( 您好!臺灣時間:2021/07/24 17:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::


論文名稱:探討新冠肺炎疫情發生時 民眾就醫行為之改變
論文名稱(外文):Investigation on the Behavior Change When Seeking Medical Care under the Effect of COVID-19 Pandemic
指導教授(外文):Chu, Cheng-I
口試委員(外文):Cheng-Kwang ShawHsieh Chia-Jung
外文關鍵詞:hospitalizing behaviordelay discounting
  • 被引用被引用:0
  • 點閱點閱:114
  • 評分評分:
  • 下載下載:25
  • 收藏至我的研究室書目清單書目收藏:0
研究方法:研究對象為台灣一般民眾,以問卷調查法,透過survey cake網路問卷收集相關資料,收案時間為2021年1月4日至2021年1月7日,這段期間台灣疫情屬於趨緩的,總共收取177份樣本,排除受試者為領取慢處方箋及重大傷病卡的21份及2份未清楚填寫經常就醫的場所,計收取有效樣本154份。統計方法包括描述性統計、McNemar test、Cochran’s Q test及條件式邏輯斯迴歸分析等。
關鍵字: 就醫行為、延遲折扣
Background: Amidst the Covid-19 era, the entire world went into panic. Our lifestyles have changed drastically, and large number of individuals are hesitant to seek for medical treatment. In the early stage of pandemic, Taiwan’s epidemic control has been relatively successful. Most of the nation’s citizens could carry on a normal lifestyle, yet there are some effects on the public, to seek for medical assistants from the hospitals.
Delay discounting is conceptualized as when an individual will be given a different scale of rewards, the tendency of which that particular individual will prefer a smaller reward that is available immediately, or a larger reward that is delayed. This is often used as an index of impulsivity or impatience.
The public of Taiwan have been known to routinely utilize medical treatments all year long for any kind of health issues. Under the strong influence of pandemic, this study is trying to investigate the delay discounting effect on the public’s behaviors in seeking healthcare, which are the decisions to seek for medical treatments and frequency of medical visits.
Method: The 177 subjects of this study were the public citizen of Taiwan, subjecting to answer a questionnaire that collected their decisions to seek for medical treatments and frequency of medical visits, before and after the Covid-19 pandemic. They accessed to the questionnaire through survey cake online questionnaire platform, in the period where new Covid-19 cases in Taiwan were relatively rare, during Jan 4th and Jan 7th of 2021. A total of 23 respondents, who have IC cards for severe illness or prescriptions for patients with chronic illnesses, and invalid responses, were excluded. A total of 154 valid responses are collected and analyzed using statistical methods of McNemar, Cochran’s Q test, conditional logistic model.
Result: After the Covid-19 pandemic, the frequency that the public seeking for medical visits had no significant changes. On the part of medical facilities selection, they tended to go to regional, district hospitals and medical centers, instead of clinics. From the perspective of delay discounting in the effect of decision making, majority of study subjects decided to seek for medical treatments immediately, with the k value between 1.80 and 1.99. As much as 83.7% respondents were determined to visit medical facilities when Covid-19 cases were rising, with the highest k value of 1.99. Majority of the public with higher k value indicated the public had decided to alleviate their illness at the moments of happening, a sign of the high impulsivity to mitigate their suffering. This group has lower cognitive risk avoidance behaviors in a seemingly mild and stable pandemic situation in Taiwan, at that specific period of study conducted. In contrast, the remaining 16.3% subjects decided to postpone or cancel their medical visits, with a very low k value of -0.18.
Conclusion: The study results showed that at the moment when the pandemic had been controlled, the public have a higher sense of illness when they are not feeling well. This could lead to immediate medical visits, moreover heading towards hospital scaled facilities instead of clinics, as a mean to receive a much higher quality of infection control and healthcare. The delay discounting value, k in this study is explained as the impulsivity of the public seeking mitigation of their suffering. The results of this study are consistent with the previous study. The delay discounting results in this study could theoretically, provide a foundation toward investigating the change of behaviors in seeking healthcare in the public, when a severe pandemic happens in the future.

Keywords: behaviors in seeking healthcare, delay discounting

中文摘要 III
Abstract IV
謝辭 V
目錄 VI
表目錄 VIII
圖目錄 IX
第一章 緒論 1
第一節 研究背景與動機 1
第二節 研究目的與問題假設 3
第三節 研究流程 4
第四節 名詞釋義 5
第二章 文獻探討 6
第一節 傳染病疫情與嚴重度 6
第二節 公共衛生的「三段五級」與防疫 8
第三節 就醫行為 12
第四節 延遲折扣 18
第三章 研究方法 22
第一節 研究對象 22
第二節 研究工具 22
第三節 資料處理與分析 25
第四章 研究結果與討論 28
第一節 人口學變項之描述與分析 28
第二節 人口學變項疫情前後就醫頻率與醫療院所選擇之分析 30
第三節 延遲折扣描述與分析 43
第四節 研究問題回應與假設驗證 46
第五章 研究結論與限制 48
第一節 研究結論 48
第二節 研究限制 49
參考文獻 51
中文部分 51
英文部分 53
附錄 55
New York Times(2020,7,7)。239位科學家打臉WHO,認證新冠病毒可透過空氣傳播。取自https://www.commonhealth.com.tw/article/article.action?nid=82097


國際旅遊疫情建議等級表(2019) 衛生福利部疾病管制署。取自https://www.cdc.gov.tw/CountryEpidLevel/Index/NlUwZUNvckRWQ09CbDJkRVFjaExjUT09

嚴重急性呼吸道症候群 SARS(2013年7月)。衛生福利部疾病管制署。取自https://www.cdc.gov.tw/File/Get/InG8jagjxffXBDW1UexnrA

嚴重急性呼吸道症候群(2013 年 7 月)。嚴重急性呼吸道症候群防治工作手冊。取自 https://www.cdc.gov.tw/File/Get/s8bfTZsDHo4V2CE2-ozrDg



公視(2020 年 3 月 6 日)。適逢流感高峰期 看診人數較同期少近5成。取自https://news.pts.org.tw/article/469345

衛生福利部全民健康保險會 第 4 屆 108 年第 3 次委員會議資料(2019)。取自


王冠懿、鄭守夏,(2006) 。民眾就醫層級與醫療利用分析: SARS 疫情前後的
觀察。台灣公共衛生雜誌, 25(1), 75-82。

陳建仁,(1999) 。流行病學: 原理與方法。 聯經出版事業公司。

游文瓊、范保羅、明勇,(2006) 。南部某區域醫院門診顧客就醫屬性及其就醫

張苙雲、楊孟麗、趙景雲,(2011) 。 就醫行為的潛在類型與健康測量: 全民健


李丞華、周穎政、陳龍生、張鴻仁,(2004) 。全民健保中醫門診利用率及其影響因素。台灣公共衛生雜誌,23(2), 100-107。

李吳萍、宋琦如、劉檳紅、李靜、王維成,(2005) 。城市居民門診衛生服務利用及影響因素分析。中國公共衛生。21(5), 602-603。

廖繼鋐 (1997) 我國中老年醫療使用及對全民健保費用影響之探討未發表的碩士論文,嘉義:中正大學社會福利系。

梁素琴、魏本珺、張碧玉、蕭世槐、陳彥旭,(2020) 。新冠肺炎疫情對急診返診率之影響探討。醫務管理期刊, 21(4), 353-372。

陳崇倫 (2011)。門診部分負擔提升對民眾就醫行為的影響。長榮大學醫務管理學系(所)學位論文, 1-95。


Ainslie, G. (1992). Piceoeconomics. Cambridge:Cambridge University Press.

Berry, M. S., Nickerson, N. P., & Odum, A. L. (2017). Delay discounting as an index
of sustainable behavior: Devaluation of future air quality and implications for
public health. Environmental Research and Public Health,14,997.

Bickel, W. K., & Marsch, L. A. (2001). Toward a behavioral economic understanding
of drug dependence: delay discounting processes. Addiction, 96(1), 73-86.

Chapman, G. B., & Elstein, A. S. (1995). Valuing the future: Temporal discounting of
health and money. Medical decision making, 15(4), 373-386.

Chu, D., Chen, R. C., Ku, C. Y., & Chou, P. (2008). The impact of SARS on hospital
performance. BMC health services research, 8(1), 1-6.

Foxall, G. R. (2010). Accounting for consumer choice: Inter-temporal decision making in behavioural perspective. Marketing Theory, 10(4), 315-345.

Foxall, G. R., Doyle, J. R., Yani-de-Soriano, M., & Wells, V. K. (2011). Contexts and
individual differences as influences on consumers’ delay discounting. The
Psychological Record, 61(4), 599-612.

Green, L., & Myerson, J. (2010). Experimental and correlational analyses of delay and probability discounting.

Hantula, D. A., & Bryant, K. (2005). Delay discounting determines delivery fees in an
e‐commerce simulation: A behavioral economic perspective. Psychology &
Marketing, 22(2), 153-161.

Heyman, G. M. (2009). Addiction: A disorder of choice. Harvard University Press.

Mazur, J. E. (1984). Tests of an equivalence rule for fixed and variable reinforcer
delays. Journal of Experimental Psychology: Animal Behavior
Processes, 10(4),426.

Mechanic, D. (1979). Correlates of physician utilization: Why do major multivariate
studies of physician utilization find trivial psychosocial and organizational
effects?. Journal of health and social behavior, 387-396.

Rachlin, H., Raineri, A., & Cross, D. (1991). Subjective probability and
delay. Journal of the experimental analysis of behavior, 55(2), 233-244.

Richards, J. B., Mitchell, S. H., De Wit, H., & Seiden, L. S. (1997). Determination of
discount functions in rats with an adjusting‐amount procedure. Journal of the
experimental analysis of behavior, 67(3), 353-366.

Ross, D., Sharp, C., Vuchinich, R., & Spurrett, D. (2008). Midbrain mutiny: The
picoeconomics and neuroeconomics of disordered gambling. Cambridge, MA:
MIT press.

Schull, M. J., Stukel, T. A., Vermeulen, M. J., Zwarenstein, M., Alter, D. A., Manuel,
D. G., & Schwartz, B. (2007). Effect of widespread restrictions on the use of
hospital services during an outbreak of severe acute respiratory
syndrome. Cmaj, 176(13), 1827-1832.

World Health Organization. (2020). Coronavirus disease (COVID-19): Similarities
and differences with influenza.

第一頁 上一頁 下一頁 最後一頁 top