許芸綺。(2021) 從豌豆蛋白水解物中分離及鑑定神經保護肽以對抗β-類澱粉誘導損傷的SH-SY5Y細胞,東海大學碩士論文,台中市。Aleksis R., Oleskovs F., Jaudzems K., Pahnke J. & Biverstål H. (2017). Structural studies of amyloid-β peptides: Unlocking the mechanism of aggregation and the associated toxicity. Biochimie, 140, 176-192.
Anand K. S. & Dhikav V. (2012). Hippocampus in health and disease: An overview. Annals of Indian Academy of Neurology, 15(4), 239.
Apostolova L. G., Dutton R. A., Dinov I. D., Hayashi K. M., Toga A. W., Cummings J. L. & Thompson P. M. (2006). Conversion of mild cognitive impairment to Alzheimer disease predicted by hippocampal atrophy maps. Archives of neurology, 63(5), 693-699.
Bailey S. A., Zidell R. H. & Perry R. W. (2004). Relationships between organ weight and body/brain weight in the rat: what is the best analytical endpoint? Toxicologic pathology, 32(4), 448-466.
Bonda D. J., Wang X., Perry G., Nunomura A., Tabaton M., Zhu X. & Smith M. A. (2010). Oxidative stress in Alzheimer disease: a possibility for prevention. Neuropharmacology, 59(4-5), 290-294.
Chakrabarti S., Jahandideh F. & Wu J. (2014). Food-derived bioactive peptides on inflammation and oxidative stress. BioMed research international, 608979:11.
Chang W. H., Chen M. C. & Cheng I. H. (2015). Antroquinonol lowers brain amyloid-β levels and improves spatial learning and memory in a transgenic mouse model of Alzheimer’s disease. Scientific reports, 5(1), 1-12.
Cheng I. H., Scearce-Levie K., Legleiter J., Palop J. J., Gerstein H., Bien-Ly N., Puolivaöli J., Lesné S., Ashe K. H. & Muchowski P. J. (2007). Accelerating amyloid-β fibrillization reduces oligomer levels and functional deficits in Alzheimer disease mouse models. Journal of Biological Chemistry, 282(33), 23818-23828.
Cheng Y. S., Chen Z. t., Liao T. Y., Lin C., Shen H. C. H., Wang Y. H., Chang C. W., Liu R. S., Chen R. P. Y. & Tu P. h. (2017). An intranasally delivered peptide drug ameliorates cognitive decline in Alzheimer transgenic mice. EMBO molecular medicine, 9(5), 703-715.
Chu Y. F., Chang W. H., Black R. M., Liu J. R., Sompol P., Chen Y., Wei H., Zhao Q. & Cheng I. H. (2012). Crude caffeine reduces memory impairment and amyloid β1–42 levels in an alzheimer’s mouse model. Food chemistry, 135(3), 2095-2102.
Dahl W. J., Foster L. M. & Tyler R. T. (2012). Review of the health benefits of peas (Pisum sativum L.). British Journal of Nutrition, 108(S1), S3-S10.
Di Fede G., Catania M., Morbin M., Rossi G., Suardi S., Mazzoleni G., Merlin M., Giovagnoli A. R., Prioni S. & Erbetta A. (2009). A recessive mutation in the APP gene with dominant-negative effect on amyloidogenesis. Science, 323(5920), 1473-1477.
Dimopoulos T. (2020). The Effects of Agaricus bisporus (White Button Mushrooms) on the Spatial Memory, Circadian Rhythms, and Daily Living Behavior in a Human Amyloid Precursor Protein (hAPP) Mouse Model. Journal.
Escribano L., Simón A.-M., Gimeno E., Cuadrado-Tejedor M., De Maturana R. L., García-Osta A., Ricobaraza A., Pérez-Mediavilla A., Del Río J. & Frechilla D. (2010). Rosiglitazone rescues memory impairment in Alzheimer's transgenic mice: mechanisms involving a reduced amyloid and tau pathology. Neuropsychopharmacology, 35(7), 1593-1604.
Giordano C., Karasik O., King-Morris K. & Asmar A. (2015). Uric acid as a marker of kidney disease: review of the current literature. Disease markers, 2015.
Hansson O., Lehmann S., Otto M., Zetterberg H. & Lewczuk P. (2019). Advantages and disadvantages of the use of the CSF Amyloid β (Aβ) 42/40 ratio in the diagnosis of Alzheimer’s Disease. Alzheimer's research & therapy, 11(1), 1-15.
Hensley K., Carney J., Mattson M., Aksenova M., Harris M., Wu J., Floyd R. & Butterfield D. (1994). A model for beta-amyloid aggregation and neurotoxicity based on free radical generation by the peptide: relevance to Alzheimer disease. Proceedings of the National Academy of Sciences, 91(8), 3270-3274.
Holmgren A. (2000). Antioxidant function of thioredoxin and glutaredoxin systems. Antioxidants & redox signaling, 2(4), 811-820.
Humphries K. M. & Szweda L. I. (1998). Selective inactivation of α-ketoglutarate dehydrogenase and pyruvate dehydrogenase: reaction of lipoic acid with 4-hydroxy-2-nonenal. Biochemistry, 37(45), 15835-15841.
Johnson E. C. & Kang J. (2016). A small molecule targeting protein translation does not rescue spatial learning and memory deficits in the hAPP-J20 mouse model of Alzheimer’s disease. PeerJ, 4, e2565.
Jokar S., Khazaei S., Behnammanesh H., Shamloo A., Erfani M., Beiki D. & Bavi O. (2019). Recent advances in the design and applications of amyloid-β peptide aggregation inhibitors for Alzheimer’s disease therapy. Biophysical reviews, 11(6), 901-925.
Kasarala G. & Tillmann H. L. (2016). Standard liver tests. Clinical liver disease, 8(1), 13.
Keller J., Schmitt F., Scheff S., Ding Q., Chen Q., Butterfield D. & Markesbery W. (2005). Evidence of increased oxidative damage in subjects with mild cognitive impairment. Neurology, 64(7), 1152-1156.
Kitagaki M., Wakuri S., Hirota M., Tanaka N. & Itagaki H. (2006). SIRC-CVS cytotoxicity test: an alternative for predicting rodent acute systemic toxicity. The Journal of toxicological sciences, 31(4), 371-379.
Korhonen H. (2009). Milk-derived bioactive peptides: From science to applications. Journal of functional foods, 1(2), 177-187.
Korhonen H. & Pihlanto A. (2006). Bioactive peptides: production and functionality. International dairy journal, 16(9), 945-960.
Kowaltowski A. J., de Souza-Pinto N. C., Castilho R. F. & Vercesi A. E. (2009). Mitochondria and reactive oxygen species. Free Radical Biology and Medicine, 47(4), 333-343.
Kumar A. & Singh A. (2015). A review on mitochondrial restorative mechanism of antioxidants in Alzheimer’s disease and other neurological conditions. Frontiers in pharmacology, 6, 206.
Kumar S., Lemere C. A. & Walter J. (2020). Phosphorylated Aβ peptides in human Down syndrome brain and different Alzheimer’s-like mouse models. Acta Neuropathologica Communications, 8(1), 1-14.
Kuo L. C., Song Y. Q., Yao C. A., Cheng I. H., Chien C. T., Lee G. C., Yang W. C. & Lin Y. (2018). Ginkgolide A prevents the amyloid-β-induced depolarization of cortical neurons. Journal of agricultural and food chemistry, 67(1), 81-89.
Leal S. L., Landau S. M., Bell R. K. & Jagust W. J. (2017). Hippocampal activation is associated with longitudinal amyloid accumulation and cognitive decline. Elife, 6, e22978.
Lee S. J. C., Nam E., Lee H. J., Savelieff M. G. & Lim M. H. (2017). Towards an understanding of amyloid-β oligomers: characterization, toxicity mechanisms, and inhibitors. Chemical Society Reviews, 46(2), 310-323.
Lee S. Y. & Hur S. J. (2019). Mechanisms of neuroprotective effects of peptides derived from natural materials and their production and assessment. Comprehensive reviews in food science and food safety, 18(4), 923-935.
Li H. & Aluko R. E. (2010). Identification and inhibitory properties of multifunctional peptides from pea protein hydrolysate. Journal of agricultural and food chemistry, 58(21), 11471-11476.
Li H., Prairie N., Udenigwe C. C., Adebiyi A. P., Tappia P. S., Aukema H. M., Jones P. J. & Aluko R. E. (2011). Blood pressure lowering effect of a pea protein hydrolysate in hypertensive rats and humans. Journal of agricultural and food chemistry, 59(18), 9854-9860.
Manoeuvrier G., Bach-Ngohou K., Batard E., Masson D. & Trewick D. (2017). Diagnostic performance of serum blood urea nitrogen to creatinine ratio for distinguishing prerenal from intrinsic acute kidney injury in the emergency department. BMC nephrology, 18(1), 1-7.
Mattson M. P., Cheng B., Culwell A. R., Esch F. S., Lieberburg I. & Rydel R. E. (1993). Evidence for excitoprotective and intraneuronal calcium-regulating roles for secreted forms of the β-amyloid precursor protein. Neuron, 10(2), 243-254.
Morris R. (1984). Developments of a water-maze procedure for studying spatial learning in the rat. Journal of neuroscience methods, 11(1), 47-60.
Mouton-Liger F., Paquet C., Dumurgier J., Bouras C., Pradier L., Gray F. & Hugon J. (2012). Oxidative stress increases BACE1 protein levels through activation of the PKR-eIF2α pathway. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1822(6), 885-896.
Mucke L., Masliah E., Yu G.-Q., Mallory M., Rockenstein E. M., Tatsuno G., Hu K., Kholodenko D., Johnson-Wood K. & McConlogue L. (2000). High-level neuronal expression of Aβ1–42 in wild-type human amyloid protein precursor transgenic mice: synaptotoxicity without plaque formation. Journal of Neuroscience, 20(11), 4050-4058.
Murata N., Murakami K., Ozawa Y., Kinoshita N., Irie K., Shirasawa T. & Shimizu T. (2010). Silymarin attenuated the amyloid β plaque burden and improved behavioral abnormalities in an Alzheimer’s disease mouse model. Bioscience, biotechnology, and biochemistry, 74(11), 2299-2306.
Nhan H. S., Chiang K. & Koo E. H. (2015). The multifaceted nature of amyloid precursor protein and its proteolytic fragments: friends and foes. Acta neuropathologica, 129(1), 1-19.
Norstrom E. (2017). Metabolic processing of the amyloid precursor protein—new pieces of the Alzheimer’s puzzle. Discovery medicine, 23(127), 269-276.
Pająk B., Kania E. & Orzechowski A. (2016). Killing me softly: connotations to unfolded protein response and oxidative stress in Alzheimer’s disease. Oxidative medicine and cellular longevity, 2016.
Pappolla M., Bryant-Thomas T., Herbert D., Pacheco J., Garcia M. F., Manjon M., Girones X., Henry T., Matsubara E. & Zambon D. (2003). Mild hypercholesterolemia is an early risk factor for the development of Alzheimer amyloid pathology. Neurology, 61(2), 199-205.
Popiołkiewicz J., Polkowski K., Skierski J. S. & Mazurek A. P. (2005). In vitro toxicity evaluation in the development of new anticancer drugs—genistein glycosides. Cancer Letters, 229(1), 67-75.
Querfurth H. W. & LaFerla F. M. (2010). Mechanisms of disease. N Engl J Med, 362(4), 329-344.
Roy F., Boye J. & Simpson B. (2010). Bioactive proteins and peptides in pulse crops: Pea, chickpea and lentil. Food research international, 43(2), 432-442.
Saitoh T., Sundsmo M., Roch J.-M., Kimura N., Cole G., Schubert D., Oltersdorf T. & Schenk D. B. (1989). Secreted form of amyloid β protein precursor is involved in the growth regulation of fibroblasts. Cell, 58(4), 615-622.
Seibenhener M. L. & Wooten M. C. (2015). Use of the open field maze to measure locomotor and anxiety-like behavior in mice. JoVE (Journal of Visualized Experiments), (96), e52434.
Selkoe D. J. (2001). Alzheimer's disease: genes, proteins, and therapy. Physiological reviews.
Soto C., Kindy M. S., Baumann M. & Frangione B. (1996). Inhibition of Alzheimer's amyloidosis by peptides that prevent β-sheet conformation. Biochemical and biophysical research communications, 226(3), 672-680.
Stone A. K., Karalash A., Tyler R. T., Warkentin T. D. & Nickerson M. T. (2015). Functional attributes of pea protein isolates prepared using different extraction methods and cultivars. Food research international, 76, 31-38.
Suganthy N., Malar D. S. & Devi K. P. (2016). Rhizophora mucronata attenuates beta-amyloid induced cognitive dysfunction, oxidative stress and cholinergic deficit in Alzheimer’s disease animal model. Metabolic brain disease, 31(4), 937-949.
Suzuki T. & Nakaya T. (2008). Regulation of amyloid β-protein precursor by phosphorylation and protein interactions. Journal of Biological Chemistry, 283(44), 29633-29637.
Tosh J. L., Rickman M., Rhymes E., Norona F. E., Clayton E., Mucke L., Isaacs A. M., Fisher E. M. & Wiseman F. K. (2017). The integration site of the APP transgene in the J20 mouse model of Alzheimer’s disease. Wellcome open research, 2.
Voytyuk I., Mueller S. A., Herber J., Snellinx A., Moechars D., van Loo G., Lichtenthaler S. F. & De Strooper B. (2018). BACE2 distribution in major brain cell types and identification of novel substrates. Life science alliance, 1(1).
Weisiger R. A. & Fridovich I. (1973). Superoxide dismutase: organelle specificity. Journal of Biological Chemistry, 248(10), 3582-3592.
Weller J. & Budson A. (2018). Current understanding of Alzheimer’s disease diagnosis and treatment. F1000Research, 7.
Wright A. L., Zinn R., Hohensinn B., Konen L. M., Beynon S. B., Tan R. P., Clark I. A., Abdipranoto A. & Vissel B. (2013). Neuroinflammation and neuronal loss precede Aβ plaque deposition in the hAPP-J20 mouse model of Alzheimer’s disease. PloS one, 8(4), e59586.
Zhang H., Wang P., Xue Y., Liu L., Li Z. & Liu Y. (2018). Allicin ameliorates cognitive impairment in APP/PS1 mice via suppressing oxidative stress by blocking JNK signaling pathways. Tissue and Cell, 50, 89-95.
Zheng H. & Koo E. H. (2011). Biology and pathophysiology of the amyloid precursor protein. Molecular neurodegeneration, 6(1), 1-16.
Zilka N. & Novak M. (2006). The tangled story of Alois Alzheimer. Bratislavske lekarske listy, 107(9/10), 343.