跳到主要內容

臺灣博碩士論文加值系統

(44.200.168.16) 您好!臺灣時間:2023/04/02 02:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:游士頡
研究生(外文):YOU,SHI-JIE
論文名稱:氧化石墨改質聚乳酸/聚碳酸酯合膠介面之研究
論文名稱(外文):Modification of the interface of PLA/PC blends with graphene oxide
指導教授:王曄
指導教授(外文):WANG,YEH
口試委員:沈曉復許貫中
口試日期:2021-04-29
學位類別:碩士
校院名稱:東海大學
系所名稱:化學工程與材料工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:85
中文關鍵詞:聚碳酸酯
相關次數:
  • 被引用被引用:1
  • 點閱點閱:140
  • 評分評分:
  • 下載下載:24
  • 收藏至我的研究室書目清單書目收藏:0
本研究以熔融混煉方式製備聚乳酸(PLA)/ 聚碳酸酯(PC)合膠。主要以聚乳酸(PLA)改質聚碳酸酯(PC)提升其生分解性,並加入氧化石墨改善介面相容性,並改變添加石墨比例來檢測合膠的性質及微相結構。
GO以氧化法將天然石墨官能化,經過化學層插使石墨具有羥基、羧基及環氧基等反應性官能基,並添加低比例之GO與PLA/PC (30/70)合膠混煉,由於PLA與PC兩者不相容,故將GO均勻分散於合膠中,可改質合膠之介面黏合。而加入GO量越多,合膠之機械性質提升越多,隨著GO添加濃度增加,衝擊強度明顯提升,研究中使用熱性質分析儀(MDSC、TGA)測定樣品結晶性與熱穩定性;顯微鏡技術(OM、FE-SEM)將用於觀察樣品結晶相型態及方向性與延伸後之微孔結構;樣品之熔融加工性將利用流變儀(Rheometer)檢測。從實驗結果得到,添加微量的奈米石墨烯對其熱性質、機械性質提升,從 SEM 影像觀察發現,氧化石墨可改善合膠因相容性不佳所造成的介面缺陷,提升兩相介面之黏合。

The present study investigated the blends of Polylactic acid (PLA) and Polycarbonate (PC) prepared by melt blending, PLA was used to modify the biodegradable properties of PC, and adding graphite oxide to improve interface compatibility, and change the composition of graphite to observed the properties
and microphase structure of the blend.
The original graphite does not have any polar or reactive groups. Therefore, chemical oxidization was used to functionalize and produce the reactive groups on the graphene surface.Low loading of GO was added into PLA/PC blends. PLA and PC are incompatible. If GO was dispered evenly in the blend, it would improve the interface of the two component. Characterization methods include the modulated scanning calorimetry and the thermogravimetric analyzer (MDSC and TGA); polarized optical and scanning electron microscopies (OM and FE-SEM).Finally the rheometer is used for characterizing blend process ability. From the experimental results, the addition of GO improved the thermal and mechanical properties. Observing from SEM micrographs, adhesion apparently reduced the interfacial defects.


目錄
致謝 I
摘要 II
ABSTRACT III
目錄 IV
圖目錄 VII
表目錄 X
壹、緒論 1
1-1 研究背景與動機 1
1-2研究方法與目的 2
貳、文獻回顧 3
2-1生物可分解高分子材料 3
2-2聚乳酸介紹 3
2-2-1聚乳酸之合成 4
2-2-2聚乳酸之異構物與結晶 5
2-2-3回收聚乳酸之降解 7
2-3聚碳酸酯 10
2-3-1聚碳酸酯之合成 10
2-3-2 聚碳酸酯之應用 11
2-4 石墨烯及石墨烯改質 12
2-4-1 奈米碳材料簡介 12
2-4-2 石墨烯及其衍生物 16
2-5 石墨烯奈米複合材料 22
2-6高分子合膠 24
2-6-1高分子合膠相容性 25
2-6-2合膠流變性質 26
2-6-3 PLA/PC之合膠改質 28
2-7高分子合膠介面層與介面張力 28
2-7-1介面層的形成 29
2-7-2溶解度參數 30
2-7-3介面張力 30
參、實驗材料與實驗方法 32
3-1實驗材料 32
3-2實驗儀器裝置 34
3-3合膠製備方法 35
3-3-1塑譜儀熔融混煉法 35
3-3-2石墨改質 36
3-3-3 GO改質PLA/PC合膠 37
3-4微結構分析 38
3-4-1 X-ray 繞射分析(X-ray Diffraction,XRD) 38
3-4-2 傅立葉轉換紅外光譜(Fourier Transform Infrared Spectrometry,FTIR) 38
3-4-3 光學顯微鏡(OM) 39
3-4-4 場發式電子顯微鏡(FE-SEM) 40
3-5 熱性質分析 41
3-5-1 調變式示差掃描熱卡計(Modulated Differential Scanning Calorimetry, MDSC) 41
3-5-2 熱重分析儀(Thermogravimetric Analyzer, TGA) 42
3-6機械性質分析 42
3-6-1 動態機械性質分析(Dynamic Mechanical Analysis,DMA) 42
3-6-2衝擊測試(Impact test) 43
3-7流變性質分析 44
3-7-1 旋轉式流變儀(RDA-II) 44
3-7-2 毛細管流變儀 44
肆、結果與討論 45
4-1石墨與PLA/PC (30/70) 物性及結構檢測 45
4-1-1 GO物性及結構檢測 45
4-1-2 PLA與PC物性及結構檢測 51
4-2氧化石墨改質PLA/PC 62
4-2-1熱性質分析 62
4-2-2動態機械性質分析 66
4-2-3流變性質分析 69
4-3改質合膠之介面檢測 72
4-3-1分散性及微結構分析 72
4-3-2合膠斷面之SEM影像 74
伍、結論 78
5-1 基材結構及物性檢測 78
5-2 GO改質PLA/PC合膠之分析 79
5-3 改質合膠之介面檢測 80
陸、參考文獻 81

圖目錄

圖 2 1高分子量聚乳酸合成方法[2] 5
圖 2 2聚乳酸之不同光學異構物[4] 6
圖 2 3聚乳酸鹼催化水解隨機斷鏈反應機制[7] 9
圖 2 4聚乳酸β氫轉移反應機制[7] 9
圖 2-5 富勒烯結構示意圖 12
圖 2-6 奈米碳管結構示意圖[9] 13
圖 2-7 石墨結構(a)六方晶系層狀圖(b)六方晶系俯視圖(c)菱方晶系層狀圖[10] 14
圖 2-8 石墨烯(a)2D石墨片、(b)1D單壁奈米碳管及(c)0D巴克球結構示意圖[11] 15
圖 2-9 1,3-Butene之共軛結構 15
圖 2-10 (a)石墨烯裝置SEM圖(b)石墨烯(c)去除石墨烯AFM圖(d)氧化矽基座 17
圖 2-11 CVD法石墨烯生長機制 18
圖 2-12 石墨氧化還原機制 20
圖 2-13 石墨氧化還原前後導電度比較[31] 21
圖 2-14改質還原的graphene oxide之製備過程[33] 23
圖 2-15 PVA/graphene奈米複合材料之機械性質與石墨烯添加量之關係[36] 24
圖 2 16雙成分合膠相容性示意圖[38] 26
圖 2 17改質合膠複變黏度分析圖 27
圖 2 18介面區兩相擴散示意圖 29
圖 2 19分散相破碎機制示意圖 31
圖 3 1聚乳酸結構式 32
圖 3 2聚碳酸酯結構式 32
圖 3-3塑譜儀圖 35
圖 3 4改質合膠混煉圖 37
圖 3-5 光學顯微鏡與SEM工作原理示意圖 40
圖 3-6 DMA探針示意圖 43
圖 4-1 紅外線光譜分析:純石墨及氧化石墨 46
圖 4-2 TGA分析:純石墨及氧化石墨 47
圖 4-3 元素分析:純石墨及氧化石墨 48
圖 4-4 X-ray繞射分析:純石墨及氧化石墨 49
圖 4-5 SEM影像:純石墨 50
圖 4-6 SEM影像:GO 50
圖 4-7 TGA分析:合膠起始裂解溫度 52
圖 4-8 TGA分析:合膠最大裂解溫度 53
圖 4-9 MDSC分析: PLA/PC合膠 54
圖 4-10 DMA分析:合膠儲存模數 55
圖 4-11 DMA分析:合膠損失模數 56
圖 4-12 穩態流變分析: PLA/PC合膠 57
圖 4-13 Frequency sweep G’: PLA/PC合膠 58
圖 4-14 Frequency sweep G’’: PLA/PC合膠 59
圖 4-15 PLA/PC合膠之ɳ*比較圖 60
圖 4-16 OM影像: PLA/PC合膠 61
圖 4-17 SEM影像: PLA/PC合膠 61
圖 4-18 TGA分析: GO改質PLA/PC合膠 63
圖 4-19 MDSC分析: GO改質PLA/PC合膠 65
圖 4-20 DMA分析: GO改質PLA/PC合膠 67
圖 4-21 衝擊強度分析: GO改質PLA/PC合膠 68
圖 4-22 穩態流變分析: GO改質PLA/PC合膠 69
圖 4-23 Frequency sweep G’ : 改質PLA/PC合膠 70
圖 4-24 Frequency sweep G’’ : 改質PLA/PC合膠 71
圖 4-25 改質 PLA/PC 合膠ɳ和ɳ*比較圖 71
圖 4-26 OM影像: GO改質PLA/PC合膠 73
圖 4-27 SEM之冷凍斷面影像: GO改質PLA/PC合膠 75
圖 4-28 添加不同比例GO改質 PLA/PC 合膠SEM影像 76
圖 4-29 SEM之衝擊斷面影像: GO改質PLA/PC合膠 77




表目錄
表 2 1高分子溶解度參數表 30
表 3 1實驗儀器裝置表 34
表 4-1改質石墨官能基對照表 46
表 4-2元素分析結果:純石墨及氧化石墨 48
表 4-3 X-ray繞射分析結果 49
表 4-4 合膠之DMA分析結果 56
表 4-5 改質PLA/PC之合膠TGA分析表 64
表 4-6 改質 PLA/PC 合膠 DSC 表 65
表 4-7 改質PLA/PC之合膠DMA分析表 67


陸、參考文獻
1. K. Hiltunen., J. V. Seppala., M. Harkonen., Macromolecules, 1997, 30, 373-379.
2. R.Auras., B.Harte., S.Selke.(2004), An overview of polylactides as packaging materials, Macromol Biosci., 4(9), 835-864.
3. D. Hutmacher.,M.B.Hurzeler., A. Kirsch.(1996), Transactions of the Annual Meeting of the Society for Biomaterials in conjunction with the International Biomaterials Symposium, 2, 701.
4. O.Dechy-Cabaret., B.Martin-Vaca.,D.Bourissou., Controlled ring-opening polymerization of lactide and glycolide, Chem. Rev., 104(12), 6147-6176, 2004.
5. D. Cam., S.-H. Hyon., Y. Ikada., Degradation of high molecular weight poly(l-lactide) in alkaline medium, Biomaterials, 1995, 26, 833
6. 楊斌,「PLA聚乳酸環保塑膠」,五南圖書出版社,2010
7. Al-ltryR. et al. Polymer Degradation and Stability, pp1898-1914, vol.97, October 2012
8. K.Soga.,S.Hosoda.,S.Ikeda., A new synthetic route to polycarbonate, Journal of Polymer Science: Polymer Letters Edition, 15(10), 611-614.,1977
9. William Steel (2015), "A Primer on Carbon Nanotubes - Part 1", https://phlebas.co/2015/06/17/a-primer-on-carbon-nanotubes-part-1/.
10. K.Tatsumi,N.Iwashita,H.Sakaebe,H.Shioyama,S.Higuchi,A. Mabuchi,et al(1995),"The Influence of the Graphitic Structure on the Electrochemical Characteristics for the Anode of Secondary Lithium Batteries,"Journal of The Electrochemical Society,142,716-720.
11. A.K.Geim and K.S.Novoselov(2007),"The rise of graphene,"Nature Materials,6,183-191.
12. M.J.Allen,V.C.Tung and R.B.Kaner(2010),"Honeycomb carbon:Areview of graphene,"Chemicalreviews,110,132-145.
13. P.Blake,E.W.Hill,A.H.Castro Neto,K.S.Novoselov,D.Jiang,R.Yang,et al(2007),"Making graphene visible,"Applied Physics Letters,91,63-124.
14. A.Geim and K.Novoselov(2010),"The Nobel Prize in Physics 2010,"Nature Physics.
15. J.H.Chen,C.Jang,S.Xiao,M.Ishigami and M.S.Fuhrer(2008),"Intrinsic and Extrinsic Performance Limits of Graphene Devices on SiO2,"Nature Nanotechnology,3,206-209.
16. B.Z.Jang and A.Zhamu(2008),"Processing of Nanographene platelets(NGPs) and NGP nanocomposites:a review,"Journal of Materials Science,43,5092-5101.
17. K.S.Novoselov,A.K.Geim,S.V.Morozov,D.Jiang,Y.Zhang,S.V.Dubonos,et
al(2004),"Electric Field Effect in Atomically Thin CarbonFilms,”Science,306,666-669
18. A.Z.Obraztsov,E.A.Obraztsova,A.V.Tyurnina,A.A.Zolotukhin(2007),
"Chemical vapor deposition of thin graphite film of nanometer thickness,"Carbon,45,2017-2021.
19. L.Xuesong,C.Weiwei,et al(2009),"Evolution of Graphene Growth on Ni and Cu by Carbon Isotope Labeling,"Nano Letters,9,4268-4272.
20. 黃建維(2010),高品質石墨烯之化學氣相沉積成長與基礎電性之研究,清華大學電子工程研究所碩士論文。
21. P.G.Ren,D.X.Yan,X.Ji,T.Chen and Z.M.Li(2011),"Temperture dependence of graphene oxide reduced by hydrazine hydrate,"Nanotechnology,22,055705.
22. H.Kim,A.A.Abodala and C.W.Macosko(2010),"Graphene/Polymer Nanocomposites,"Macromolecules,43,6515-6530.
23. D.R.Dreyer,S.Park,C.W.Bielawski and R.S.Ruoff(2009),"The chemistry of graphene oxide,"Chemical Society Reviews,39,228-240.
24. H.-M.Ju,S.H.Huh,S.-H.Choi and H.-L.Lee(2010),"Structure of thermally and chemically reduced graphene,"Materials Letters,64,357-360.
25. B.C.Brodie(1859),"On the Atomic Weight of Graphite,"Philosophical Transactions of the Royal Society of London,149,249-259.
26. L.Staudenmaier(2006),"Verfahren zur Darstellung der Graphitsure," Philosophical Transactions B,32,1394-1399.
27. W.S,H.Jr and R.E.Offeman(1958),"Preparation of Graphitic Oxide,"Journal of the American Chemical Society,80,1339.
28. O.C.Compton and S.T.Nguyen(2010),"Graphene Oxide,Highly Reduced Graphene Oxide,and Graphene:Versatile Building Blocks for Carbon-Based
Materials,"Small,6,711-723.
29. N.I.Kovtyukhova,P.J.Ollivier,B.R.Martin,T.E.Mallouk,S.A.Chizhik,
E.V.Buzaneva,et al(1999),"Layer-by-Layer Assembly of Ultrathin Composite Films from Micron-Sized Graphite Oxide Sheets and Polycations,"Chemistry of Materials,11,771-778.
30. M.Hirata,T.Gotou,S.Horiuchi,M.Fujiwara and M.Ohba(2004),"Thin-film particlesof graphite oxide 1: High-yield synthesis and flexibility of the parties,"Carbon,42,2929-2937.
31. S.Stankovish,D.A.Dikin,R.D.Piner,K.A.Kohlhaas,A.Kleinhammes,Y.Jie,et al(2007),"Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide,"Carbon,45,1558-1565.
32. 林永昇(2005),奈米科技與生活,儀器科技研究中心。
33. S.Stankovich,D.A.Dikin,G.H.B.Dommett,K.M.Kohlhaas,E.J.Zimney,E. A.Stach,R.D.Piner,S.T.Nguyen,R.S.Ruoff(2006),"Graphene-based composite materials,"Nature Publishing Group,442,282-286.
34. S.Park,R.S.Ruoff(2010),"Chemical methods for the production of graphenes,"Nature nanotechnology,4,217-224.
35. J.R.Potts,D.R.Dreyer,C.W.Bielawski,R.S.Ruoff(2011),"Graphene-based polymer nanocomposites,"Polymer,52,5-25.
36. X.Zhao,Q.H.Zhang,D.J.Chen,P.Lu(2010),"Enhanced mechanical properties of graphene-based poly(vinyl alcohol) composites,"Macromolecules,43,2357-2363.
37. Marcos R. Guilhermea, Adriano V. Reisa, Sue´len H. Takahashia, Adley F. Rubiraa, Judith P.A. Feitosab, Edvani C. Muniza,* Carbohydrate Polymers 61,464–471 , 2005
38. T.Semba et al. , The effect of crosslinking on the mechanical properties of polylactic acid/polycaprolactone blends,Journal of Applied Polymer Science, Vol. 101, pp1816–1825, 2006
39. W.Dong.et al,ACS Sustainable Chem. Eng.,vol. 4 , pp 4480–4489,2016
40. V.Nagarajan. et al.,ACS Sustainable Chem. Eng.,vol. 4,pp 2899–2916,2016
41. G.Guerrica-Echevarrı´a., J.I.Eguiaza´bal, J .Naza´bal .,Polymer Testing 19, pp849–854, 2000
42. FloryP.J.,Principles of polymer Chemistry, Cornell University Press:Ithaca,New York,1953
43. R.G .Larson, The structure and rheology of complex fluids, Oxford, 1999.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top