跳到主要內容

臺灣博碩士論文加值系統

(44.201.92.114) 您好!臺灣時間:2023/03/31 11:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李洳龍
研究生(外文):LEE, RU-LONG
論文名稱:豌豆蛋白水解物對阿茲海默症J20模式鼠改善 認知與記憶行為能力之研究
論文名稱(外文):The study of pea protein hydrolysate to ameliorate memory and learning ability in Alzheimer’s disease J20 mice
指導教授:江文德江文德引用關係
指導教授(外文):CHIANG, WEN-DEE
口試委員:林世斌徐慶琳劉景文朱自淳
口試日期:2021-05-13
學位類別:碩士
校院名稱:東海大學
系所名稱:食品科學系
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:95
中文關鍵詞:阿茲海默症豌豆蛋白水解物認知行為能力氧化壓力粒線體損傷
外文關鍵詞:Alzheimer’s diseasePea protein hydrolysatesCognitive behavior abilityOxidative stressMitochondrial damage
相關次數:
  • 被引用被引用:0
  • 點閱點閱:115
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用J20轉基因小鼠作為阿茲海默症 (J20 AD) 模式動物,並以低、中、高劑量豌豆蛋白水解物 (Pea protein hydrolysate, PPH) 餵食八週,分別為200、600、1000 mg/kg鼠/day,探討PPH對於J20 AD模式鼠之體重與組織相對重量、血清生化指數、認知行為能力及AD相關病理特徵之影響。結果顯示各組小鼠在體重及臟器相對重量上並無顯著差異,在各項血清生化指標中,同樣觀察到各組小鼠間並無異常情形,表明餵食PPH八週並不會對小鼠造成健康上的影響;其次,J20 AD模式鼠在認知行為能力上,經由餵食PPH後進行水迷宮實驗 (Morris water maze)證實,中劑量組具有改善學習記憶能力的趨勢;另外在曠野試驗 (Open field, OP )中,經餵食PPH的三個組別均顯著降低J20 AD模式鼠的移動距離及提升其在中間區塊停留時間的趨勢,表明PPH具降低J20 AD小鼠焦慮之潛力;在J20 AD模式鼠海馬迴中,Aβ 40與Aβ 42濃度雖然與WT小鼠無顯著差異,但經由餵食PPH後,與未處理的J20 AD模式鼠組相比,高劑量PPH組顯著降低Aβ 40濃度 (p < 0.05),另外在Aβ 42濃度上,中、高劑量PPH組與未處理的J20 AD模式鼠組相比,均顯著降低Aβ 42濃度 (p < 0.05),上述Aβ濃度與海馬迴澱粉樣斑塊切片圖對照,可以觀察到經餵食PPH的低、中及高劑量組,其Aβ斑塊陽性表現量有下降的趨勢;在β-secretase濃度上,未處理的J20 AD模式鼠組皆有高於WT組的趨勢,但彼此間無顯著差異,其中高劑量PPH組與未處理的J20 AD模式鼠組相比,顯著降低其β-secretase濃度 (p < 0.05);此外在Caspase 3濃度上,未處理的J20 AD模式鼠組顯著高於WT組 (p < 0.05),但經由低、中及高劑量PPH餵食後,顯著降低其Caspase 3濃度含量 (p < 0.05);Aβ誘導氧化壓力上升,在脂質過氧化部分,經餵食PPH後,三個劑量組別與未經處理的J20 AD模式鼠相比,皆顯著下降其MDA濃度 (p < 0.05),且有提升SOD、CAT及GPx等抗氧化酵素活性的趨勢。綜合以上,本研究結果指出五個月大的J20 AD模式鼠早在相關病理特徵明顯產生前,即有認知行為能力上的障礙出現,而PPH的介入具有延緩相關病理特徵發展、改善氧化壓力作用程度及粒線體損傷而至細胞凋亡的情形發生,並具有改善J20 AD模式鼠學習記憶能力和降低焦慮的潛力。
In this study, J20 transgenic mice were used as Alzheimer’s disease (AD) animal model and fed with 200, 600 and 1000 mg/kg mouse/day designated as low, medium, and high dosage of pea protein hydrolysates (PPH) for 8 weeks, respectively. The effects of PPH on body weight, relative organ weight, serum biochemical values, cognitive behavior ability and AD-related pathogenesis in J20 AD mice were investigated. There were no significant differences in body weight and relative organ weight among groups of mice (p > 0.05). In serum biochemical values, each group of mice was no abnormal conditions. Hence, J20 AD mice fed with PPH for 8 weeks didn’t cause any adverse influence on health. Furthermore, based on morris water maze test, J20 AD mice had a tendency to improve learning and memory ability after being fed with medium dosage of PPH. According to open field test, all dosages of PPH significantly resulted in decreased total movement distance (p < 0.05) and increased the tendency of time spent on center (%) for J20 AD mice. The result indicated that PPH had the potential to reduce anxiety in J20 AD mice. Although concentrations of Aβ40 and Aβ42 in hippocampus were not significantly different between AD mice group and WT group, high dosage of PPH group significantly decreased concentration of Aβ40 (p < 0.05) and the medium and high dosage of PPH groups also significantly decreased concentration of Aβ42 (p < 0.05). In contrast with the slices of hippocampus, the positive expression of Aβ plaques in low, medium and high dosage of PPH groups had a downward trend; In concentration of β-secretase, J20 AD mice untreated group had a tendency to be higher than WT group, but there was not significant difference between them (p > 0.05). J20 AD mice were significantly decreased concentration of β-secretase as fed with medium and high dosage of PPH. In addition, concentration of Caspase 3 in J20 AD mice untreated group was significantly higher than WT group (p <0.05), but all dosages of PPH groups were significantly decreased the concentration of Caspase 3 (p <0.05). Aβ induced increase of oxidative stress in J20 AD mice, however, all dosages of PPH groups significantly decreased the concentration of malondialdehyde during lipid oxidation (p < 0.05). Besides, there were tendency to increase several antioxidative enzyme activity such as SOD, CAT and GPx after J20 AD mice fed with PPH. In conclusion, the above results indicated that five-month-old J20 AD mice had cognitive behavior impairments before development of relevant pathogenesis. The PPH showed potential to delay development of related pathogenesis, to ameliorate degree of oxidative stress and occurrence of apoptosis resulted from mitochondrial damage, to improve learning and memory ability as well as to reduce anxiety in J20 AD mice.
目錄
摘要 I
Abstract III
目錄 V
表目錄 IX
圖目錄 X
壹、前言 XII
貳、文獻回顧 3
一、阿茲海默症介紹 3
(ㄧ) 阿茲海默症起源與危機 3
(二) AD病徵 4
二、阿茲海默症相關病理因子 4
(一) 澱粉樣前體蛋白 (Amyloid precursor protein, APP) 4
(二) β端澱粉樣前體蛋白切割酵素 (beta-site APP cleaving enzyme 1,BACE1) 6
(四) Aβ介導氧化壓力與粒線體功能障礙 8
(五) 海馬迴 (Hippocampus) 10
三、抗氧化酵素系統 10
四、豌豆蛋白水解物之應用 12
(一) 豌豆蛋白 (Pea protein) 12
(二) 豌豆蛋白水解物 (Pea protein hydrolysates, PPH) 12
五、J20 AD模式鼠相關研究 13
六、研究目的與動機 13
參、材料與方法 15
一、實驗儀器與藥品試劑 15
(一) 儀器設備 15
(二) 藥品、試劑 16
(三) 酵素免疫分析套組 16
(四) 抗氧化酵素分析套組 17
(五) 動物試驗材料 17
二、實驗方法 17
(一) 試驗設計 17
(二) 豌豆蛋白水解物樣品製備 20
(三) 動物模式建立 20
(四) 動物行為能力試驗 23
(五) 實驗動物檢體處理 27
(六) 檢體蛋白質定量 (BCA assay) 29
(七) Enzyme-linked immunosorbent assay (ELISA) 29
(八) 抗氧化酵素 30
(九) 脂質過氧化測定 34
(十) 免疫螢光染色 (Immunofluorescence Staining) 35
三、統計分析 36
肆、結果與討論 37
一、管餵PPH對WT及J20 AD模式鼠體重及相對臟器重量之影響 37
二、管餵PPH對WT及AD模式鼠血清生化指數之影響 37
(一) 肝功能指數 38
(二) 腎功能指數 38
(三) 膽固醇含量 41
三、管餵PPH對WT及J20 AD模式鼠學習及記憶能力之影響 41
(ㄧ) 水迷宮試驗 41
(二) 曠野試驗 48
四、管餵PPH對WT及J20 AD模式鼠海馬迴中Aβ含量之影響 51
五、管餵PPH對WT及J20 AD模式鼠海馬迴中BACE1濃度之影響 58
六、管餵PPH對WT及J20 AD模式鼠海馬迴中Caspase3濃度之影響 60
七、管餵PPH對WT及J20 AD模式鼠海馬迴中MDA濃度之影響 60
八、管餵PPH對WT及J20 AD模式鼠海馬迴中抗氧化酵素之影響 63
伍、結論 68
陸、參考文獻 69

表目錄
表一、豌豆蛋白水解物劑量對WT及J20 AD模式鼠體重及相對臟器重量影響 39
表二、豌豆蛋白水解物劑量對WT及J20 AD模式鼠之血清生化指數影響 40

圖目錄
圖一、澱粉樣前體蛋白加工路徑 6
圖二、Aβ自組裝聚集示意圖 8
圖三、阿茲海默症中的氧化壓力與粒線體失序 9
圖四、粒線體中的抗氧化機制 11
圖五、試驗架構圖 19
圖六、水迷宮配置圖 25
圖七、曠野試驗配置 26
圖八、SOD抗氧化酵素反應系統 31
圖九、GPX抗氧化酵素反應系統 32
圖十、MDA反應式 35
圖十一、豌豆蛋白水解物對J20 AD模式鼠於平台逃逸試驗中逃逸時間之影響 43
圖十二、豌豆蛋白水解物劑量對J20 AD模式鼠於空間探索試驗中跨越原先平台位置次數之影響 44
圖十三、豌豆蛋白水解物劑量對J20 AD模式鼠於空間探索試驗中原先平台所在象限探索時間之影響 45
圖十四、豌豆蛋白水解物劑量對J20 AD模式鼠於空間探索試驗中游泳軌跡之影響 47
圖十五、豌豆蛋白水解物劑量對J20 AD模式鼠於曠野試驗中的移動總距離之影響 49
圖十六、豌豆蛋白水解物劑量對J20 AD模式鼠於曠野試驗中的中央區塊停留時間百分比之影響 50
圖十七、豌豆蛋白水解物劑量對J20 AD模式鼠於海馬迴中Aβ40含量之影響 52
圖十八、豌豆蛋白水解物劑量對 J20 AD模式鼠於海馬迴中Aβ42含量之影響 53
圖十九、豌豆蛋白水解物劑量對J20 AD模式鼠於海馬迴中澱粉樣斑塊沉積之影響 56
圖二十、豌豆蛋白水解物劑量對J20 AD模式鼠於海馬迴中β-secretase濃度之影響 59
圖二十一、豌豆蛋白水解物劑量對J20 AD模式鼠於海馬迴中caspase3濃度之影響 61
圖二十二、豌豆蛋白水解物劑量對J20 AD模式鼠於海馬迴中MDA濃度之影響 62
圖二十三、豌豆蛋白水解物劑量對J20 AD模式鼠於海馬迴中SOD活性之影響 64
圖二十四、豌豆蛋白水解物劑量對J20 AD模式鼠於海馬迴中CAT活性之影響 65
圖二十五、豌豆蛋白水解物劑量對J20 AD模式鼠於海馬迴中GPx活性之影響 67

附錄目錄
附錄 一、豌豆蛋白產品規格 78

許芸綺。(2021) 從豌豆蛋白水解物中分離及鑑定神經保護肽以對抗β-類澱粉誘導損傷的SH-SY5Y細胞,東海大學碩士論文,台中市。
Aleksis R., Oleskovs F., Jaudzems K., Pahnke J. & Biverstål H. (2017). Structural studies of amyloid-β peptides: Unlocking the mechanism of aggregation and the associated toxicity. Biochimie, 140, 176-192.
Anand K. S. & Dhikav V. (2012). Hippocampus in health and disease: An overview. Annals of Indian Academy of Neurology, 15(4), 239.
Apostolova L. G., Dutton R. A., Dinov I. D., Hayashi K. M., Toga A. W., Cummings J. L. & Thompson P. M. (2006). Conversion of mild cognitive impairment to Alzheimer disease predicted by hippocampal atrophy maps. Archives of neurology, 63(5), 693-699.
Bailey S. A., Zidell R. H. & Perry R. W. (2004). Relationships between organ weight and body/brain weight in the rat: what is the best analytical endpoint? Toxicologic pathology, 32(4), 448-466.
Bonda D. J., Wang X., Perry G., Nunomura A., Tabaton M., Zhu X. & Smith M. A. (2010). Oxidative stress in Alzheimer disease: a possibility for prevention. Neuropharmacology, 59(4-5), 290-294.
Chakrabarti S., Jahandideh F. & Wu J. (2014). Food-derived bioactive peptides on inflammation and oxidative stress. BioMed research international, 608979:11.
Chang W. H., Chen M. C. & Cheng I. H. (2015). Antroquinonol lowers brain amyloid-β levels and improves spatial learning and memory in a transgenic mouse model of Alzheimer’s disease. Scientific reports, 5(1), 1-12.
Cheng I. H., Scearce-Levie K., Legleiter J., Palop J. J., Gerstein H., Bien-Ly N., Puolivaöli J., Lesné S., Ashe K. H. & Muchowski P. J. (2007). Accelerating amyloid-β fibrillization reduces oligomer levels and functional deficits in Alzheimer disease mouse models. Journal of Biological Chemistry, 282(33), 23818-23828.
Cheng Y. S., Chen Z. t., Liao T. Y., Lin C., Shen H. C. H., Wang Y. H., Chang C. W., Liu R. S., Chen R. P. Y. & Tu P. h. (2017). An intranasally delivered peptide drug ameliorates cognitive decline in Alzheimer transgenic mice. EMBO molecular medicine, 9(5), 703-715.
Chu Y. F., Chang W. H., Black R. M., Liu J. R., Sompol P., Chen Y., Wei H., Zhao Q. & Cheng I. H. (2012). Crude caffeine reduces memory impairment and amyloid β1–42 levels in an alzheimer’s mouse model. Food chemistry, 135(3), 2095-2102.
Dahl W. J., Foster L. M. & Tyler R. T. (2012). Review of the health benefits of peas (Pisum sativum L.). British Journal of Nutrition, 108(S1), S3-S10.
Di Fede G., Catania M., Morbin M., Rossi G., Suardi S., Mazzoleni G., Merlin M., Giovagnoli A. R., Prioni S. & Erbetta A. (2009). A recessive mutation in the APP gene with dominant-negative effect on amyloidogenesis. Science, 323(5920), 1473-1477.
Dimopoulos T. (2020). The Effects of Agaricus bisporus (White Button Mushrooms) on the Spatial Memory, Circadian Rhythms, and Daily Living Behavior in a Human Amyloid Precursor Protein (hAPP) Mouse Model. Journal.
Escribano L., Simón A.-M., Gimeno E., Cuadrado-Tejedor M., De Maturana R. L., García-Osta A., Ricobaraza A., Pérez-Mediavilla A., Del Río J. & Frechilla D. (2010). Rosiglitazone rescues memory impairment in Alzheimer's transgenic mice: mechanisms involving a reduced amyloid and tau pathology. Neuropsychopharmacology, 35(7), 1593-1604.
Giordano C., Karasik O., King-Morris K. & Asmar A. (2015). Uric acid as a marker of kidney disease: review of the current literature. Disease markers, 2015.
Hansson O., Lehmann S., Otto M., Zetterberg H. & Lewczuk P. (2019). Advantages and disadvantages of the use of the CSF Amyloid β (Aβ) 42/40 ratio in the diagnosis of Alzheimer’s Disease. Alzheimer's research & therapy, 11(1), 1-15.
Hensley K., Carney J., Mattson M., Aksenova M., Harris M., Wu J., Floyd R. & Butterfield D. (1994). A model for beta-amyloid aggregation and neurotoxicity based on free radical generation by the peptide: relevance to Alzheimer disease. Proceedings of the National Academy of Sciences, 91(8), 3270-3274.
Holmgren A. (2000). Antioxidant function of thioredoxin and glutaredoxin systems. Antioxidants & redox signaling, 2(4), 811-820.
Humphries K. M. & Szweda L. I. (1998). Selective inactivation of α-ketoglutarate dehydrogenase and pyruvate dehydrogenase: reaction of lipoic acid with 4-hydroxy-2-nonenal. Biochemistry, 37(45), 15835-15841.
Johnson E. C. & Kang J. (2016). A small molecule targeting protein translation does not rescue spatial learning and memory deficits in the hAPP-J20 mouse model of Alzheimer’s disease. PeerJ, 4, e2565.
Jokar S., Khazaei S., Behnammanesh H., Shamloo A., Erfani M., Beiki D. & Bavi O. (2019). Recent advances in the design and applications of amyloid-β peptide aggregation inhibitors for Alzheimer’s disease therapy. Biophysical reviews, 11(6), 901-925.
Kasarala G. & Tillmann H. L. (2016). Standard liver tests. Clinical liver disease, 8(1), 13.
Keller J., Schmitt F., Scheff S., Ding Q., Chen Q., Butterfield D. & Markesbery W. (2005). Evidence of increased oxidative damage in subjects with mild cognitive impairment. Neurology, 64(7), 1152-1156.
Kitagaki M., Wakuri S., Hirota M., Tanaka N. & Itagaki H. (2006). SIRC-CVS cytotoxicity test: an alternative for predicting rodent acute systemic toxicity. The Journal of toxicological sciences, 31(4), 371-379.
Korhonen H. (2009). Milk-derived bioactive peptides: From science to applications. Journal of functional foods, 1(2), 177-187.
Korhonen H. & Pihlanto A. (2006). Bioactive peptides: production and functionality. International dairy journal, 16(9), 945-960.
Kowaltowski A. J., de Souza-Pinto N. C., Castilho R. F. & Vercesi A. E. (2009). Mitochondria and reactive oxygen species. Free Radical Biology and Medicine, 47(4), 333-343.
Kumar A. & Singh A. (2015). A review on mitochondrial restorative mechanism of antioxidants in Alzheimer’s disease and other neurological conditions. Frontiers in pharmacology, 6, 206.
Kumar S., Lemere C. A. & Walter J. (2020). Phosphorylated Aβ peptides in human Down syndrome brain and different Alzheimer’s-like mouse models. Acta Neuropathologica Communications, 8(1), 1-14.
Kuo L. C., Song Y. Q., Yao C. A., Cheng I. H., Chien C. T., Lee G. C., Yang W. C. & Lin Y. (2018). Ginkgolide A prevents the amyloid-β-induced depolarization of cortical neurons. Journal of agricultural and food chemistry, 67(1), 81-89.
Leal S. L., Landau S. M., Bell R. K. & Jagust W. J. (2017). Hippocampal activation is associated with longitudinal amyloid accumulation and cognitive decline. Elife, 6, e22978.
Lee S. J. C., Nam E., Lee H. J., Savelieff M. G. & Lim M. H. (2017). Towards an understanding of amyloid-β oligomers: characterization, toxicity mechanisms, and inhibitors. Chemical Society Reviews, 46(2), 310-323.
Lee S. Y. & Hur S. J. (2019). Mechanisms of neuroprotective effects of peptides derived from natural materials and their production and assessment. Comprehensive reviews in food science and food safety, 18(4), 923-935.
Li H. & Aluko R. E. (2010). Identification and inhibitory properties of multifunctional peptides from pea protein hydrolysate. Journal of agricultural and food chemistry, 58(21), 11471-11476.
Li H., Prairie N., Udenigwe C. C., Adebiyi A. P., Tappia P. S., Aukema H. M., Jones P. J. & Aluko R. E. (2011). Blood pressure lowering effect of a pea protein hydrolysate in hypertensive rats and humans. Journal of agricultural and food chemistry, 59(18), 9854-9860.
Manoeuvrier G., Bach-Ngohou K., Batard E., Masson D. & Trewick D. (2017). Diagnostic performance of serum blood urea nitrogen to creatinine ratio for distinguishing prerenal from intrinsic acute kidney injury in the emergency department. BMC nephrology, 18(1), 1-7.
Mattson M. P., Cheng B., Culwell A. R., Esch F. S., Lieberburg I. & Rydel R. E. (1993). Evidence for excitoprotective and intraneuronal calcium-regulating roles for secreted forms of the β-amyloid precursor protein. Neuron, 10(2), 243-254.
Morris R. (1984). Developments of a water-maze procedure for studying spatial learning in the rat. Journal of neuroscience methods, 11(1), 47-60.
Mouton-Liger F., Paquet C., Dumurgier J., Bouras C., Pradier L., Gray F. & Hugon J. (2012). Oxidative stress increases BACE1 protein levels through activation of the PKR-eIF2α pathway. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1822(6), 885-896.
Mucke L., Masliah E., Yu G.-Q., Mallory M., Rockenstein E. M., Tatsuno G., Hu K., Kholodenko D., Johnson-Wood K. & McConlogue L. (2000). High-level neuronal expression of Aβ1–42 in wild-type human amyloid protein precursor transgenic mice: synaptotoxicity without plaque formation. Journal of Neuroscience, 20(11), 4050-4058.
Murata N., Murakami K., Ozawa Y., Kinoshita N., Irie K., Shirasawa T. & Shimizu T. (2010). Silymarin attenuated the amyloid β plaque burden and improved behavioral abnormalities in an Alzheimer’s disease mouse model. Bioscience, biotechnology, and biochemistry, 74(11), 2299-2306.
Nhan H. S., Chiang K. & Koo E. H. (2015). The multifaceted nature of amyloid precursor protein and its proteolytic fragments: friends and foes. Acta neuropathologica, 129(1), 1-19.
Norstrom E. (2017). Metabolic processing of the amyloid precursor protein—new pieces of the Alzheimer’s puzzle. Discovery medicine, 23(127), 269-276.
Pająk B., Kania E. & Orzechowski A. (2016). Killing me softly: connotations to unfolded protein response and oxidative stress in Alzheimer’s disease. Oxidative medicine and cellular longevity, 2016.
Pappolla M., Bryant-Thomas T., Herbert D., Pacheco J., Garcia M. F., Manjon M., Girones X., Henry T., Matsubara E. & Zambon D. (2003). Mild hypercholesterolemia is an early risk factor for the development of Alzheimer amyloid pathology. Neurology, 61(2), 199-205.
Popiołkiewicz J., Polkowski K., Skierski J. S. & Mazurek A. P. (2005). In vitro toxicity evaluation in the development of new anticancer drugs—genistein glycosides. Cancer Letters, 229(1), 67-75.
Querfurth H. W. & LaFerla F. M. (2010). Mechanisms of disease. N Engl J Med, 362(4), 329-344.
Roy F., Boye J. & Simpson B. (2010). Bioactive proteins and peptides in pulse crops: Pea, chickpea and lentil. Food research international, 43(2), 432-442.
Saitoh T., Sundsmo M., Roch J.-M., Kimura N., Cole G., Schubert D., Oltersdorf T. & Schenk D. B. (1989). Secreted form of amyloid β protein precursor is involved in the growth regulation of fibroblasts. Cell, 58(4), 615-622.
Seibenhener M. L. & Wooten M. C. (2015). Use of the open field maze to measure locomotor and anxiety-like behavior in mice. JoVE (Journal of Visualized Experiments), (96), e52434.
Selkoe D. J. (2001). Alzheimer's disease: genes, proteins, and therapy. Physiological reviews.
Soto C., Kindy M. S., Baumann M. & Frangione B. (1996). Inhibition of Alzheimer's amyloidosis by peptides that prevent β-sheet conformation. Biochemical and biophysical research communications, 226(3), 672-680.
Stone A. K., Karalash A., Tyler R. T., Warkentin T. D. & Nickerson M. T. (2015). Functional attributes of pea protein isolates prepared using different extraction methods and cultivars. Food research international, 76, 31-38.
Suganthy N., Malar D. S. & Devi K. P. (2016). Rhizophora mucronata attenuates beta-amyloid induced cognitive dysfunction, oxidative stress and cholinergic deficit in Alzheimer’s disease animal model. Metabolic brain disease, 31(4), 937-949.
Suzuki T. & Nakaya T. (2008). Regulation of amyloid β-protein precursor by phosphorylation and protein interactions. Journal of Biological Chemistry, 283(44), 29633-29637.
Tosh J. L., Rickman M., Rhymes E., Norona F. E., Clayton E., Mucke L., Isaacs A. M., Fisher E. M. & Wiseman F. K. (2017). The integration site of the APP transgene in the J20 mouse model of Alzheimer’s disease. Wellcome open research, 2.
Voytyuk I., Mueller S. A., Herber J., Snellinx A., Moechars D., van Loo G., Lichtenthaler S. F. & De Strooper B. (2018). BACE2 distribution in major brain cell types and identification of novel substrates. Life science alliance, 1(1).
Weisiger R. A. & Fridovich I. (1973). Superoxide dismutase: organelle specificity. Journal of Biological Chemistry, 248(10), 3582-3592.
Weller J. & Budson A. (2018). Current understanding of Alzheimer’s disease diagnosis and treatment. F1000Research, 7.
Wright A. L., Zinn R., Hohensinn B., Konen L. M., Beynon S. B., Tan R. P., Clark I. A., Abdipranoto A. & Vissel B. (2013). Neuroinflammation and neuronal loss precede Aβ plaque deposition in the hAPP-J20 mouse model of Alzheimer’s disease. PloS one, 8(4), e59586.
Zhang H., Wang P., Xue Y., Liu L., Li Z. & Liu Y. (2018). Allicin ameliorates cognitive impairment in APP/PS1 mice via suppressing oxidative stress by blocking JNK signaling pathways. Tissue and Cell, 50, 89-95.
Zheng H. & Koo E. H. (2011). Biology and pathophysiology of the amyloid precursor protein. Molecular neurodegeneration, 6(1), 1-16.
Zilka N. & Novak M. (2006). The tangled story of Alois Alzheimer. Bratislavske lekarske listy, 107(9/10), 343.
電子全文 電子全文(網際網路公開日期:20240604)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊