vol. 97, pp. 102901, 2010.
[41]W. L. Li, T. D. Zhang, D. Xu, Y. F. Hou, W. P. Cao, and W. D. Fei, “LaNiO3 seed layer induced enhancement of piezoelectric properties in (100)-oriented (1-x)BZT-xBCT thin films,” J. Eur. Ceram. Soc., Vol. 35, pp. 2041-2049, 2015.
[42]A. Piorra, A. Petraru, H. Kohlstedt, M. Wuttig, and E. Quandt, “Piezoelectric properties of 0.5(Ba0.7Ca0.3TiO3)-0.5[Ba(Zr0.2Ti0.8)O3] ferroelectric lead-free laser deposition thin films,” J. Appl. Phys., Vol. 109, no. 10, pp. 104101, 2011.
[43]X. J. Zheng, Y. F. Rong, D. Z. Zhang, T. Zhang, and L. He, X. Feng, “Enhancement on effective piezoelectric coefficient d33 of Bi3.15Dy0.85Ti3O12 ferroelectric thin films,” Mater. Lett., Vol. 64, pp.618-621, 2010.
[44]A. Jalalian, A. M. Grishin, X. L. Wang, Z. X. Cheng, and S. X. Dou, “Large piezoelectric coefficient and ferroelectric nanodomain switching in Ba(Ti0.8Zr0.2)O3-0.5(Ba0.7Ca0.3)TiO3 nanofibers and thin film,” Appl. Phys. Lett., Vol. 104, pp. 103112-1-103112-5, 2014.
[45]W. Li, J. Hao, W. Bai and J. Zhai, “Orientation dependence of the dielectric and piezoelectric properties for the Ba0.98Ca0.02Ti0.96Sn0.04O3 thin films,” J. Sol-Gel Sci. Technol., pp. 220-224, 2013.
[46]Y. Hiruma, H. Nagata, and T. Takenaka, “Thermal depoling process and piezoelectric properties of Bismuth Sodium Titanate ceramics,” J. Appl. Phys., Vol. 105, pp. 084112, 2009.
[47]王永齡,功能陶瓷性能與應用,科學出版社,第1-5頁,2003年。
[48]T. Takenaka and H. Nagata, “Lead-free piezoelectric ceramics of (Bi1/2Na1/2)TiO3 - 1/2(Bi2O3Sc2O3) system,” J. Eur. Ceram. Soc., Vol. 25, pp. 2693-2700, 2005.
[49]A. Sanson and R. W. Whatmore, “Properties of Bi4Ti3O12 - (Na1/2Bi1/2) TiO3 piezoelectric ceramics,” Jpn. J. Appl. Phys., Vol. 41, pp. 7127-7130, 2002.
[50]劉國雄,鄭晃忠,李勝隆,林樹均,葉均蔚,工程材料科學,全華圖書,第85-90頁,2006年。
[51]B. Jaffe and S. Marzullo, “Properties of piezoelectric ceramic in the solid-solution series lead Titanate-lead Zirconate-lead oxide: Tin oxide and lead Titanate-lead Hafnate,” J. Res. Natl. Bur. Stand., Vol. 55, pp. 239-245, 1955.
[52]H. Ishii, H. Nagata, and T. Takenaka, “Morphotropic phase boundary and electrical properties of Bismuth sodium Titanate-potassium Niobate solid-solution ceramics,” Jpn. J. Appl. Phys., Vol. 40, pp. 5660-5663, 2001.
[53]Kittel(編),洪連輝(譯),劉立基(譯),魏榮君(翻譯),固態物理導論,高立圖書,第9-22頁,2009年。
[54]詹志揚,BaTi0.95Zr0.05O3之添加對Li0.03(K0.5Na0.5)0.97Sb0.04Nb0.96O3無鉛壓電陶瓷之研究,南台科技大學電子工程系碩士論文,第8頁,2014年。[55]L. Egerton and D. M. Dillon, “Piezoelectric and dielectric properties of ceramics 51 in system potassium-sodium Niobate,” J. Am. Ceram. Soc., Vol. 42, pp. 438-442, 1959.
[56]M. Takhashi, N. Tsubouchi, M. Ypnezawa, T. Ohno, and T. Akashi, “Piezoelectric properties of ternary ceramic compounds consisting either of Pb(Mn1/3Nb2/3)O3 or Pb(Mn1/2Nb1/2)O3 with PbTiO3 - PbZrO3,” J. J. Soc. Powder and Power Metall., Vol. 20, pp. 274-284, 1974.
[57]W. J. Huppmann and G. Petzow, “Sintering process,” New York: Plenum Press, pp. 189, 1980.
[58]T. Takenaka, H. Nagata, and Y. Hiruma, “Current developments and prospective of lead-free piezoelectric ceramics,” Jpn. J. Appl. Phys., Vol. 47, pp. 3787-3801, 2008.
[59]P. Yang, K. M. Kim, Y.-G. Joh, D. H. Kim, J.-Y. Lee, J. Zhu, and H. Y. Lee, “Effect of BaTiO3 buffer layer on multiferroic properties of BiFeO3 thin films,” J. Appl. Phys., Vol. 105, pp. 061618, 2009.
[60]Y. Gagou, J. Belhadi, B. Asbani, M. E. Marssi, J.-L. Dellis, Y. I. Yuzyuk, I. P. Raevski, and J. F. Scott, “Intrinsic dead layer effects in relaxed epitaxial BaTiO3 thin film grown by pulsed laser deposition,” Mater. Des., Vol. 122, pp. 157-163, 2017.
[61]J. Yao, M. Ye, Y. Sun, Y. Yuan, H. Fan, Y. Zhang, C. Chen, C. Liu, K. Qu, G. Zhong, T. Jia, Z. Fan, S. Ke, Y. Zhao, C. Duan, P. Gao, and J. Li, “Atomic-scale insight into the reversibility of polar order in ultrathin epitaxial Nb:SrTiO3/BaTiO3 heterostructure and its implication to resistive switching,” Acta Mater., Vol. 188, pp. 23-29, 2020.
[62]B. M. Coffey, E. L. Lin, P.-Y. Chen, and J. G. Ekerdt, “Area-selective atomic layer deposition of crystalline BaTiO3,” Chem. Mater., Vol. 31, pp. 5558-5565, 2019.
[63]J. Pawlak, A. Zywczak, G. Szwachta, J. Kanak, M. Gajewska, and M. Przybylski, “Structure and magnetism of LSMO/BTO/MgO/LSMO multilayers,” Acta Phys. Pol., Vol. 133, pp. 548-551, 2017.
[64]L. Zhao, B. P. Zhang, N. Wang, and J. Y. Chen, “High piezoelectric in CuO-modified Ba(Ti0.9Sn0.1)O3 lead-free ceramics with modulated phase structure,” J. Eur. Ceram. Soc., Vol. 37, no. 4, pp. 1411-1419, 2016.
[65]陳展慶,以溶膠凝膠法製備非當量鈮酸鈉鉀與鋰摻雜之壓電薄膜及其特性探討,國立成功大學電機工程研究所碩士論文,第8頁,2014。[66]周卓明,壓電力學,全華科技圖書股份有限公司,第一版,第1-13到1-17頁、第1-25頁,2003年。
[67]L. Egerton and D. M. Dillon, “Piezoelectric and dielectric properties of ceramics 51 in system potassium-sodium Niobate,” J. Am. Ceram. Soc., Vol 42, pp. 438-442, 1959.
[68]I. Bunge and M. Popescu, “Physics of solid dielectric,” Elsevier Amsterdam, New York, Ch. 6, pp. 207-208, 1984.
[69]李建邦,摻雜不同維度奈米碳材之液晶的低頻介電特性,國立交通大學影像與生醫光電研究所碩士論文,第11-12頁,2013。[70]欒桂東、張金鋒、王仁乾,壓電換能器和壓電換能器陣,北京大學出版社,第43-74頁 1987年。
[71]陳穎杰,無鉛壓電陶瓷微壓力厚膜之研究,南臺科技大學電子工程系碩士論文,第13-14頁,2020年。[72]W. Yunyi, Z. Duanming, Y. Jun, and W. Yunbo, “Effect of Bi2O3 seed layer on crystalline orientation and ferroelectric properties of Bi3.25La0.75 Ti3O12 thin films prepared by RF-magnetron sputtering method”, J. Appl. Phys., Vol. 105, pp. 061613, 2009.
[73]汪建民,陶瓷技術手冊,中華民國產業科技發展協進會,中華民國冶金學會,第533頁,1999年。
[74]李偉齊,(Ba0.7Sr0.3)(Ti0.9Zr0.1)O3薄膜介電特性之研究,南台科技大學電子工程系碩士論文,第7-8頁,2015年。[75]王俞婷,Mg4Nb2O9相陶瓷填入對低溫共燒陶瓷基板之影響研究,國立交通大學材料科學與工程系碩士論文,第11頁,2006年。[76]R. M. German, “Liquid phase sintering,” Plenum Press, pp. 65-151, 1985.
[77]J. Nowotny, “Electronic ceramic materials,” Trans. Tech. Publications. Ltd., 1991.
[78]邱碧秀,電子陶瓷材料,徐氏基金會,1990。
[79]吳朗,電子陶瓷,全欣資訊圖書,第20-88頁,1994。
[80]H. F. Kay and P. Vousden, “Symmetry changes in Barium Titanate at low temperature and their relation to its ferroelectric properties,” Phil. Mag., pp. 1019-1040, 1949.
[81]吳朗,電工材料,全華出版,1997。
[82]郭益男,反應性射頻磁控濺鍍氧化鋅薄膜之光激發光特性之研究,中山大學電機工程系碩士論文,第60頁,2004年。[83]H. F. Cheng, “Structural and optical properties of laser deposited ferroelectric (Sr0.2Ba0.8)TiO3 thin films,” J. Appl. Phys., Vol. 79, pp. 7965-7971, 1996.
[84]K. Tsuchiya, T. Kitagawa and E. Nakamachi, “Development of RF magnetron sputtering method to fabricate PZT thin film actuator,” Precision Eng., pp. 258-264, 2003.
[85]汪建民,陶瓷技術手冊,中華民國產業科技發展協進會,中華民國冶金學會,第536頁,1999。
[86]A. Jadhavar, A. Bhorde, V. Waman, A. Funde, A. Pawbake, R. Wayar, D. Patil, and S. Jadkar, “Synthesis of Indium Tin oxide (ITO) as a transparent conducting layer for solid cells by sputtering,” Int. J. Eng. Sci., Vol. 3, pp. 126-130, 2015.
[87]游毓珈,熱處理效應對溶膠凝膠法製備之氧化鎢薄膜電致色變特性分析,國立臺灣師範大學工業教育學系碩士論文,第15-16頁,2007年。[88]高慶華,鋯鈦酸鉛(Pb(ZrTi)O3,PZT)奈米管鐵電極化特性研究,國立成功大學物理研究所碩士論文,2008年。[89]D. Bornside, C. Macosko and L. Scriven, “Spin costing: one-dimensional model,” J. Appl. Phys., Vol. 66, pp. 5185-5193, 1989.
[90]江漢翔,以快速熱退火加強鐵鈀薄膜磁特性之研究,國立台灣科技大學機械工程系碩士論文,第23-24頁,2013年。[91]鄭守智,快速熱退火於矽晶碇線鋸加工之製程影響研究,國立台灣科技大學機械工程系碩士論文,第59頁,2012年。[92]A. Grill, W. Kane, J. Viggiano, M. Brady, and R. Laibowitz, “Base electrodes for high dielectric constant oxide materials in silicon technology,” J. Mater. Res., vol. 7, No. 12, pp. 3260-3265, 1992.
[93]余人皓,(BaTiO3/BaSnO3)n多層膜結構對BaTiO3薄膜結構和電性影響之研究,國立成功大學材料科學及工程學系碩士論文,第24頁,2009年。[94]張智凱,少量LiF摻雜對(Ba0.95Ca0.05)(Ti0.93Sn0.07)O3無鉛壓電陶瓷與薄片特性之影響,南臺科技大學電子工程系碩士論文,第22頁,2018年。[95]許家源,以原子力顯微鏡之區域陽極氧化技術製作氧化鎳奈米結構的電阻式隨機存取記憶元件,國立臺灣海洋大學光電科學系碩士論文,第30頁,2013年。[96]邱彥凱,多頭原子力顯微鏡探針應用於奈米及動態檢測,國立清華大學工程與系統科學系碩士論文,第19頁,2015年。[97]劉凡瑋,原子力顯微鏡矽探針在掃描中之相變化研究,國立成功大學材料科學及工程學系碩士論文,第4-9頁,2011年。[98]R. P. Herber, G. A. Schneider, S. Wagner, and M. J. Hoffmann, “Characterization of ferroelectric domains in morphotropic potassium sodium niobate with scanning probe microscopy,” Appl. Phys. Lett., pp. 252905-1-252905-3, 2007.
[99]P. Guthner, and K. Dransfeld, “Local poling of ferroelectric polymers by scanning force microscopy,” Appl. Phys. Lett., pp. 1137-1139, 1992.
[100]陳聯祥,以射頻磁控濺鍍技術製備鋯鈦酸鋇鐵電薄膜記憶元件之研究,國立中山大學電機工程系碩士論文,第9頁,2005年。[101]K. Inabe, S. Kobayashi, K. Uehara, A. Okada, S. L. Reddy, and T. Endo, “High resolution X-Ray diffraction analyses of (La, Sr)MnO3/ZnO/Sapphire(0001) double heteroepitaxial films,” Adv. Mater. Phys. Chem., Vol. 3, pp. 72-89, 2013.