跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.89) 您好!臺灣時間:2024/12/12 04:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:Akhsholpan Byekyet
研究生(外文):Akhsholpan Byekyet
論文名稱:Anti-inflammatory effect and precursors of Major Endogenous FAHFAs in Healthy Human Circulation
論文名稱(外文):Anti-inflammatory effect and precursors of Major Endogenous FAHFAs in Healthy Human Circulation
指導教授:劉晉宏劉晉宏引用關係
指導教授(外文):LIU, CHIN-HUNG Ph.D.
口試委員:江信仲袁大鈞
口試委員(外文):JIANG, SHINN-JONG Ph.D.YUAN, TA-CHUN Ph.D.
口試日期:2021-01-18
學位類別:碩士
校院名稱:慈濟大學
系所名稱:醫學系藥理暨毒理學碩士班
學門:醫藥衛生學門
學類:藥學學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:英文
論文頁數:35
外文關鍵詞:Fatty acid esters of hydroxy fatty acids (FAHFAs)cardiovascular protectionBiomarkersAnti-inflammation
ORCID或ResearchGate:https://doi.org/10.3390/biom10121689
相關次數:
  • 被引用被引用:0
  • 點閱點閱:113
  • 評分評分:
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:0
Anstract
Cardiovascular diseases (CVDs) are not only the second cause of death in Taiwan but also the leading cause of death globally, taking an estimation of 17.9 million lives each year. CVDs are collectively a group of heart and blood vessel disorders, including coronary heart, cerebrovascular, rheumatic heart disease, and other conditions. Pro-inflammatory cytokines are important mediators of the immune response which is associated with endothelial dysfunction in CVD patients. Branched fatty acid esters of hydroxy fatty acids (FAHFAs) are a new class of endogenous bioactive lipids that have been found enriched in adipose tissue with inflammation regulatory properties by normalizing TNFα. In the present study, a total of 57 healthy subjects were recruited to determine seven types of FAHFAs and four long-chain fatty acids which are majorly two types of FAHFAs (palmitoleic-acid-9-hydroxy-stearic-acid, 9-POHSA, and oleic-acid-9-hydroxy stearic acid, 9-OAHSA) using Liquid Chromatography mass spectrometry at the baseline characteristics including age, sex, height, body weight, body mass index, etc. in the circulation. The other five types of FAHFAs (5-PAHSA, 9-PAHSA, 12-PAHSA, 9-PAHPA, and 9-SAHSA) were not studied due to the limit of detection or undetected. In this study, we determined higher concentrations of 9-POHSA and 9-OAHSA in healthy human circulation that exhibited anti-inflammatory effects by suppressing LPS stimulated pro-inflammatory cytokines (IL-1β and IL-6) expression in RAW 264.7 cell lines. Additionally, we observed a high concentration of 9-PAHSA (a known anti-inflammatory FAHFA and steroid dexamethasone) along with 9-POHSA and 9-OAHSA which exhibited the relative anti-inflammatory ability. These findings suggest that 9-POHSA, 9-OAHSA, and 9-PAHSA could be inflammatory biomarkers in CVD patients.
Keywords: Fatty acid esters of hydroxy fatty acids (FAHFAs), cardiovascular protection, Biomarkers, Anti-inflammation.

CONTENTS
CHAPTER ONE ......................................................................................................................... 9
1. INTRODUCTION ................................................................................................................... 9
1.1. Cardiovascular disease ..................................................................................................... 9
1.2. Lipids and FAHFAs ....................................................................................................... 10
1.3. Hypothesis ...................................................................................................................... 14
CHAPTER TWO .......................................................................................................................... 15
2. MATERIALS AND METHODS .......................................................................................... 15
2.1. Participants ......................................................................................................................... 15
2.2. Biochemical Analysis ......................................................................................................... 15
2.3. Standards Preparation and Calibration Curves................................................................... 16
2.4. Extraction and Determination of the FAHFAs and Fatty Acids ........................................ 16
2.5. LC-MS Conditions ............................................................................................................. 17
2.6. Cell culture ......................................................................................................................... 18
2.7. RNA Isolation and Quantitative Reverse Transcription-Polymerase Chain Reaction (RT-qPCR) Analysis ......................................................................................................................... 18
2.8. Statistical Analysis ............................................................................................................. 19
CHAPTER TRHEE ...................................................................................................................... 20
3. RESULTS .............................................................................................................................. 20
3.1. Characteristics of the subjects and plasma detection ..................................................... 20
8
3.2. Determination of circulating FAHFAs ........................................................................... 20
3.3. Relationship of FAHFAs with their fatty acids precursor. ............................................ 20
3.4. 9-POHSA, 9-OAHSA, and 9-PAHSA possessed the anti-inflammatory effect ............ 21
3.5. Administration of FAHFAs to RAW 264.7 cells in the absence of LPS ....................... 21
CHAFTER FOUR ......................................................................................................................... 23
4. DISCUSSION AND CONCLUSION ................................................................................... 23
4.1. Discussion ...................................................................................................................... 23
4.2. Conclusion ...................................................................................................................... 24
5. REFERENCE ........................................................................................................................ 25
6. Tables and Figures ................................................................................................................. 27
6.1. Table 1. Baseline characteristics of 57 healthy subjects ................................................ 27
6.2. Table 2. FAHFAS, CV-related biomarkers, and fatty acids levels determined in healthy subjects by using LC-MS .......................................................................................................... 28
6.3. Fig 1. Flow diagram of healthy subject’s enrollment..................................................... 29
6.4. Fig. 2. Determination of FAHFAs ................................................................................ 30
6.5. Fig 3. 9-POHSA and 9-OAHSA were major endogenous FAHFAs in healthy subjects 31
6.6. Fig. 4. The correlation of FAHFAs with their fatty acids precursor ratio ...................... 32
6.7. Fig. 5. Anti-inflammatory effects of 9-POHSA and 9-OAHSA .................................... 33
6.8. Fig. 6. Administration of FAHFAs to RAW 264.7 cells in the absence of LPS. ........... 34
12. REFERENCE
1.Balakumar, P., U.K. Maung, and G. Jagadeesh, Prevalence and prevention of cardiovascular disease and diabetes mellitus. Pharmacol Res, 2016. 113(Pt A): p. 600-609.
2.Arnett, D.K., et al., 2019 ACC/AHA Guideline on the Primary Prevention of Cardiovascular Disease: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation, 2019. 140(11): p. e596-e646.
3.Richards, A.M., Future biomarkers in cardiology: my favourites. European Heart Journal Supplements, 2018. 20(suppl_G): p. G37-G44.
4.Refsum, H., et al., Homocysteine and cardiovascular disease. Annu Rev Med, 1998. 49: p. 31-62.
5.Marcus, J., M.J. Sarnak, and V. Menon, Homocysteine lowering and cardiovascular disease risk: lost in translation. Can J Cardiol, 2007. 23(9): p. 707-10.
6.Henning, R.J., Type-2 diabetes mellitus and cardiovascular disease. Future Cardiol, 2018. 14(6): p. 491-509.
7.Ndisang, J.F., A. Vannacci, and S. Rastogi, Insulin Resistance, Type 1 and Type 2 Diabetes, and Related Complications 2017. Journal of Diabetes Research, 2017. 2017: p. 1478294.
8.Ramachandran, A., Know the signs and symptoms of diabetes. Indian J Med Res, 2014. 140(5): p. 579-81.
9.Zheng, Y., S.H. Ley, and F.B. Hu, Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat Rev Endocrinol, 2018. 14(2): p. 88-98.
10.Stephenson, D.J., L.A. Hoeferlin, and C.E. Chalfant, Lipidomics in translational research and the clinical significance of lipid-based biomarkers. Transl Res, 2017. 189: p. 13-29.
11.Fatty Acids: Structures and Properties, in eLS.
12.Briggs, M.A., K.S. Petersen, and P.M. Kris-Etherton, Saturated Fatty Acids and Cardiovascular Disease: Replacements for Saturated Fat to Reduce Cardiovascular Risk. Healthcare (Basel), 2017. 5(2).
13.Nettleton, J.A., et al., Saturated Fat Consumption and Risk of Coronary Heart Disease and Ischemic Stroke: A Science Update. Ann Nutr Metab, 2017. 70(1): p. 26-33.
14.Sacks, F.M., et al., Dietary Fats and Cardiovascular Disease: A Presidential Advisory From the American Heart Association. Circulation, 2017. 136(3): p. e1-e23.
15.Liu, A.G., et al., A healthy approach to dietary fats: understanding the science and taking action to reduce consumer confusion. Nutr J, 2017. 16(1): p. 53.
16.Tan, D., et al., Discovery of FAHFA-Containing Triacylglycerols and Their Metabolic Regulation. J Am Chem Soc, 2019. 141(22): p. 8798-8806.
17.Yore, M.M., et al., Discovery of a class of endogenous mammalian lipids with anti-diabetic and anti-inflammatory effects. Cell, 2014. 159(2): p. 318-32.
18.Kolar, M.J., et al., Branched Fatty Acid Esters of Hydroxy Fatty Acids Are Preferred Substrates of the MODY8 Protein Carboxyl Ester Lipase. Biochemistry, 2016. 55(33): p. 4636-4641.
19.Kuda, O., et al., Docosahexaenoic Acid-Derived Fatty Acid Esters of Hydroxy Fatty Acids (FAHFAs) With Anti-inflammatory Properties. Diabetes, 2016. 65(9): p. 2580-90.
20.Kolar, M.J., et al., Linoleic acid esters of hydroxy linoleic acids are anti-inflammatory lipids found in plants and mammals. J Biol Chem, 2019. 294(27): p. 10698-10707.
21.Kokotou, M.G., Analytical Methods for the Determination of Fatty Acid Esters of Hydroxy Fatty Acids (FAHFAs) in Biological Samples, Plants and Foods. Biomolecules, 2020. 10(8).
22.Calderon-Dominguez, M., et al., Fatty acid metabolism and the basis of brown adipose tissue function. Adipocyte, 2016. 5(2): p. 98-118.
23.Proença, A.R., et al., New concepts in white adipose tissue physiology. Braz J Med Biol Res, 2014. 47(3): p. 192-205.
24.Burhans, M.S., et al., Contribution of Adipose Tissue Inflammation to the Development of Type 2 Diabetes Mellitus. Compr Physiol, 2018. 9(1): p. 1-58.
25.Gether, U., Uncovering molecular mechanisms involved in activation of G protein-coupled receptors. Endocr Rev, 2000. 21(1): p. 90-113.
26.Itoh, Y., et al., Free fatty acids regulate insulin secretion from pancreatic beta cells through GPR40. Nature, 2003. 422(6928): p. 173-6.
27.Oh, D.Y., et al., GPR120 is an omega-3 fatty acid receptor mediating potent anti-inflammatory and insulin-sensitizing effects. Cell, 2010. 142(5): p. 687-98.
28.Dongoran, R.A., et al., Anti-Proliferative Effect of Statins Is Mediated by DNMT1 Inhibition and p21 Expression in OSCC Cells. Cancers (Basel), 2020. 12(8).
29.Padilla, A., et al., Effects of α-conotoxin ImI on TNF-α, IL-8 and TGF-β expression by human macrophage-like cells derived from THP-1 pre-monocytic leukemic cells. Scientific Reports, 2017. 7(1): p. 12742.
30.Shang, R., Z. Sun, and H. Li, Effective dosing of L-carnitine in the secondary prevention of cardiovascular disease: a systematic review and meta-analysis. BMC Cardiovascular Disorders, 2014. 14(1): p. 88.
31.LEE, J., et al., 1938-P: The Gut Microbiota Is Critical for the Beneficial Metabolic Effects of Palmitic Acid Hydroxy Stearic Acids (PAHSAs) in Diet-Induced Obese Mice. Diabetes, 2020. 69(Supplement 1): p. 1938-P.
32.Liberati-Čizmek, A.-M., et al., Analysis of Fatty Acid Esters of Hydroxyl Fatty Acid in Selected Plant Food. Plant Foods for Human Nutrition, 2019. 74(2): p. 235-240.












QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊