跳到主要內容

臺灣博碩士論文加值系統

(44.222.64.76) 您好!臺灣時間:2024/06/14 07:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳宥蓁
研究生(外文):CHEN, YU-CHEN
論文名稱:吸入性麻醉藥對於巴金森氏症的下視丘影響
論文名稱(外文):The effect of inhalational anesthetics on the subthalamic nucleus in Parkinson’s disease.
指導教授:蔡昇宗蔡昇宗引用關係潘健一
指導教授(外文):TSAI, SHENG-TZUNGPAN, JIANN-I
口試委員:蔡昇宗潘健一陳新源李錫堅朱雅淳
口試委員(外文):TSAI, SHENG-TZUNGPAN, JIANN-ICHEN, SHIN-YUANLEE, HSI-JIANCHU, YA-CHUN
口試日期:2020-12-02
學位類別:博士
校院名稱:慈濟大學
系所名稱:醫學科學研究所博士班
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:英文
論文頁數:50
中文關鍵詞:麻醉地氟醚七氟醚視丘下核帕金森氏病
外文關鍵詞:anesthesiadesfluranesevofluranesubthalamic nucleusParkinson’s disease
相關次數:
  • 被引用被引用:0
  • 點閱點閱:295
  • 評分評分:
  • 下載下載:20
  • 收藏至我的研究室書目清單書目收藏:0
背景:地氟醚和七氟醚常使用的吸入麻醉藥物,但是很少有吸入麻醉藥物對於對腦內神經元活性影響的研究。本研究旨在比較帕金森氏病(Parkinson Disease)患者各別使用地氟醚和七氟醚麻醉進行深部腦刺激(DBS)手術分析比較兩麻醉藥在相同最小肺泡濃度(MAC)的視丘下核(STN)神經放電特性。
方法:本研究共有12名嚴重程度相似的帕金森氏病患在深部腦刺激手術各別接受地氟醚(n = 6)或七氟醚(n = 6)。我們使用微電極記錄在0.5–0.6 MAC下視丘下核神經放電,並比較兩麻醉藥之間的神經放電速率,功率譜密度,相干性和心率變化。
結果:地氟醚下的神經元放電頻率顯著低於七氟醚(47.37±26.7 Hz和63.92±36.5 Hz(P <0.001)。七氟烷比地氟醚具有更高的γ振盪能力(分別為62.87±0.94%和57.02±1.50%; P = 0.002),而地氟醚則呈現出θ振盪增加的趨勢。與七氟醚組相比,地氟醚組θ 頻段的顯著相干比例更高(分別為13%和6%)。與七氟醚在0.5–0.6 MAC下相比,地氟醚麻醉下顯著降低。
結論:這些發現讓我們對地氟醚和七氟醚麻醉之間視丘下核神經放電差異的理解。儘管它們並沒有顯著差異會影響視丘下核植入深層腦刺激電極晶片的臨床結果,但兩者麻醉藥產生與鎮痛和催眠有關的不同神經生理結果。

Background: Desflurane and sevoflurane are regularly used during inhalational anesthesia, but few studies have probed their intra-cerebral neuronal activity effects. The purpose of this study was comparing the neurophysiological characteristics of the subthalamic nucleus (STN) during similar minimal alveolar concentration (MAC) desflurane and sevoflurane anesthesia for deep brain stimulation (DBS) procedures in patients with Parkinson’s disease (PD).
Methods: Twelve patients with similar PD severity received desflurane (n = 6) or sevoflurane (n = 6) during DBS surgery. We obtained STN spike firings using microelectrode recordings at 0.5–0.6 MAC and compared firing rates, power spectral density, coherence and heart rate changes between the anesthetics.
Results: The neuronal firing rate was significantly lower under desflurane than sevoflurane (47.37 ± 26.7 Hz and 63.92 ± 36.5 Hz (P < 0.001)). Sevoflurane produced greater gamma oscillation power than desflurane (62.87 ± 0.94 % vs. 57.02 ± 1.50 %, respectively; P = 0.002), whereas desflurane showed a trend towards increased theta oscillations. There was a higher coherence proportion in the desflurane group's theta band compared to the sevoflurane group (13% vs. 6%, respectively). Desflurane significantly decreased the heart rate compared to sevoflurane at 0.5–0.6 MAC.
Conclusions: These findings extend our understanding of the differences between desflurane and sevoflurane anesthesia. Although they did not differentially influence STN mapping accuracy and the clinical outcome of DBS electrode implantation, the anesthetics produced different neurophysiological outcomes that are associated with analgesia and hypnosis.

感謝序 I
中文摘要 II
Abstract III
Chapter 1 Introduction and Background 5
Chapter 2 Materials and Methods 8
Patient data 8
Anesthetic procedure and monitoring vital signs 9
Microelectrode recording procedure 11
Data processing and analysis 12
Spike activity analysis and power spectral density estimation 15
Background activity 16
Coherence between spike and background activity 18
Statistical analysis 19
Chapter 3 Results 20
Spike firing rate and power spectral density 25
Coherence analysis for spike activity and background activity 28
Correlation of power spectral density and clinical outcome 30
HR during DBS at different MAC levels 31
Chapter 4 Discussion and conclusion 33
References 38


References
[1]C. J.Young andJ. L.Apfelbaum, “Inhalational anesthetics: Desflurane and sevoflurane,” J. Clin. Anesth., vol. 7, no. 7, pp. 564–577, Nov.1995.
[2]I. J.Rampil andB. S.King, “Volatile anesthetics depress spinal motor neurons,” Anesthesiology, vol. 85, no. 1, p. 129—134, 1996.
[3]R. W. D.Nickalls andW. W.Mapleson, “Age-related iso-MAC charts for isoflurane, sevoflurane and desflurane in man,” Br. J. Anaesth., vol. 91, no. 2, pp. 170–174, Aug.2003.
[4]K. H.Ryu, J. A.Kim, D. C.Ko, S. H.Lee, andW. J.Choi, “Desflurane reduces intraoperative remifentanil requirements more than sevoflurane: comparison using surgical pleth index-guided analgesia,” Br. J. Anaesth., vol. 121, no. 5, pp. 1115–1122, Nov.2018.
[5]O.Akeju et al., “Effects of sevoflurane and propofol on frontal electroencephalogram power and coherence,” Anesthesiology, vol. 121, no. 5, pp. 990–998, Nov.2014.
[6]L.Cornelissen, S. E.Kim, J. M.Lee, E. N.Brown, P. L.Purdon, andC. B.Berde, “Electroencephalographic markers of brain development during sevoflurane anaesthesia in children up to 3 years old,” Br. J. Anaesth., vol. 120, no. 6, pp. 1274–1286, Jun.2018.
[7]A. G.Hudetz, J. A.Vizuete, andS.Pillay, “Differential effects of isoflurane on high-frequency and low-frequency γ oscillations in the cerebral cortex and hippocampus in freely moving rats,” Anesthesiology, vol. 114, no. 3, pp. 588–595, 2011.
[8]A.Raz, D.Eimerl, A.Zaidel, H.Bergman, andZ.Israel, “Propofol decreases neuronal population spiking activity in the subthalamic nucleus of parkinsonian patients,” Anesth. Analg., vol. 111, no. 5, pp. 1285–1289, 2010.
[9]A.Martinez-Simon et al., “Effect of dexmedetomidine and propofol on basal ganglia activity in Parkinson disease a controlled clinical trial,” Anesthesiology, vol. 126, no. 6, pp. 1033–1042, 2017.
[10]A.Abosch, W. D.Hutchison, J. A.Saint-Cyr, J. O.Dostrovsky, andA. M.Lozano, “Movement-related neurons of the subthalamic nucleus in patients with Parkinson disease,” J. Neurosurg., vol. 97, no. 5, pp. 1167–1172, Nov.2002.
[11]J. L.Molinuevo, F.Valldeoriola, andJ.Valls-Solé, “Usefulness of neurophysiologic techniques in stereotactic subthalamic nucleus stimulation for advanced Parkinson’s disease,” Clin. Neurophysiol., vol. 114, no. 10, pp. 1793–1799, Oct.2003.
[12]“Do intraoperative microrecordings improve subthalamic nucleus targeting in stereotactic neurosurgery for Parkinson’s disease?” [Online]. Available: https://search.proquest.com/docview/207585759?pq-origsite=gscholar&fromopenview=true. [Accessed: 06-Nov-2020].
[13]P.Romanelli, G.Heit, B. C.Hill, A.Kraus, T.Hastie, andH. M.Brontë-Stewart, “Microelectrode recording revealing a somatotopic body map in the subthalamic nucleus in humans with Parkinson disease,” J. Neurosurg., vol. 100, no. 4, pp. 611–618, Apr.2004.
[14]R.Levy, W. D.Hutchison, A. M.Lozano, andJ. O.Dostrovsky, “Synchronized Neuronal Discharge in the Basal Ganglia of Parkinsonian Patients Is Limited to Oscillatory Activity,” J. Neurosci., vol. 22, no. 7, pp. 2855–2861, Apr.2002.
[15]A.Zaidel, A.Spivak, B.Grieb, H.Bergman, andZ.Israel, “Subthalamic span of β oscillations predicts deep brain stimulation efficacy for patients with Parkinson’s disease,” Brain, vol. 133, no. 7, pp. 2007–2021, 2010.
[16]A.Sharott et al., “Activity parameters of subthalamic nucleus neurons selectively predict motor symptom severity in Parkinson’s disease,” J. Neurosci., vol. 34, no. 18, pp. 6273–6285, 2014.
[17]F.Hertel et al., “Implantation of electrodes for deep brain stimulation of the subthalamic nucleus in advanced Parkinson’s disease with the aid of intraoperative microrecording under general anesthesia,” Neurosurgery, vol. 59, no. 5, pp. 1138–1143, Nov.2006.
[18]S. T.Tsai et al., “Dorsolateral subthalamic neuronal activity enhanced by median nerve stimulation characterizes Parkinson’s disease during deep brain stimulation with general anesthesia,” J. Neurosurg., vol. 123, no. 6, pp. 1394–1400, 2015.
[19]V.Krishna et al., “The effect of dexmedetomidine on the firing properties of STN neurons in Parkinson’s disease,” Eur. J. Neurosci., vol. 42, no. 4, pp. 2070–2077, Aug.2015.
[20]W. J.Elias, M. E.Durieux, D.Huss, andR. C.Frysinger, “Dexmedetomidine and arousal affect subthalamic neurons,” Mov. Disord., vol. 23, no. 9, pp. 1317–1320, Jul.2008.
[21]V.Krishna et al., “The effect of dexmedetomidine on the firing properties of STN neurons in Parkinson’s disease,” Eur. J. Neurosci., vol. 42, no. 4, pp. 2070–2077, 2015.
[22]I.Rozet et al., “Clinical experience with dexmedetomidine for implantation of deep brain stimulators in Parkinson’s disease,” Anesth. Analg., vol. 103, no. 5, pp. 1224–1228, 2006.
[23]Y. C.Chen, S. Y.Chen, T. Y.Chen, J. I.Pan, andS. T.Tsai, “Desflurane and sevoflurane differentially affect activity of the subthalamic nucleus in Parkinson’s disease,” Br. J. Anaesth., vol. 0, no. 0, 2020.
[24]S. T.Tsai, G. F.Tseng, C. C.Kuo, T. Y.Chen, andS. Y.Chen, “Sevoflurane and Parkinson’s Disease Subthalamic Nucleus Neuronal Activity and Clinical Outcome of Deep Brain Stimulation,” Anesthesiology, pp. 1034–1044, Feb.2020.
[25]S. H.Lin et al., “Subthalamic deep brain stimulation after anesthetic inhalation in Parkinson disease: A preliminary study,” J. Neurosurg., vol. 109, no. 2, pp. 238–244, Aug.2008.
[26]S. T.Tsai, S. H.Lin, S. Z.Lin, J. Y.Chen, C. W.Lee, andS. Y.Chen, “Neuropsychological effects after chronic subthalamic stimulation and the topography of the nucleus in Parkinson’s disease,” Neurosurgery, vol. 61, no. 5, pp. E1024–E1030, Nov.2007.
[27]H. L.Chan, M. A.Lin, T.Wu, S. T.Lee, Y. T.Tsai, andP. K.Chao, “Detection of neuronal spikes using an adaptive threshold based on the max-min spread sorting method,” J. Neurosci. Methods, vol. 172, no. 1, pp. 112–121, 2008.
[28]D. L.Donoho, “De-Noising by Soft-Thresholding,” IEEE Trans. Inf. Theory, vol. 41, no. 3, pp. 613–627, 1995.
[29]J. R.Rosenberg, A. M.Amjad, P.Breeze, D. R.Brillinger, andD. M.Halliday, “The Fourier approach to the identification of functional coupling between neuronal spike trains,” Prog. Biophys. Mol. Biol., vol. 53, no. 1, pp. 1–31, Jan.1989.
[30]F.Amtage et al., “Tremor-correlated neuronal activity in the subthalamic nucleus of Parkinsonian patients,” Neurosci. Lett., vol. 442, no. 3, pp. 195–199, 2008.
[31]K.Henschel et al., “Multivariate analysis of dynamical processes,” Eur. Phys. J. Spec. Top., vol. 165, no. 1, pp. 25–34, 2008.
[32]D. R.Brillinger, “Nerve cell spike train data analysis: A progression of technique,” J. Am. Stat. Assoc., vol. 87, no. 418, pp. 260–271, 1992.
[33]P. P.Mitra andB.Pesaran, “Analysis of dynamic brain imaging data,” Biophys. J., vol. 76, no. 2, pp. 691–708, Feb.1999.
[34]D. J.Thomson, “Spectrum Estimation and Harmonic Analysis,” Proc. IEEE, vol. 70, no. 9, pp. 1055–1096, 1982.
[35]A.Moran, H.Bergman, Z.Israel, andI.Bar-Gad, “Subthalamic nucleus functional organization revealed by parkinsonian neuronal oscillations and synchrony,” Brain, vol. 131, no. 12, pp. 3395–3409, 2008.
[36]L. J.Myers et al., “Rectification and non-linear pre-processing of EMG signals for cortico-muscular analysis,” J. Neurosci. Methods, vol. 124, no. 2, pp. 157–165, 2003.
[37]C. J.Dakin, B. H.Dalton, B. L.Luu, andJ.-S.Blouin, “Rectification is required to extract oscillatory envelope modulation from surface electromyographic signals,” J. Neurophysiol., vol. 112, no. 7, pp. 1685–1691, 2014.
[38]D. J.Pedrosa et al., “A functional micro-electrode mapping of ventral thalamus in essential tremor,” Brain, vol. 141, no. 9, pp. 2644–2654, 2018.
[39]A.Moran, H.Bergman, Z.Israel, andI.Bar-Gad, “Subthalamic nucleus functional organization revealed by parkinsonian neuronal oscillations and synchrony,” Brain, vol. 131, no. 12, pp. 3395–3409, 2008.
[40]A. M.Amjad, D. M.Halliday, J. R.Rosenberg, andB. A.Conway, “An extended difference of coherence test for comparing and combining several independent coherence estimates: Theory and application to the study of motor units and physiological tremor,” J. Neurosci. Methods, vol. 73, no. 1, pp. 69–79, 1997.
[41]K.-H.Ryu, K.Song, T.-Y.Lim, W.-J.Choi, Y.-H.Kim, andH.-S.Kim, “Does Equi–Minimum Alveolar Concentration Value Ensure Equivalent Analgesic or Hypnotic Potency?,” Anesthesiology, vol. 128, no. 6, pp. 1092–1098, 2018.
[42]M. M.Nickel et al., “Brain oscillations differentially encode noxious stimulus intensity and pain intensity,” Neuroimage, vol. 148, no. September 2016, pp. 141–147, 2017.
[43]E. N.Brown, P. L.Purdon, andC. J.VanDort, “General Anesthesia and Altered States of Arousal: A Systems Neuroscience Analysis,” Annu. Rev. Neurosci., vol. 34, no. 1, pp. 601–628, Jul.2011.
[44]A. A.Kühn, T.Trottenberg, A.Kivi, A.Kupsch, G. H.Schneider, andP.Brown, “The relationship between local field potential and neuronal discharge in the subthalamic nucleus of patients with Parkinson’s disease,” Exp. Neurol., vol. 194, no. 1, pp. 212–220, 2005.
[45]T.Trottenberg, A.Kupsch, G. H.Schneider, P.Brown, andA. A.Kühn, “Frequency-dependent distribution of local field potential activity within the subthalamic nucleus in Parkinson’s disease,” Exp. Neurol., vol. 205, no. 1, pp. 287–291, 2007.
[46]D.Schwender, M.Daunderer, S.Klasing, U.Finsterer, andK.Peter, “Power spectral analysis of the electroencephalogram during increasing end-expiratory concentrations of isoflurane, desflurane and sevoflurane,” Anaesthesia, vol. 53, no. 4, p. 335—342, 1998.
[47]K.Šušmáková andA.Krakovská, “Discrimination ability of individual measures used in sleep stages classification,” Artif. Intell. Med., vol. 44, no. 3, pp. 261–277, Nov.2008.
[48]H.Cagnan et al., “Temporal evolution of beta bursts in the parkinsonian cortical and basal ganglia network,” Proc. Natl. Acad. Sci. U. S. A., vol. 116, no. 32, pp. 16095–16104, Aug.2019.
[49]R.Levy, W. D.Hutchison, A. M.Lozano, andJ. O.Dostrovsky, “High-frequency synchronization of neuronal activity in the subthalamic nucleus of Parkinsonian patients with limb tremor,” J. Neurosci., vol. 20, no. 20, pp. 7766–7775, Oct.2000.
[50]K. P.Michmizos, P.Frangou, P.Stathis, D.Sakas, andK. S.Nikita, “Beta-band frequency peaks inside the subthalamic nucleus as a biomarker for motor improvement after deep brain stimulation in parkinson’s disease,” IEEE J. Biomed. Heal. Informatics, vol. 19, no. 1, pp. 174–180, Jan.2015.
[51]H.Cagnan et al., “Automatic subthalamic nucleus detection from microelectrode recordings based on noise level and neuronal activity,” J. Neural Eng., vol. 8, no. 4, 2011.
[52]A. A.Kühn, A.Kupsch, G.-H.Schneider, andP.Brown, “Reduction in subthalamic 8-35 Hz oscillatory activity correlates with clinical improvement in Parkinson’s disease,” Eur. J. Neurosci., vol. 23, no. 7, pp. 1956–1960, Apr.2006.
[53]M.Weinberger, W. D.Hutchison, andJ. O.Dostrovsky, “Pathological subthalamic nucleus oscillations in PD: Can they be the cause of bradykinesia and akinesia?,” Exp. Neurol., vol. 219, no. 1, pp. 58–61, Sep.2009.
[54]A.Pogosyan et al., “Parkinsonian impairment correlates with spatially extensive subthalamic oscillatory synchronization,” Neuroscience, vol. 171, no. 1, pp. 245–257, Nov.2010.
[55]A. A.Kühn et al., “High-frequency stimulation of the subthalamic nucleus suppresses oscillatory β activity in patients with Parkinson’s disease in parallel with improvement in motor performance,” J. Neurosci., vol. 28, no. 24, pp. 6165–6173, Jun.2008.
[56]T. J.Ebert, M.Muzi, andC. W.Lopatka, “Neurocirculatory responses to sevoflurane in humans: A comparison to desflurane,” Anesthesiology, vol. 83, no. 1, pp. 88–95, 1995.
[57]R. M.Jones, “Desflurane and sevoflurane: inhalation anaesthetics for this decade?,” Br. J. Anaesth., vol. 65, no. 4, pp. 527–536, Oct.1990.
[58]E.Al et al., “Heart–brain interactions shape somatosensory perception and evoked potentials,” Proc. Natl. Acad. Sci., vol. 117, no. 19, pp. 10575–10584, May2020.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊