|
[1]J. Chomicki, P. Godfrey, J. Gryz, and D. Liang, “Skyline with Presorting,” in ICDE, 2003. [2]S. Borzsony, D. Kossmann, and K. Stocker, “The Skyline operator,” Proc. 17th Int. Conf. Data Eng., pp. 421–430, 2001. [3]G. Wang, J. Xin, L. Chen, and Y. Liu, “Energy-efficient reverse skyline query processing over wireless sensor networks,” IEEE Trans. Knowl. Data Eng., vol. 24, no. 7, pp. 1259–1275, 2012. [4]C. Y. Lin, J. L. Koh, and A. L. P. Chen, “Determining k-most demanding products with maximum expected number of total customers,” IEEE Trans. Knowl. Data Eng., vol. 25, no. 8, pp. 1732–1747, 2013. [5]G. Xiao, K. Li, and K. Li, “Reporting L Most Favorite Objects in Uncertain Databases with Probabilistic Reverse Top-k Queries,” Proc. - 15th IEEE Int. Conf. Data Min. Work. ICDMW 2015, pp. 1592–1599, 2016. [6]J.-L. Koh, C.-Y. Lin, and A. L. P. Chen, “Finding k most favorite products based on reverse top-t queries,” VLDB J., vol. 23, no. 4, pp. 541–564, 2014. [7]B. C. Tan, K.-L.; Eng, P.-K. Eng; Ooi, “Efficient progressive skyline computation,” in VLDB, 2001. [8]D. Kossmann, F. Ramsak, and S. Rost, “Shooting Stars in the Sky: An Online Algorithm for Skyline Queries,” {VLDB} 2002, Proc. 28th Int. Conf. Very Large Data Bases, August 20-23, 2002, Hong Kong, China, pp. 275–286, 2002. [9]D. Papadias, Y. Tao, G. Fu, and S. Bernhard, “An Optimal and Progressive Algorithm for Skyline Queries,” in ACM SIGMOD, 2003. [10]D. Papadias, G. Fu, and B. Seeger, “An Optimal and Progresive Algorithm for Skyline Queries,” in ACM SIGMOID, 2003. [11]D. Sacharidis, P. Bouros, and T. Sellis, “Caching dynamic skyline queries,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 5069 LNCS, pp. 455–472, 2008. [12]D. Papadias, Y. Tao, G. Fu, and B. Seeger, “Progressive skyline computation in database systems,” ACM Trans. Database Syst., vol. 30, no. 1, pp. 41–82, 2005. [13]W. C. Wang, E. T. Wang, and A. L. P. Chen, “Dynamic skylines considering range queries,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 6588 LNCS, no. PART 2, pp. 235–250, 2011. [14]E. Dellis and B. Seeger, “Efficient Computation of Reverse Skyline Queries,” VLDB 07 Proc. 33rd Int. Conf. Very large data bases, pp. 291–302, 2007. [15]L. Xiang and L. Chen, “Monochromatic and bichromatic reverse skyline search over uncertain databases,” in Proceedings of the 2008 ACM SIGMOD international conference on Management of data, 2008, pp. 213–226. [16]P. M. Deshpande and P. Deepak, “Efficient reverse skyline retrieval with arbitrary non-metric similarity measures,” Proc. 14th Int. Conf. Extending Database Technol. - EDBT/ICDT ’11, p. 319, 2011. [17]J. Pei, B. Jiang, X. Lin, and Y. Yuan, “Probabilistic Skylines on Uncertain Data,” 33rd Int. Conf. Very Large Data Bases, pp. 15–26, 2007. [18]Y. Tao and D. Papadias, “Maintaining Sliding Window Skylines on Data Streams,” IEEE Trans. Knowl. Data Eng., vol. 18, no. 3, pp. 377–391, 2006. [19]H. Z. Su, E. T. Wang, and A. L. P. Chen, “Continuous Probabilistic Skyline Queries over Uncertain Data Streams,” pp. 105–121, 2010. [20]M. Parsian, Data Algorithms Recipes for Scaling up with Hadoop and Spark. Boston; Farnhan; Sebastapol; Tokyo: O’Reilly, 2015. [21]B. Zhang, S. Zhou, and J. Guan, “Adapting Skyline Computation to the MapReduce Framework: Algorithms and Experiments,” Lect. Notes Comput. Sci., vol. 6637, no. 60873040, pp. 403–414, 2011. [22]L. Chen, K. Hwang, and J. Wu, “MapReduce skyline query processing with a new angular partitioning approach,” Proc. 2012 IEEE 26th Int. Parallel Distrib. Process. Symp. Work. IPDPSW 2012, pp. 2262–2270, 2012. [23]K. Mullesgaard, J. L. Pedersen, H. Lu, and Y. Zhou, “Efficient Skyline Computation in MapReduce,” Proc. 17th Int. Conf. Extending Database Technol., no. c, pp. 37–48, 2014. [24]J. Zhang, X. Jiang, W. S. Ku, and X. Qin, “Efficient parallel skyline evaluation using MapReduce,” IEEE Trans. Parallel Distrib. Syst., vol. 27, no. 7, pp. 1996–2009, 2016. [25]Y. Park, J.-K. Min, and K. Shim, “Parallel computation of skyline and reverse skyline queries using mapreduce,” Proc. VLDB Endow., vol. 6, no. 14, pp. 2002–2013, 2013. [26]Y. Park, J. K. Min, and K. Shim, “Efficient Processing of Skyline Queries Using MapReduce,” IEEE Trans. Knowl. Data Eng., vol. 29, no. 5, pp. 1031–1044, 2017. [27]J. L. Koh, C. C. Chen, C. Y. Chan, and A. L. P. Chen, “MapReduce skyline query processing with partitioning and distributed dominance tests,” Inf. Sci. (Ny)., vol. 375, pp. 114–137, 2017. [28]M. Tang, Y. Yu, W. G. Aref, Q. M. Malluhi, and M. Ouzzani, “Efficient Parallel Skyline Query Processing for High-Dimensional Data,” IEEE Trans. Knowl. Data Eng., vol. 30, no. 10, pp. 1838–1851, 2018. [29]H. Wijayanto, W. Wang, W.-S. Ku, and A. Chen, “LShape Partitioning: Parallel Skyline Query Processing using MapReduce,” IEEE Trans. Knowl. Data Eng., 2020. [30]X. Lin, Y. Yuan, Q. Zhang, and Y. Zhang, “Selecting stars: The k most representative skyline operator,” Proc. - Int. Conf. Data Eng., pp. 86–95, 2007. [31]X. Lin, Q. Liu, Y. Yuan, X. Zhou, and H. Lu, “Summarizing level-two topological relations in large spatial datasets,” ACM Trans. Database Syst., vol. 31, no. 2, pp. 584–630, 2006. [32]M. L. Yiu and N. Mamoulis, “Efficient processing of top-k dominating queries on multi-dimensional data,” VLDB ’07 Proc. 33rd Int. Conf. Very large data bases, pp. 483–494, 2007. [33]M. L. Yiu and N. Mamoulis, “Multi-dimensional top- k dominating queries,” VLDB J., vol. 18, pp. 695–718, 2009. [34]C. Li, B. C. Ooi, A. K. H. Tung, and S. Wang, “DADA : A Data Cube for Dominant Relationship Analysis,” in SIGMOD’06, June 26–29, 2006. [35]J. Gray, A. Bosworth, A. Layman, and H. Pirahesh, “Data Cube: {A} Relational Aggregation Operator Generalizing Group-By, Cross-Tab, and Sub-Total,” in Proceedings of the Twelfth International Conference on Data Engineering, February 26 - March 1, 1996, New Orleans, Louisiana, {USA}, 1996, pp. 152–159. [36]L. Zou and L. Chen, “Pareto-Based Dominant Graph : An Efficient Indexing Structure to Answer Top-K Queries,” IEEE Trans. Knowl. Data Eng., vol. 23, no. 5, pp. 727–741, 2011. [37]B. J. Santoso, G. Chiu, and I. C. Society, “Close Dominance Graph : An Efficient Framework for Answering Continuous Top- k Dominating Queries,” IEEE Trans. Knowl. Data Eng., vol. 26, no. 8, pp. 1853–1865, 2014. [38]H. Wijayanto, S. Thamrin, and A. L. P. Chen, “Upgrading Products based on Existing Dominant Competitors,” in Proceedings of the 54th Hawaii International Conference on System Sciences, pp. 1738–1747. [39]H. Lu and C. S. Jensen, “Upgrading uncompetitive products economically,” Proc. - Int. Conf. Data Eng., pp. 977–988, 2012. [40]S. Ge, L. Hou U, N. Mamoulis, and D. W. L. Cheung, “Dominance Relationship Analysis with Budget Constraints,” Knowl. Inf. Syst., 2013. [41]B. Yin, K. Gu, X. Wei, S. Zhou, and Y. Liu, “A cost-efficient framework for finding prospective customers based on reverse skyline queries,” Knowledge-Based Syst., vol. 152, pp. 117–135, 2018. [42]M. S. Islam and C. Liu, “Know your customer: computing k-most promising products for targeted marketing,” VLDB J., vol. 25, no. 4, pp. 545–570, 2016. [43]X. Zhou, K. Li, Z. Yang, and K. Li, “Finding Optimal Skyline Product Combinations under Price Promotion,” IEEE Trans. Knowl. Data Eng., vol. 4347, no. c, pp. 1–14, 2019. [44]P. Baldi, K. Cranmer, T. Faucett, P. Sadowski, and D. Whiteson, “Parameterized neural networks for high-energy physics,” Eur. Phys. J. C, vol. 76, no. 5, Apr. 2016.
|