跳到主要內容

臺灣博碩士論文加值系統

(44.221.66.130) 您好!臺灣時間:2024/06/20 22:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李彥儒
研究生(外文):Lee, Yan-Ru
論文名稱:花蓮地區懷孕婦女重金屬暴露預測因子之探討
論文名稱(外文):Predictors of heavy metals exposure of pregnant women in Hualien.
指導教授:謝佳容謝佳容引用關係
指導教授(外文):Hsieh, Chia-Jung
口試委員:尹立銘袁子軒
口試委員(外文):Yiin, Lih-MingYuan, Tzu-Hsuen
口試日期:2021-08-20
學位類別:碩士
校院名稱:慈濟大學
系所名稱:公共衛生學系碩士班
學門:醫藥衛生學門
學類:公共衛生學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:92
中文關鍵詞:重金屬懷孕婦女尿液預測因子飲食基本人口學特質
外文關鍵詞:Heavy metalspregnant womenurinePredictorsdietdemographic characteristics
相關次數:
  • 被引用被引用:0
  • 點閱點閱:136
  • 評分評分:
  • 下載下載:17
  • 收藏至我的研究室書目清單書目收藏:0
研究背景與目的:人類會藉由吸入、皮膚接觸及攝食的方式暴露有害重金屬,如砷、鎘及鉛等有毒金屬。這些有毒金屬進入人體後會累積在人體器官中,對人們造成致癌及發育不良等健康問題。回顧美國健康營養調查研究,結果指出亞洲族群體內殘留金屬濃度高於其他族群體內殘留金屬濃度,同時發現社經地位及飲食習慣等因子會影響人類體內重金屬暴露。此外產前暴露研究發現社經地位及飲食習慣與懷孕婦女體內重金屬濃度具有顯著相關性。因此我們期望探討花蓮地區孕婦第三孕期尿液中砷、鎘及鉛之暴露濃度與社經地位及飲食習慣等預測因子之關係,並了解近年來台灣孕婦重金屬暴露之情形。
材料方法:本研究於2013年至2015年招募401位花蓮慈濟醫院20歲以上懷孕婦女參與研究。在孕婦第三孕期時進行問卷訪視,同時在訪問結束後收集第三孕期單次尿液樣本用以檢測砷、鎘及鉛濃度。問卷內容包含人口學變項(包含年齡、胎次及身體質量指數)、社經地位變項(包含教育程度及家庭收入)、生活習慣變項(包含抽菸、二手菸、喝酒等)。飲食習慣包含飲食類別及其頻率,飲食類別包含海鮮、乳製品、肉類、蛋類、肝臟類、內臟類、速食類、五穀根莖類、蔬菜類、水果類、油脂類。統計方法使用多變項線性逐步迴歸,探討社經地位因素及飲食類別及其頻率與孕婦尿液中砷、鎘及鉛濃度之相關性。
結果: 本研究主要發現孕婦之社經地位及飲食頻率會影響尿液中砷、鎘及鉛濃度,社經地位發現孕婦家庭年收入中50-100萬組與尿砷(GM ± SE= 71.63 ± 2.59 μg/gCre,P= 0.049)及尿鉛(GM ± SE= 1.45 ± 2.04 μg/gCre,P= 0.017)呈現顯著差異。孕婦飲食迴歸模型發現,食用海水魚與尿砷濃度呈現正相關(β= 27.1%,P= 0.027),淡水魚與尿砷濃度呈現正相關(β= 24.9%,P= 0.043),植物油與尿砷濃度呈現正相關(β= 24.1%,P= 0.015)。食用水果與尿鎘濃度呈現正相關(β= 20.9%,P= 0.042),果汁類與尿鎘濃度呈現正相關(β= 17.1%,P= 0.04),菇筍瓜果蔬菜類與尿鎘濃度呈現正相關(β= 27.1%,P= 0.003),深綠蔬菜類與尿鎘濃度呈現負相關(β= -19.1%,P= 0.021)。孕婦食用雞肉與尿鉛濃度呈現正相關(β= 22.5%,P= 0.046),魚類加工製品與尿鉛濃度呈現負相關(β= -20.0%,P= 0.011)。
結論: 本研究結果發現孕婦社經地位變項及飲食習慣可能會影響其體內砷、鎘及鉛之濃度。

Background: Humans can be exposed to harmful heavy metals such as arsenic, cadmium and lead through inhalation, skin contact and ingestion. These toxic metals will accumulate in human organs after entering the human body. And them were caused health problems such as carcinogenesis and stunting. A review of the National Health and Nutrition Examination Survey (NAHEMES) was indicated the concentration of residual metals in Asian groups was higher than the other ethnic groups in the United States. This study also found the factors like socioeconomic status and dietary habits would affect human exposure to heavy metals. In addition, the studies of prenatal exposure found that socioeconomic status and dietary habits factors were significantly correlated with the concentration of heavy metals in pregnant women. Therefore, we expected to explore the relationship with the socioeconomic status and dietary habits predictors between the third trimester urine Arsenic(U-As), urine Cadmium(U-Cd) and urine Lead(U-Pb) exposure levels of pregnant women in Hualien. We also wanted to understand the heavy metal exposure of pregnant women in Taiwan recent years.
Method: This study recruited 401 pregnant women over 20 years old to participate in the study from Hualien Tzu Chi Hospital in 2013 to 2015. A questionnaire interview was conducted during the third trimester of pregnant women. And we also collected the third trimester single urine sample to detect the concentration of Arsenic, Cadmium, and Lead after the interview. The content of the questionnaire included demographic variables (such as age, parity, and body mass index), socioeconomic status variables (such as education and family income), and lifestyle (such as smoking, drinking, etc.). Eating habits included diet categories and the frequency. Diet categories include seafood, dairy products, meat, eggs, liver, offal, fast food, cereals and rhizomes, vegetables, fruits, and oil. The statistical method was used linear stepwise regression with multiple variables to explore the correlation between socioeconomic status factors, diet types and their frequency and the U-As, U-Cd, and U-Pb of pregnant women.
Results: This study mainly found that the socioeconomic status and diet frequency of pregnant women affect the concentration of the U-As, U-Cd, and U-Pb. The socioeconomic status found that the family income of pregnant women was significantly different from U-As (GM ± SE= 71.63 ± 2.59 μg/gCre,P= 0.049) and U-Pb (GM ± SE= 1.45 ± 2.04 μg/gCre,P= 0.017) in the 500,000-1 million group. The maternal diet regression model found that a positive association between consumed marine fish and U-As concentration (β=27.1%, P=0.027), freshwater fish consumption was positively associated U-As concentration (β=24.9%, P=0.043), vegetable oil consumption was positively related to U-As concentration (β=24.1%) , P= 0.015).There was a positive association between fruits consumption and U- Cd concentration (β=20.9%, P=0.042), juices consumption was positively associated U-Cd concentration (β=17.1%, P=0.04), mushrooms consumption was positively associated U-Cd concentration (β=27.1%, P=0.003), dark green vegetables consumption was inversely associated U-Cd concentration (β= -19.1%, P=0.021).Chicken consumption was positively associated U-Pb concentration (β= 22.5%, P= 0.046) ), fish processed products had a negative association with U-Pb concentration (β= -20.1%, P= 0.011).
Conclusions: The results of this study found that the socio-economic status and eating habits of pregnant women may affect the concentration of arsenic, cadmium and lead in their bodies.

目錄

第一章 研究背景與動機 10
第二章 文獻探討 14
第一節 重金屬砷之介紹 14
第二節 重金屬鎘之介紹 15
第三節 重金屬鉛之介紹 16
第四節 孕婦體內重金屬之檢驗 17
第五節 社經地位與砷、鎘、鉛之相關性 19
第六節 孕婦社經地位與砷、鎘、鉛之相關性 22
第七節 孕婦飲食與砷、鎘、鉛之相關性 30
第八節 研究目的 34
第三章 材料與方法 35
第一節 研究對象及研究設計 35
第二節 研究資料收集 37
(一)問卷訪視 37
(二)尿液檢體收集 37
第三節 研究變項定義 37
(一) 母親社經地位變項 37
(二) 生活習慣變項 38
(三) 孕婦懷孕時期飲食習慣變項 38
第四節 干擾因子 39
第五節 尿液中重金屬濃度之分析 39
第六節 尿液金屬之肌酐酸校正 39
第七節 研究統計方法 41
第四章 研究結果 42
第一節 懷孕婦女尿液中砷、鎘及鉛濃度 42
第二節懷孕婦女社經地位與尿液中砷、鎘、鉛濃度之關係 43
第三節、懷孕婦女飲食頻率與尿液中砷、鎘、鉛濃度之關係 47
第四節、各國懷孕婦女文獻尿液中砷、鎘及鉛濃度之比較 67
第五節、懷孕婦女社經地位及飲食頻率變項之相關係數 74
第六節、懷孕婦女飲食變項與尿液中砷、鎘及鉛濃度之逐步回歸 74
第五章 討論 78
第一節、懷孕婦女社經地位與尿液中砷、鎘及鉛濃度之影響 78
第二節、懷孕婦女飲食頻率與尿液中砷濃度之影響 79
第三節、懷孕婦女飲食頻率與尿液中鎘濃度之影響 80
第四節、懷孕婦女飲食頻率與尿液中鉛濃度之影響 80
第五節、懷孕婦女尿液重金屬濃度之探討 81
第六節、研究限制 86
第六章 結論與建議 86
參考文獻 87

表目錄

表一、NHANES重金屬預測因子文獻回顧 20
表二、懷孕婦女與砷、鎘及鉛預測因子文獻回顧 24
表三、社經地位因素及飲食習慣文獻與砷鉛鎘之相關性 31
表四、懷孕婦女尿液中砷、鎘、鉛濃度之分布 (N=181) 44
表五、懷孕婦女社經地位與尿液中砷、鎘、鉛濃度之差異 (μg/gCre) 45
表六、懷孕婦女海鮮類食用頻率與尿液中砷、鎘、鉛濃度之差異 (μg/gCre) 50
表七、懷孕婦女乳製品食用頻率與尿液中砷、鎘、鉛濃度之差異 (μg/gCre) 51
表八、懷孕婦女蛋類食用頻率與尿液中砷、鎘、鉛濃度之差異 (μg/gCre) 52
表九、懷孕婦女肉類食用頻率與尿液中砷、鎘、鉛濃度之差異 (μg/gCre) 54
表十、懷孕婦女內臟類食用頻率與尿液中砷、鎘、鉛濃度之差異 (μg/gCre) 56
表十一、懷孕婦女速食類食用頻率與尿液中砷、鎘、鉛濃度之差異 (μg/gCre) 57
表十二、懷孕婦女五穀根莖類食用頻率與尿液中砷、鎘、鉛濃度之差異 (μg/gCre) 58
表十三、懷孕婦女蔬菜、水果類食用頻率與尿液中砷、鎘、鉛濃度之差異 (μg/gCre) 59
表十四、懷孕婦女油脂類食用頻率與尿液中砷、鎘、鉛濃度之差異 (μg/gCre) 61
表十五、各國懷孕婦女尿液中砷、鎘及鉛文獻濃度之比較 63
表十六、懷孕婦女社經地位與飲食頻率變項之Spearman相關係數 69
表十七、飲食頻率與尿中砷濃度之多變項逐步回歸分析 75
表十八、飲食頻率與尿中鎘濃度之多變項逐步回歸分析 76
表十九、飲食頻率與尿中鉛濃度之多變項逐步回歸分析 77

圖目錄

圖一、2011-2016年National Health and Nutrition Examination Survey (NAHEMES)尿液砷、鎘、鉛濃度 (Creatinine Corrected) 13
圖二、研究樣本流程圖 36
圖三、各國孕婦尿液中砷濃度之分布 83
圖四、各國孕婦尿液中鎘濃度之分布 84
圖五、各國孕婦尿液中鉛濃度之分布 85

參考文獻
Akerstrom, M., Barregard, L., Lundh, T., & Sallsten, G. (2013). The relationship between cadmium in kidney and cadmium in urine and blood in an environmentally exposed population. Toxicol Appl Pharmacol, 268(3), 286-293. doi:10.1016/j.taap.2013.02.009
Al-Malki, A. L., & Moselhy, S. S. (2011). Impact of pesticides residue and heavy metals on lipids and fatty acids composition of some seafoods of Red Sea (KSA). Hum Exp Toxicol, 30(10), 1666-1673. doi:10.1177/0960327110396535
Al Amin, M. H., Xiong, C., Francesconi, K. A., Itahashi, Y., Yoneda, M., & Yoshinaga, J. (2020). Variation in arsenolipid concentrations in seafood consumed in Japan. Chemosphere, 239, 124781. doi:10.1016/j.chemosphere.2019.124781
Almeida, D. L., Pavanello, A., Saavedra, L. P., Pereira, T. S., de Castro-Prado, M. A. A., & de Freitas Mathias, P. C. (2019). Environmental monitoring and the developmental origins of health and disease. J Dev Orig Health Dis, 10(6), 608-615. doi:10.1017/S2040174419000151
Andrade, V. M., Mateus, M. L., Batoreu, M. C., Aschner, M., & Marreilha dos Santos, A. P. (2015). Lead, Arsenic, and Manganese Metal Mixture Exposures: Focus on Biomarkers of Effect. Biol Trace Elem Res, 166(1), 13-23. doi:10.1007/s12011-015-0267-x
ATSDR. (2007). Public Health Statement for Arsenic.
Awata, H., Linder, S., Mitchell, L. E., & Delclos, G. L. (2017). Biomarker Levels of Toxic Metals among Asian Populations in the United States: NHANES 2011-2012. Environ Health Perspect, 125(3), 306-313. doi:10.1289/EHP27
Baeyens, W., Vrijens, J., Gao, Y., Croes, K., Schoeters, G., Den Hond, E., . . . Leermakers, M. (2014). Trace metals in blood and urine of newborn/mother pairs, adolescents and adults of the Flemish population (2007-2011). Int J Hyg Environ Health, 217(8), 878-890. doi:10.1016/j.ijheh.2014.06.007
Birgisdottir, B. E., Knutsen, H. K., Haugen, M., Gjelstad, I. M., Jenssen, M. T., Ellingsen, D. G., . . . Brantsaeter, A. L. (2013). Essential and toxic element concentrations in blood and urine and their associations with diet: results from a Norwegian population study including high-consumers of seafood and game. Sci Total Environ, 463-464, 836-844. doi:10.1016/j.scitotenv.2013.06.078
Bocca, B., Ruggieri, F., Pino, A., Rovira, J., Calamandrei, G., Mirabella, F., . . . Schuhmacher, M. (2020). Human biomonitoring to evaluate exposure to toxic and essential trace elements during pregnancy. Part B: Predictors of exposure. Environ Res, 182, 109108. doi:10.1016/j.envres.2019.109108
Boskabady, M., Marefati, N., Farkhondeh, T., Shakeri, F., Farshbaf, A., & Boskabady, M. H. (2018). The effect of environmental lead exposure on human health and the contribution of inflammatory mechanisms, a review. Environ Int, 120, 404-420. doi:10.1016/j.envint.2018.08.013
Caldas, D., Pestana, I. A., Almeida, M. G., Henry, F. C., Salomao, M. S., & de Souza, C. M. (2016). Risk of ingesting As, Cd, and Pb in animal products in north Rio de Janeiro state, Brazil. Chemosphere, 164, 508-515. doi:10.1016/j.chemosphere.2016.08.130
Callan, A. C., Hinwood, A. L., Ramalingam, M., Boyce, M., Heyworth, J., McCafferty, P., & Odland, J. O. (2013). Maternal exposure to metals--concentrations and predictors of exposure. Environ Res, 126, 111-117. doi:10.1016/j.envres.2013.07.004
CDC. (2019). Fourth National Report on Human Exposure to Environmental Chemicals.
Cheng, Y. Y., Chang, Y. T., Cheng, H. L., Shen, K. H., Sung, J. M., & Guo, H. R. (2018). Associations between arsenic in drinking water and occurrence of end-stage renal disease with modifications by comorbidities: A nationwide population-based study in Taiwan. Sci Total Environ, 626, 581-591. doi:10.1016/j.scitotenv.2018.01.043
Cheng, Y. Y., Huang, N. C., Chang, Y. T., Sung, J. M., Shen, K. H., Tsai, C. C., & Guo, H. R. (2017). Associations between arsenic in drinking water and the progression of chronic kidney disease: A nationwide study in Taiwan. J Hazard Mater, 321, 432-439. doi:10.1016/j.jhazmat.2016.09.032
Chung, Y.-L., Liaw, Y.-P., Hwang, B.-F., Cheng, Y.-Y., Lin, M.-S., Kuo, Y.-C., & Guo, H.-R. (2013). Arsenic in drinking and lung cancer mortality in Taiwan. Journal of Asian Earth Sciences, 77, 327-331. doi:10.1016/j.jseaes.2013.04.038
Dórea, J. G. (2019). Environmental exposure to low-level lead (Pb) co-occurring with other neurotoxicants in early life and neurodevelopment of children. Environ Res, 177, 108641. doi:10.1016/j.envres.2019.108641
de Souza, I. D., de Andrade, A. S., & Dalmolin, R. J. S. (2018). Lead-interacting proteins and their implication in lead poisoning. Crit Rev Toxicol, 48(5), 375-386. doi:10.1080/10408444.2018.1429387
Dereumeaux, C., Saoudi, A., Pecheux, M., Berat, B., de Crouy-Chanel, P., Zaros, C., . . . Guldner, L. (2016). Biomarkers of exposure to environmental contaminants in French pregnant women from the Elfe cohort in 2011. Environ Int, 97, 56-67. doi:10.1016/j.envint.2016.10.013
Edwards, S. E., Maxson, P., Miranda, M. L., & Fry, R. C. (2015). Cadmium levels in a North Carolina cohort: Identifying risk factors for elevated levels during pregnancy. J Expo Sci Environ Epidemiol, 25(4), 427-432. doi:10.1038/jes.2014.53
Ericson, B., Dowling, R., Dey, S., Caravanos, J., Mishra, N., Fisher, S., . . . Fuller, R. (2018). A meta-analysis of blood lead levels in India and the attributable burden of disease. Environ Int, 121(Pt 1), 461-470. doi:10.1016/j.envint.2018.08.047
Farzan, S. F., Howe, C. G., Chavez, T. A., Hodes, T. L., Johnston, J. E., Habre, R., . . . Breton, C. V. (2021). Demographic predictors of urinary arsenic in a low-income predominantly Hispanic pregnancy cohort in Los Angeles. J Expo Sci Environ Epidemiol, 31(1), 94-107. doi:10.1038/s41370-020-0251-1
Filippini, T., Cilloni, S., Malavolti, M., Violi, F., Malagoli, C., Tesauro, M., . . . Vinceti, M. (2018). Dietary intake of cadmium, chromium, copper, manganese, selenium and zinc in a Northern Italy community. J Trace Elem Med Biol, 50, 508-517. doi:10.1016/j.jtemb.2018.03.001
Fort, M., Grimalt, J. O., Casas, M., & Sunyer, J. (2014). Food sources of arsenic in pregnant Mediterranean women with high urine concentrations of this metalloid. Environ Sci Pollut Res Int, 21(20), 11689-11698. doi:10.1007/s11356-014-2614-4
Gamboa-Loira, B., Cebrián, M. E., Franco-Marina, F., & López-Carrillo, L. (2017). Arsenic metabolism and cancer risk: A meta-analysis. Environ Res, 156, 551-558. doi:10.1016/j.envres.2017.04.016
Geng, H. X., & Wang, L. (2019). Cadmium: Toxic effects on placental and embryonic development. Environ Toxicol Pharmacol, 67, 102-107. doi:10.1016/j.etap.2019.02.006
Ghoochani, M., Rastkari, N., Yunesian, M., Nabizadeh Nodehi, R., Mesdaghinia, A., Houshiarrad, A., . . . Dehghani, M. H. (2018). What do we know about exposure of Iranians to cadmium? Findings from a systematic review. Environ Sci Pollut Res Int, 25(2), 1-11. doi:10.1007/s11356-017-0863-8
Gil, F., Hernandez, A. F., Marquez, C., Femia, P., Olmedo, P., Lopez-Guarnido, O., & Pla, A. (2011). Biomonitorization of cadmium, chromium, manganese, nickel and lead in whole blood, urine, axillary hair and saliva in an occupationally exposed population. Sci Total Environ, 409(6), 1172-1180. doi:10.1016/j.scitotenv.2010.11.033
Gonzalez-Weller, D., Karlsson, L., Caballero, A., Hernandez, F., Gutierrez, A., Gonzalez-Iglesias, T., . . . Hardisson, A. (2006). Lead and cadmium in meat and meat products consumed by the population in Tenerife Island, Spain. Food Addit Contam, 23(8), 757-763. doi:10.1080/02652030600758142
Haines, D. A., Saravanabhavan, G., Werry, K., & Khoury, C. (2017). An overview of human biomonitoring of environmental chemicals in the Canadian Health Measures Survey: 2007-2019. Int J Hyg Environ Health, 220(2 Pt A), 13-28. doi:10.1016/j.ijheh.2016.08.002
Hayashi, A., Sato, F., Imai, T., & Yoshinaga, J. (2018). Statistical approach to identify food categories that determine daily intake levels of total and inorganic arsenic, lead and aluminium of Japanese diet. Food Addit Contam Part A Chem Anal Control Expo Risk Assess, 35(9), 1749-1754. doi:10.1080/19440049.2018.1508894
Hsieh, C. Y., Wang, S. L., Fadrowski, J. J., Navas-Acien, A., & Kuo, C. C. (2019). Urinary Concentration Correction Methods for Arsenic, Cadmium, and Mercury: a Systematic Review of Practice-Based Evidence. Curr Environ Health Rep, 6(3), 188-199. doi:10.1007/s40572-019-00242-8
Huang, S., Kuang, J., Zhou, F., Jia, Q., Lu, Q., Feng, C., . . . Fan, G. (2019). The association between prenatal cadmium exposure and birth weight: A systematic review and meta-analysis of available evidence. Environ Pollut, 251, 699-707. doi:10.1016/j.envpol.2019.05.039
Jitaru, P., Ingenbleek, L., Marchond, N., Laurent, C., Adegboye, A., Hossou, S. E., . . . Guerin, T. (2019). Occurrence of 30 trace elements in foods from a multi-centre Sub-Saharan Africa Total Diet Study: Focus on Al, As, Cd, Hg, and Pb. Environ Int, 133(Pt B), 105197. doi:10.1016/j.envint.2019.105197
Jomova, K., & Valko, M. (2011). Advances in metal-induced oxidative stress and human disease. Toxicology, 283(2-3), 65-87. doi:10.1016/j.tox.2011.03.001
Kar, S., Maity, J. P., Jean, J. S., Liu, C. C., Liu, C. W., Bundschuh, J., & Lu, H. Y. (2011). Health risks for human intake of aquacultural fish: Arsenic bioaccumulation and contamination. J Environ Sci Health A Tox Hazard Subst Environ Eng, 46(11), 1266-1273. doi:10.1080/10934529.2011.598814
Kim, J. H., Lee, A., Kim, S. K., Moon, H. B., Park, J., Choi, K., & Kim, S. (2020). Lead and mercury levels in repeatedly collected urine samples of young children: A longitudinal biomonitoring study. Environ Res, 189, 109901. doi:10.1016/j.envres.2020.109901
Kim, J. H., Lee, S. J., Kim, S. Y., Choi, G., Lee, J. J., Kim, H. J., . . . Choi, S. R. (2016). Association of food consumption during pregnancy with mercury and lead levels in cord blood. Sci Total Environ, 563-564, 118-124. doi:10.1016/j.scitotenv.2016.04.082
Kim, S. S., Meeker, J. D., Carroll, R., Zhao, S., Mourgas, M. J., Richards, M. J., . . . Ferguson, K. K. (2018). Urinary trace metals individually and in mixtures in association with preterm birth. Environ Int, 121(Pt 1), 582-590. doi:10.1016/j.envint.2018.09.052
Kim, S. S., Meeker, J. D., Keil, A. P., Aung, M. T., Bommarito, P. A., Cantonwine, D. E., . . . Ferguson, K. K. (2019). Exposure to 17 trace metals in pregnancy and associations with urinary oxidative stress biomarkers. Environ Res, 179(Pt B), 108854. doi:10.1016/j.envres.2019.108854
Kippler, M., Ekstrom, E. C., Lonnerdal, B., Goessler, W., Akesson, A., El Arifeen, S., . . . Vahter, M. (2007). Influence of iron and zinc status on cadmium accumulation in Bangladeshi women. Toxicol Appl Pharmacol, 222(2), 221-226. doi:10.1016/j.taap.2007.04.009
Krejpcio Z. , S. S., Bartela J. (2005). Safety of Fresh Fruits and Juices Available on the Polish Market as Determined by Heavy Metal Residues. Journal of Environmental Studies, 14.
Kumari, P., Rastogi, A., Shukla, A., Srivastava, S., & Yadav, S. (2018). Prospects of genetic engineering utilizing potential genes for regulating arsenic accumulation in plants. Chemosphere, 211, 397-406. doi:10.1016/j.chemosphere.2018.07.152
Kuo, C. C., Moon, K. A., Wang, S. L., Silbergeld, E., & Navas-Acien, A. (2017). The Association of Arsenic Metabolism with Cancer, Cardiovascular Disease, and Diabetes: A Systematic Review of the Epidemiological Evidence. Environ Health Perspect, 125(8), 087001. doi:10.1289/ehp577
Kuo, H.-W., Tai, L.-H., J.S.-M, Shu, T.-Y., & Chiang, J.-Y. (2008). The Determination of Heavy Metal Concentrations in Maternal Urine, Amniotic Fluid and Fetal Cells. Journal of Biomedical & Laboratory Sciences, 20(1&2), 7-15. doi:10.30046/JBLS.200806.0002
Lewin, A., Arbuckle, T. E., Fisher, M., Liang, C. L., Marro, L., Davis, K., . . . Fraser, W. D. (2017). Univariate predictors of maternal concentrations of environmental chemicals: The MIREC study. Int J Hyg Environ Health, 220(2 Pt A), 77-85. doi:10.1016/j.ijheh.2017.01.001
Lewis, R. C., Meeker, J. D., Basu, N., Gauthier, A. M., Cantoral, A., Mercado-Garcia, A., . . . Watkins, D. J. (2018). Urinary metal concentrations among mothers and children in a Mexico City birth cohort study. Int J Hyg Environ Health, 221(4), 609-615. doi:10.1016/j.ijheh.2018.04.005
Liang, C. P., Liu, C. W., Jang, C. S., Wang, S. W., & Lee, J. J. (2011). Assessing and managing the health risk due to ingestion of inorganic arsenic from fish and shellfish farmed in blackfoot disease areas for general Taiwanese. J Hazard Mater, 186(1), 622-628. doi:10.1016/j.jhazmat.2010.11.042
Liao, K. W., Pan, W. H., Liou, S. H., Sun, C. W., Huang, P. C., & Wang, S. L. (2019). Levels and temporal variations of urinary lead, cadmium, cobalt, and copper exposure in the general population of Taiwan. Environ Sci Pollut Res Int, 26(6), 6048-6064. doi:10.1007/s11356-018-3911-0
Lin, Y. J., & Lin, P. (2019). Probabilistic Integrated Human Mixture Risk Assessment of Multiple Metals Through Seafood Consumption. Risk Anal, 39(2), 426-438. doi:10.1111/risa.13183
Liu, H., Xia, W., Xu, S., Zhang, B., Lu, B., Huang, Z., . . . Li, Y. (2018). Cadmium body burden and pregnancy-induced hypertension. Int J Hyg Environ Health, 221(2), 246-251. doi:10.1016/j.ijheh.2017.11.001
Liu, Z., Cai, L., Liu, Y., Chen, W., & Wang, Q. (2019). Association between prenatal cadmium exposure and cognitive development of offspring: A systematic review. Environ Pollut, 254(Pt B), 113081. doi:10.1016/j.envpol.2019.113081
Lubin, J. H., Colt, J. S., Camann, D., Davis, S., Cerhan, J. R., Severson, R. K., . . . Hartge, P. (2004). Epidemiologic evaluation of measurement data in the presence of detection limits. Environ Health Perspect, 112(17), 1691-1696. doi:10.1289/ehp.7199
Lynch, H. N., Zu, K., Kennedy, E. M., Lam, T., Liu, X., Pizzurro, D. M., . . . Rhomberg, L. R. (2017). Quantitative assessment of lung and bladder cancer risk and oral exposure to inorganic arsenic: Meta-regression analyses of epidemiological data. Environ Int, 106, 178-206. doi:10.1016/j.envint.2017.04.008
Maddela, N. R., Kakarla, D., García, L. C., Chakraborty, S., Venkateswarlu, K., & Megharaj, M. (2020). Cocoa-laden cadmium threatens human health and cacao economy: A critical view. Sci Total Environ, 720, 137645. doi:10.1016/j.scitotenv.2020.137645
Marchiset-Ferlay, N., Savanovitch, C., & Sauvant-Rochat, M. P. (2012). What is the best biomarker to assess arsenic exposure via drinking water? Environ Int, 39(1), 150-171. doi:10.1016/j.envint.2011.07.015
Melgar, M. J., Alonso, J., & Garcia, M. A. (2016). Cadmium in edible mushrooms from NW Spain: Bioconcentration factors and consumer health implications. Food Chem Toxicol, 88, 13-20. doi:10.1016/j.fct.2015.12.002
Moynihan, M., Peterson, K. E., Cantoral, A., Song, P. X. K., Jones, A., Solano-Gonzalez, M., . . . Tellez-Rojo, M. M. (2017). Dietary predictors of urinary cadmium among pregnant women and children. Sci Total Environ, 575, 1255-1262. doi:10.1016/j.scitotenv.2016.09.204
Naess, S., Aakre, I., Lundebye, A. K., Ornsrud, R., Kjellevold, M., Markhus, M. W., & Dahl, L. (2020). Mercury, lead, arsenic, and cadmium in Norwegian seafood products and consumer exposure. Food Addit Contam Part B Surveill, 13(2), 99-106. doi:10.1080/19393210.2020.1735533
Ngoc, N. T. M., Chuyen, N. V., Thao, N. T. T., Duc, N. Q., Trang, N. T. T., Binh, N. T. T., . . . Thuc, P. V. (2020). Chromium, Cadmium, Lead, and Arsenic Concentrations in Water, Vegetables, and Seafood Consumed in a Coastal Area in Northern Vietnam. Environ Health Insights, 14, 1178630220921410. doi:10.1177/1178630220921410
Olmedo, P., Grau-Perez, M., Fretts, A., Tellez-Plaza, M., Gil, F., Yeh, F., . . . Navas-Acien, A. (2017). Dietary determinants of cadmium exposure in the Strong Heart Family Study. Food Chem Toxicol, 100, 239-246. doi:10.1016/j.fct.2016.12.015
Osorio-Yanez, C., Gelaye, B., Enquobahrie, D. A., Qiu, C., & Williams, M. A. (2018). Dietary intake and urinary metals among pregnant women in the Pacific Northwest. Environ Pollut, 236, 680-688. doi:10.1016/j.envpol.2018.01.110
Papadopoulou, E., Haug, L. S., Sakhi, A. K., Andrusaityte, S., Basagana, X., Brantsaeter, A. L., . . . Chatzi, L. (2019). Diet as a Source of Exposure to Environmental Contaminants for Pregnant Women and Children from Six European Countries. Environ Health Perspect, 127(10), 107005. doi:10.1289/EHP5324
Poropat, A. E., Laidlaw, M. A. S., Lanphear, B., Ball, A., & Mielke, H. W. (2018). Blood lead and preeclampsia: A meta-analysis and review of implications. Environ Res, 160, 12-19. doi:10.1016/j.envres.2017.09.014
Rahman, A., Granberg, C., & Persson, L. (2017). Early life arsenic exposure, infant and child growth, and morbidity: a systematic review. Arch Toxicol, 91(11), 3459-3467. doi:10.1007/s00204-017-2061-3
Renu, K., Madhyastha, H., Madhyastha, R., Maruyama, M., Arunachlam, S., & V, G. A. (2018). Role of arsenic exposure in adipose tissue dysfunction and its possible implication in diabetes pathophysiology. Toxicol Lett, 284, 86-95. doi:10.1016/j.toxlet.2017.11.032
Satarug, S., Vesey, D. A., & Gobe, G. C. (2017). Current health risk assessment practice for dietary cadmium: Data from different countries. Food Chem Toxicol, 106(Pt A), 430-445. doi:10.1016/j.fct.2017.06.013
Shah, S., Jeong, K. S., Park, H., Hong, Y. C., Kim, Y., Kim, B., . . . Ha, E. (2020). Environmental pollutants affecting children's growth and development: Collective results from the MOCEH study, a multi-centric prospective birth cohort in Korea. Environ Int, 137, 105547. doi:10.1016/j.envint.2020.105547
Shefa, S. T., & Héroux, P. (2017). Both physiology and epidemiology support zero tolerable blood lead levels. Toxicol Lett, 280, 232-237. doi:10.1016/j.toxlet.2017.08.015
Shirai, S., Suzuki, Y., Yoshinaga, J., & Mizumoto, Y. (2010). Maternal exposure to low-level heavy metals during pregnancy and birth size. J Environ Sci Health A Tox Hazard Subst Environ Eng, 45(11), 1468-1474. doi:10.1080/10934529.2010.500942
Singh, P. K., Nath, R., Ahmad, M. K., Rawat, A., Babu, S., & Dixit, R. K. (2016). Attenuation of lead neurotoxicity by supplementation of polyunsaturated fatty acid in Wistar rats. Nutr Neurosci, 19(9), 396-405. doi:10.1179/1476830515Y.0000000028
Tinkov, A. A., Filippini, T., Ajsuvakova, O. P., Aaseth, J., Gluhcheva, Y. G., Ivanova, J. M., . . . Skalny, A. V. (2017). The role of cadmium in obesity and diabetes. Sci Total Environ, 601-602, 741-755. doi:10.1016/j.scitotenv.2017.05.224
Tinkov, A. A., Filippini, T., Ajsuvakova, O. P., Skalnaya, M. G., Aaseth, J., Bjørklund, G., . . . Skalny, A. V. (2018). Cadmium and atherosclerosis: A review of toxicological mechanisms and a meta-analysis of epidemiologic studies. Environ Res, 162, 240-260. doi:10.1016/j.envres.2018.01.008
Vardavas, C. I., Patelarou, E., Grander, M., Chatzi, L., Palm, B., Fthenou, E., . . . Kogevinas, M. (2011). The association between active/passive smoking and toxic metals among pregnant women in Greece. Xenobiotica, 41(6), 456-463. doi:10.3109/00498254.2011.559294
Vlasak, T., Jordakieva, G., Gnambs, T., Augner, C., Crevenna, R., Winker, R., & Barth, A. (2019). Blood lead levels and cognitive functioning: A meta-analysis. Sci Total Environ, 668, 678-684. doi:10.1016/j.scitotenv.2019.03.052
Wai, K. M., Mar, O., Kosaka, S., Umemura, M., & Watanabe, C. (2017). Prenatal Heavy Metal Exposure and Adverse Birth Outcomes in Myanmar: A Birth-Cohort Study. Int J Environ Res Public Health, 14(11). doi:10.3390/ijerph14111339
Wang, X., Qi, L., Peng, Y., Xia, W., Xu, S., Li, Y., & Zhang, H. (2019). Urinary concentrations of environmental metals and associating factors in pregnant women. Environ Sci Pollut Res Int, 26(13), 13464-13475. doi:10.1007/s11356-019-04731-z
White, A. J., O'Brien, K. M., Jackson, B. P., & Karagas, M. R. (2018). Urine and toenail cadmium levels in pregnant women: A reliability study. Environ Int, 118, 86-91. doi:10.1016/j.envint.2018.05.030
Xiao, G., Liu, Y., Dong, K. F., & Lu, J. (2020). Regional characteristics of cadmium intake in adult residents from the 4th and 5th Chinese Total Diet Study. Environ Sci Pollut Res Int, 27(4), 3850-3857. doi:10.1007/s11356-019-06923-z
Yang, J., Huo, W., Zhang, B., Zheng, T., Li, Y., Pan, X., . . . Xu, S. (2016). Maternal urinary cadmium concentrations in relation to preterm birth in the Healthy Baby Cohort Study in China. Environ Int, 94, 300-306. doi:10.1016/j.envint.2016.06.003
Yang, Y., Xiong, J., Tao, L., Cao, Z., Tang, W., Zhang, J., . . . Lu, Y. (2020). Regulatory mechanisms of nitrogen (N) on cadmium (Cd) uptake and accumulation in plants: A review. Sci Total Environ, 708, 135186. doi:10.1016/j.scitotenv.2019.135186
Zeng, X., Huo, X., Xu, X., Liu, D., & Wu, W. (2020). E-waste lead exposure and children's health in China. Sci Total Environ, 734, 139286. doi:10.1016/j.scitotenv.2020.139286
Zhang, H., & Reynolds, M. (2019). Cadmium exposure in living organisms: A short review. Sci Total Environ, 678, 761-767. doi:10.1016/j.scitotenv.2019.04.395
Zhang, J., Barałkiewicz, D., Wang, Y., Falandysz, J., & Cai, C. (2020). Arsenic and arsenic speciation in mushrooms from China: A review. Chemosphere, 246, 125685. doi:10.1016/j.chemosphere.2019.125685
Zhang, L., Song, L., Liu, B., Wu, M., Wang, L., Zhang, B., . . . Xu, S. (2019). Prenatal cadmium exposure is associated with shorter leukocyte telomere length in Chinese newborns. BMC Med, 17(1), 27. doi:10.1186/s12916-019-1262-4
Zhang., H., & Reynolds., M. (2019). Cadmium exposure in living organisms: A short review. Sci Total Environ, 678, 761-767. doi:10.1016/j.scitotenv.2019.04.395
Zhong, Q., Cui, Y., Wu, H., Niu, Q., Lu, X., Wang, L., & Huang, F. (2019). Association of maternal arsenic exposure with birth size: A systematic review and meta-analysis. Environ Toxicol Pharmacol, 69, 129-136. doi:10.1016/j.etap.2019.04.007
Zimta, A. A., Schitcu, V., Gurzau, E., Stavaru, C., Manda, G., Szedlacsek, S., & Berindan-Neagoe, I. (2019). Biological and molecular modifications induced by cadmium and arsenic during breast and prostate cancer development. Environ Res, 178, 108700. doi:10.1016/j.envres.2019.108700
國家環境毒物研究中心. (2013a). 砷(Arsenic)重點簡介.
國家環境毒物研究中心. (2013b). 鎘(Cadmium)重點簡介.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊