1.Chiono, V. and C. Tonda-Turo, Trends in the design of nerve guidance channels in peripheral nerve tissue engineering. Progress in Neurobiology, 2015. 131: p. 87-104.
2.Subramanian, A., U.M. Krishnan, and S. Sethuraman, Development of biomaterial scaffold for nerve tissue engineering: Biomaterial mediated neural regeneration. Journal of Biomedical Science, 2009. 16(1): p. 108.
3.Gu, X., et al., Construction of tissue engineered nerve grafts and their application in peripheral nerve regeneration. Progress in Neurobiology, 2011. 93(2): p. 204-230.
4.Cuvillon, P., et al., The Continuous Femoral Nerve Block Catheter for Postoperative Analgesia: Bacterial Colonization, Infectious Rate and Adverse Effects. Anesthesia & Analgesia, 2001. 93(4).
5.Granato, A.E.C., et al., Polypyrrole increases branching and neurite extension by Neuro2A cells on PBAT ultrathin fibers. Nanomedicine: Nanotechnology, Biology and Medicine, 2018. 14(6): p. 1753-1763.
6.Sangsanoh, P., et al., Enhancement of biocompatibility on aligned electrospun poly (3‐hydroxybutyrate) scaffold immobilized with laminin towards murine neuroblastoma Neuro2a cell line and rat brain‐derived neural stem cells (mNSCs). Polymers for Advanced Technologies, 2018. 29(7): p. 2050-2063.
7.Pisani, S., et al., Biocompatible polymeric electrospun matrices: Micro–nanotopography effect on cell behavior. Journal of Applied Polymer Science, 2020: p. 49223.
8.陳柏瑋, 以快速原型法和靜電紡絲製備幾丁聚醣/果膠之雙層複合支架用於骨軟骨組織修復之研究, in 化學工程與生物科技系化學工程碩士班. 2019, 國立臺北科技大學: 台北市. p. 88.9.林慧宣, 以3D列印製作海藻酸鈉水凝膠和幾丁聚醣/聚乙烯醇奈米纖維雙層複合支架用於組織修復, in 化學工程研究所. 2016, 國立臺北科技大學: 台北市. p. 0.
10.劉子豪, 含噬菌體之幾丁聚醣薄膜用於皮膚傷口抑菌之研究, in 化學工程與生物科技系化學工程碩士班. 2019, 國立臺北科技大學: 台北市. p. 91.11.Naveed, M., et al., Chitosan oligosaccharide (COS): An overview. International Journal of Biological Macromolecules, 2019. 129: p. 827-843.
12.Molnar, C. and J. Gair, 16.1 Neurons and Glial Cells. Concepts of Biology-1st Canadian Edition, 2013.
13.Martini, R., J. Groh, and U. Bartsch, Comparative biology of Schwann cells and oligodendrocytes. The biology of oligodendrocytes. Cambridge University Press, Cambridge, 2010: p. 19-48.
14.Mahar, M. and V. Cavalli, Intrinsic mechanisms of neuronal axon regeneration. Nature Reviews Neuroscience, 2018. 19(6): p. 323-337.
15.Yiu, G. and Z. He, Glial inhibition of CNS axon regeneration. Nature Reviews Neuroscience, 2006. 7(8): p. 617-627.
16.Avellino, A.M., et al., Differential macrophage responses in the peripheral and central nervous system during wallerian degeneration of axons. Experimental neurology, 1995. 136(2): p. 183-198.
17.Schmidt, C.E. and J.B. Leach, Neural tissue engineering: strategies for repair and regeneration. Annual review of biomedical engineering, 2003. 5(1): p. 293-347.
18.Belanger, K., et al., Recent strategies in tissue engineering for guided peripheral nerve regeneration. Macromolecular bioscience, 2016. 16(4): p. 472-481.
19.Gaudet, A.D., P.G. Popovich, and M.S. Ramer, Wallerian degeneration: gaining perspective on inflammatory events after peripheral nerve injury. Journal of neuroinflammation, 2011. 8(1): p. 110.
20.Gu, X., F. Ding, and D.F. Williams, Neural tissue engineering options for peripheral nerve regeneration. Biomaterials, 2014. 35(24): p. 6143-6156.
21.Kaikabo, A.A., S.M. AbdulKarim, and F. Abas, Evaluation of the efficacy of chitosan nanoparticles loaded ΦKAZ14 bacteriophage in the biological control of colibacillosis in chickens. Poultry Science, 2017. 96(2): p. 295-302.
22.Ohkawa, K., et al., Electrospinning of chitosan. Macromolecular rapid communications, 2004. 25(18): p. 1600-1605.
23.Sabaghi, M., et al., Active edible coating from chitosan incorporating green tea extract as an antioxidant and antifungal on fresh walnut kernel. Postharvest Biology and Technology, 2015. 110: p. 224-228.
24.Chang, Y.H., et al., Removal of Hg2+ from aqueous solution using alginate gel containing chitosan. Journal of applied polymer science, 2007. 104(5): p. 2896-2905.
25.Abdelsattar, A.S., et al., Encapsulation of E. coli phage ZCEC5 in chitosan–alginate beads as a delivery system in phage therapy. AMB Express, 2019. 9(1): p. 87.
26.Muanprasat, C. and V. Chatsudthipong, Chitosan oligosaccharide: Biological activities and potential therapeutic applications. Pharmacology & Therapeutics, 2017. 170: p. 80-97.
27.Liu, X., et al., Multidentate zwitterionic chitosan oligosaccharide modified gold nanoparticles: stability, biocompatibility and cell interactions. Nanoscale, 2013. 5(9): p. 3982-3991.
28.Yang, Y., et al., Effect of chitooligosaccharide on neuronal differentiation of PC-12 cells. Cell biology international, 2009. 33(3): p. 352-356.
29.Chae, S.Y., M.-K. Jang, and J.-W. Nah, Influence of molecular weight on oral absorption of water soluble chitosans. Journal of Controlled Release, 2005. 102(2): p. 383-394.
30.Lian, Z., et al., EDTA-functionalized magnetic chitosan oligosaccharide and carboxymethyl cellulose nanocomposite: Synthesis, characterization, and Pb(II) adsorption performance. International Journal of Biological Macromolecules, 2020. 165: p. 591-600.
31.Zou, P., et al., Advances in characterisation and biological activities of chitosan and chitosan oligosaccharides. Food Chemistry, 2016. 190: p. 1174-1181.
32.Hu, H., et al., Glutaraldehyde–chitosan and poly (vinyl alcohol) blends, and fluorescence of their nano-silica composite films. Carbohydrate Polymers, 2013. 91(1): p. 305-313.
33.Miyamoto, D.M., et al., Chitosan Microspheres loaded with holmium-165 produced by Spray Dryer for liver cancer therapy: preliminary experiments. 2011.
34.Baldino, L., et al., Complete glutaraldehyde elimination during chitosan hydrogel drying by SC-CO2 processing. The Journal of Supercritical Fluids, 2015. 103: p. 70-76.
35.Park, J.H., et al., Electrospinning and characterization of poly(vinyl alcohol)/chitosan oligosaccharide/clay nanocomposite nanofibers in aqueous solutions. Colloid and Polymer Science, 2009. 287(8): p. 943-950.
36.Alhosseini, S.N., et al., Synthesis and characterization of electrospun polyvinyl alcohol nanofibrous scaffolds modified by blending with chitosan for neural tissue engineering. International journal of nanomedicine, 2012. 7: p. 25-34.
37.Li, C., et al., Silver nanoparticle/chitosan oligosaccharide/poly(vinyl alcohol) nanofibers as wound dressings: a preclinical study. International journal of nanomedicine, 2013. 8: p. 4131-4145.
38.Quek, S.Y., J. Hadi, and H. Tanambell, Application of electrospinning as bioactive delivery system. 2019.
39.Li, Z. and C. Wang, Effects of Working Parameters on Electrospinning, in One-Dimensional nanostructures: Electrospinning Technique and Unique Nanofibers. 2013, Springer Berlin Heidelberg: Berlin, Heidelberg. p. 15-28.
40.Nitti, P., et al., Influence of Nanofiber Orientation on Morphological and Mechanical Properties of Electrospun Chitosan Mats. Journal of Healthcare Engineering, 2018. 2018: p. 3651480.
41.Xu, C.Y., et al., Aligned biodegradable nanofibrous structure: a potential scaffold for blood vessel engineering. Biomaterials, 2004. 25(5): p. 877-886.
42.McGrath, S. and D.v. Sinderen, Bacteriophage: genetics and molecular biology. 2007: Caister Academic Press.
43.Labrie, S.J., J.E. Samson, and S. Moineau, Bacteriophage resistance mechanisms. Nature Reviews Microbiology, 2010. 8(5): p. 317-327.
44.Richter, Ł., et al., Recent advances in bacteriophage-based methods for bacteria detection. Drug Discovery Today, 2018. 23(2): p. 448-455.
45.Monk, A., et al., Bacteriophage applications: where are we now? Letters in applied microbiology, 2010. 51(4): p. 363-369.
46.Kakasis, A. and G. Panitsa, Bacteriophage therapy as an alternative treatment for human infections. A comprehensive review. International Journal of Antimicrobial Agents, 2019. 53(1): p. 16-21.
47.Doss, J., et al., A review of phage therapy against bacterial pathogens of aquatic and terrestrial organisms. Viruses, 2017. 9(3): p. 50.
48.沈涵榆, 以3D列印法製作含噬菌體之纖維狀褐藻酸鈉水凝膠敷料, in 化學工程與生物科技系化學工程碩士班. 2019, 國立臺北科技大學: 台北市. p. 96.49.Kumar, M. and A. Katyal, Data on retinoic acid and reduced serum concentration induced differentiation of Neuro-2a neuroblastoma cells. Data in Brief, 2018. 21: p. 2435-2440.
50.Jia, Y.-T., et al., Fabrication and characterization of poly (vinyl alcohol)/chitosan blend nanofibers produced by electrospinning method. Carbohydrate polymers, 2007. 67(3): p. 403-409.
51.Buchko, C.J., et al., Processing and microstructural characterization of porous biocompatible protein polymer thin films. Polymer, 1999. 40(26): p. 7397-7407.
52.Lee, H.W., et al., Poly (vinyl alcohol)/chitosan oligosaccharide blend submicrometer fibers prepared from aqueous solutions by the electrospinning method. Journal of applied polymer science, 2009. 111(1): p. 132-140.
53.Zhang, C., et al., Study on morphology of electrospun poly (vinyl alcohol) mats. European polymer journal, 2005. 41(3): p. 423-432.
54.Koosha, M. and H. Mirzadeh, Electrospinning, mechanical properties, and cell behavior study of chitosan/PVA nanofibers. Journal of Biomedical Materials Research Part A, 2015. 103(9): p. 3081-3093.
55.Han, S.O., et al., Electrospinning of cellulose acetate nanofibers using a mixed solvent of acetic acid/water: Effects of solvent composition on the fiber diameter. Materials Letters, 2008. 62(4-5): p. 759-762.
56.Koski, A., K. Yim, and S. Shivkumar, Effect of molecular weight on fibrous PVA produced by electrospinning. Materials Letters, 2004. 58(3-4): p. 493-497.
57.Çay, A., M. Miraftab, and E. Perrin Akçakoca Kumbasar, Characterization and swelling performance of physically stabilized electrospun poly(vinyl alcohol)/chitosan nanofibres. European Polymer Journal, 2014. 61: p. 253-262.
58.Zamre, K., et al., Chemical cross-linking of chitosan/polyvinyl alcohol electrospun nanofibers. Materiali in tehnologije, 2016. 50(5): p. 663-666.
59.Aronino, R., et al., Removal of viruses from surface water and secondary effluents by sand filtration. Water research, 2009. 43(1): p. 87-96.
60.YAMASHITA, M., et al., Effect of Alcohols on Escherichia coil Phages. Biocontrol Science, 2000. 5(1): p. 9-16.
61.Ackermann, H.-W., Frequency of morphological phage descriptions in the year 2000. Archives of virology, 2001. 146(5): p. 843-857.
62.Habeeb, A. and R. Hiramoto, Reaction of proteins with glutaraldehyde. Archives of biochemistry and biophysics, 1968. 126(1): p. 16-26.
63.Handa, H., et al., Recognition of Salmonella typhimurium by immobilized phage P22 monolayers. Surface Science, 2008. 602(7): p. 1392-1400.
64.Dalmasso, M., et al., Three new Escherichia coli phages from the human gut show promising potential for phage therapy. PloS one, 2016. 11(6): p. e0156773.
65.Nogueira, F., et al., Immobilization of bacteriophage in wound-dressing nanostructure. Nanomedicine: Nanotechnology, Biology and Medicine, 2017. 13(8): p. 2475-2484.
66.Bahrami, S. and M. Nouri, Chitosan-poly (vinyl alcohol) blend nanofibers: morphology, biological and antimicrobial properties. e-Polymers, 2009. 9(1).
67.Bhattacharjee, A.S., et al., Bacteriophage therapy for membrane biofouling in membrane bioreactors and antibiotic‐resistant bacterial biofilms. Biotechnology and Bioengineering, 2015. 112(8): p. 1644-1654.
68.Cheng, W., et al., Incorporation of bacteriophages in polycaprolactone/collagen fibers for antibacterial hemostatic dual‐function. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2018. 106(7): p. 2588-2595.
69.Merzlyak, A., S. Indrakanti, and S.-W. Lee, Genetically engineered nanofiber-like viruses for tissue regenerating materials. Nano letters, 2009. 9(2): p. 846-852.
70.Zha, F., et al., Effects of surface condition of conductive electrospun nanofiber mats on cell behavior for nerve tissue engineering. Materials Science and Engineering: C, 2020: p. 111795.
71.Lee, J.Y., W.-J. Chung, and G. Kim, A mechanically improved virus-based hybrid scaffold for bone tissue regeneration. RSC advances, 2016. 6(60): p. 55022-55032.
72.Christopherson, G.T., H. Song, and H.-Q. Mao, The influence of fiber diameter of electrospun substrates on neural stem cell differentiation and proliferation. Biomaterials, 2009. 30(4): p. 556-564.
73.Salehi, M., et al., Regeneration of sciatic nerve crush injury by a hydroxyapatite nanoparticle-containing collagen type I hydrogel. The Journal of Physiological Sciences, 2018. 68(5): p. 579-587.
74.Xu, C., et al., Biodegradable and electroconductive poly(3,4-ethylenedioxythiophene)/carboxymethyl chitosan hydrogels for neural tissue engineering. Materials Science and Engineering: C, 2018. 84: p. 32-43.