跳到主要內容

臺灣博碩士論文加值系統

(3.231.230.177) 您好!臺灣時間:2021/07/28 23:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:羅健文
研究生(外文):LUO, JIAN-WEN
論文名稱:複合型鈣鈦礦奈米晶體之微流道系統合成及其應用於發光二極體
論文名稱(外文):Microfluidic Synthesis of Complex Perovskite Nanocrystals and Their Application in Light-Emitting Diodes
指導教授:鍾仁傑鍾仁傑引用關係劉如熹劉如熹引用關係
指導教授(外文):CHUNG, REN-JEILIU, RU-SHI
口試委員:鍾仁傑劉如熹張合王宏嘉
口試委員(外文):CHUNG, REN-JEILIU, RU-SHICHANG, HOWANG, HUNG-CHIA
口試日期:2021-05-26
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:化學工程與生物科技系化學工程碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:80
中文關鍵詞:零維鈣鈦礦奈米晶體微流道次毫米(mini)發光二極體
外文關鍵詞:Zero-dimensional perovskiteNanocrystalsMicrofluidicMini light-emitting diodes
相關次數:
  • 被引用被引用:0
  • 點閱點閱:19
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要 i
ABSTRACT ii
目錄 iv
表目錄 viii
圖目錄 ix
1 第一章 緒論 1
1.1 奈米材料之概述 2
1.1.1 量子尺寸效應與量子侷限效應 3
1.2 量子點之簡介 5
1.2.1 量子點種類 6
1.3 量子效率 9
1.4 鈣鈦礦簡介 9
1.4.1 有機無機式鈣鈦礦 11
1.4.2 全無機式鈣鈦礦 12
1.4.3 鈣鈦礦之結構維度 13
1.4.4 鈣鈦礦之穩定性 14
1.5 零維鈣鈦礦Cs4BX6 (B = Pb、Sn,X = Cl、Br、I)材料之簡介 15
1.5.1 批式合成Cs4PbBr6零維鈣鈦礦材料 16
1.5.2 連續式合成Cs4PbBr6零維鈣鈦礦材料 19
1.5.3 Cs4PbBr6之發光機制 19
1.5.3.1 缺陷態發光之Cs4PbBr6文獻探討 20
1.5.3.2 CsPbBr3雜相發光之Cs4PbBr6文獻探討 22
1.5.3.3 包埋CsPbBr3奈米晶體之Cs4PbBr6文獻探討 23
1.6 鈣鈦礦材料於發光二極體之應用 27
1.6.1 色域面積 27
1.6.2 顏色純度 28
1.6.3 電致發光二極體 29
1.6.4 光致發光二極體 30
1.7 次毫米(mini)與微米(micro)發光二極體 31
1.7.1 鈣鈦礦材料應用於次毫米(mini)與微米(micro)發光二極體之方法 32
1.8 研究目的與動機 35
2 第二章 實驗步驟與儀器分析原理 37
2.1 鈣鈦礦合成之藥品與條件 37
2.2 實驗步驟 38
2.2.1 油酸銫前驅物之配製 38
2.2.2 溴化鉛前驅物之配製 39
2.2.3 綠光Cs4PbBr63/CsPbBr3鈣鈦礦奈米晶體之合成 39
2.2.4 鈣鈦礦奈米晶體墨水之配製 39
2.3 儀器分析原理 40
2.3.1 粉末X光繞射儀 40
2.3.2 穿透式電子顯微鏡 42
2.3.3 紫外光/可見光吸收光譜儀 44
2.3.4 螢光光譜儀(photoluminescence spectrometer; PL) 45
2.3.5 時間解析螢光光譜(time-resolved photoluminescence; TRPL) 47
2.3.6 積分球 48
2.3.7 量子效率 48
2.3.8 影像式接觸角量測儀 49
3 第三章 結果與討論 51
3.1.1 前驅物添加溴化鋅之調控 51
3.1.2 前驅物中油酸與油胺比例之調控 54
3.1.3 反應溫度之調控 58
3.2 CsPbBr3/Cs4PbBr6之結構鑑定 61
3.2.1 CsPbBr3/Cs4PbBr6鈣鈦礦奈米晶體之物相鑑定 61
3.2.2 CsPbBr3/Cs4PbBr6鈣鈦礦奈米晶體之穿透式電子顯微鏡鑑定 64
3.2.3 CsPbBr3/Cs4PbBr6鈣鈦礦奈米晶體之元素組成鑑定 65
3.3 CsPbBr3/Cs4PbBr6之光學特性 66
3.3.1 CsPbBr3/Cs4PbBr6鈣鈦礦奈米晶體之光致發光與吸收光譜 66
3.3.2 CsPbBr3/Cs4PbBr6鈣鈦礦奈米晶體之時間解析光譜 67
3.3.3 CsPbBr3/Cs4PbBr6鈣鈦礦奈米晶體之螢光壽命 67
3.4 CsPbBr3/Cs4PbBr6之鈣鈦礦墨水配製與應用 69
3.4.1 CsPbBr3/Cs4PbBr6鈣鈦礦墨水配製 69
3.4.2 CsPbBr3/Cs4PbBr6鈣鈦礦墨水用於圖案噴塗 70
3.4.3 CsPbBr3/Cs4PbBr6鈣鈦礦墨水之次毫米(mini)發光二極體應用 71
4 第四章 結論 73
參考文獻 74
[1] Ferrari, M., Cancer Nanotechnology: Opportunities and Challenges. Nat. Rev. Cancer 2005, 5, 161–171.
[2] Zhu, W.; Bartos, P. J.; Porro, A., Application of Nanotechnology in Construction. Mater. Struct. 2004, 37, 649–658.
[3] Muñoz, J. E.; Cervantes, J.; Esparza, R.; Rosas, G., Iron Nanoparticles Produced by High-Energy Ball Milling. J. Nanopart. Res. 2007, 9, 945–950.
[4] Pan, H. J.; Lin, C. Y.; Chou, J. H.; Mohanty, U. S.; Lee, Y. G., A Top-Down Approach of Making Sn-3.5Ag Nanosolder Alloy by Swirl Method. Mater. Sci. Appl. 2011, 2, 1298–1301.
[5] Biswas, A.; Bayer, I. S.; Biris, A. S.; Wang, T.; Dervishi, E.; Faupel, F., Advances in Top-Down and Bottom-Up Surface Nanofabrication: Techniques, Applications & Future Prospects. Adv. Colloid Interface Sci. 2012, 170, 2–27.
[6] Mirzaei, J.; Reznikov, M.; Hegmann, T., Quantum Dots as Liquid Crystal Dopants. J. Mater. Chem. 2012, 22, 22350–22365.
[7] Kubo, R., Electronic Properties of Metallic Fine Particles. I. J. Phys. Soc. Jpn. 1962, 115, 3515–3527.
[8] Lippens, P. E.; Lannoo, M., Calculation of the Band Gap for Small CdS and ZnS Crystallites. Phys. Rev. B 1989, 39, 10935–10942.
[9] Einevoll, G. T., Confinement of Excitons in Quantum Dots. Phys. Rev. B 1992, 45, 3410–3417.
[10] Kim, H. M.; Kim, J.; Lee, J.; Jang, J., Inverted Quantum-Dot Light Emitting Diode Using Solution Processed P-Type WOx Doped PEDOT: PSS and Li Doped ZnO Charge Generation Layer. ACS Appl. Mater. Interfaces 2015, 7, 24592–24600.
[11] Murray, C. B.; Norris, D. J.; Bawendi, M. G., Synthesis and Characterization of Nearly Monodisperse CdE(E = S, Se, Te) Semiconductor Nanocrystallites. J. Am. Chem. Soc. 1993, 115, 8706–8715.
[12] Nan, W.; Niu, Y.; Qin, H.; Cui, F.; Yang, Y.; Lai, R.; Lin, W.; Peng, X., Crystal Structure Control of Zinc-Blende CdSe/CdS Core/Shell Nanocrystals: Synthesis and Structure-Dependent Optical Properties. J. Am. Chem. Soc. 2012, 134, 19685–19693.
[13] Ramasamy, P.; Ko, K.-J.; Kang, J.-W.; Lee, J.-S., Two-Step “Seed-Mediated” Synthetic Approach to Colloidal Indium Phosphide Quantum Dots with High-Purity Photo- and Electroluminescence. Chem. Mater. 2018, 30, 3643–3647.
[14] Cao, F.; Wang, S.; Wang, F.; Wu, Q.; Zhao, D.; Yang, X., A Layer-By-Layer Growth Strategy for Large-Size InP/ZnSe/ZnS Core–Shell Quantum Dots Enabling High-Efficiency Light-Emitting Diodes. Chem. Mater. 2018, 30, 8002–8007.
[15] Kruszynska, M.; Borchert, H.; Parisi, J.; Kolny, O. J., Synthesis and Shape Control of CuInS2 Nanoparticles. J. Am. Chem. Soc. 2010, 132, 15976–15986.
[16] Yashina, A.; Lignos, I.; Stavrakis, S.; Choo, J.; deMello, A. J., Scalable Production of CuInS2/ZnS Quantum Dots in a Two-Step Droplet-Based Microfluidic Platform. J. Mater. Chem. C 2016, 4, 6401–6408.
[17] Forrester, W.; Hinde, R., Crystal Structure of Barium Titanate. Nature 1945, 156, 177.
[18] Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T., Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. J. Am. Chem. Soc. 2009, 131, 6050–6051.
[19] Lee, M. M.; Teuscher, J.; Miyasaka, T.; Murakami, T. N.; Snaith, H. J., Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites. Science 2012, 338, 643–647.
[20] Meng, L.; You, J.; Yang, Y., Addressing the Stability Issue of Perovskite Solar Cells for Commercial Applications. Nat. Commun. 2018, 9, 5265.
[21] Yoo, J. J.; Seo, G.; Chua, M. R.; Park, T. G.; Lu, Y.; Rotermund, F.; Kim, Y. K.; Moon, C. S.; Jeon, N. J.; Correa-Baena, J. P.; Bulovic, V.; Shin, S. S.; Bawendi, M. G.; Seo, J., Efficient Perovskite Solar Cells via Improved Carrier Management. Nature 2021, 590, 587–593.
[22] Zhang, F.; Zhong, H.; Chen, C. Y.; Wu, X.-G.; Hu, X. H., H.; Han, J.; Zou, B.; Dong, Y., Brightly Luminescent and Color-Tunable Colloidal CH3NH3PbX3 (X = Br, I, Cl) Quantum Dots: Potential Alternatives for Display Technology. ACS Nano 2015, 9, 4533–4542.
[23] Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Krieg, F.; Caputo, R.; Hendon, C. H.; Yang, R. X.; Walsh, A.; Kovalenko, M. V., Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut. Nano Lett. 2015, 15, 3692–3696.
[24] Li, Z.; Kong, L.; Huang, S.; Li, L., Highly Luminescent and Ultrastable CsPbBr3 Perovskite Quantum Dots Incorporated into a Silica/Alumina Monolith. Angew. Chem. Int. Ed. 2017, 56, 8134–8138.
[25] Wang, H. C.; Bao, Z.; Tsai, H. Y.; Tang, A. C.; Liu, R. S., Perovskite Quantum Dots and Their Application in Light-Emitting Diodes. Small 2018, 14, 1702433.
[26] Wang, H. C.; Wang, W.; Tang, A. C.; Tsai, H. Y.; Bao, Z.; Ihara, T.; Yarita, N.; Tahara, H.; Kanemitsu, Y.; Chen, S.; Liu, R. S., High-Performance CsPb1-x Snx Br3 Perovskite Quantum Dots for Light-Emitting Diodes. Angew. Chem. Int. Ed. 2017, 56, 13650–13654.
[27] Zhang, Y.; Liu, J.; Wang, Z.; Xue, Y.; Ou, Q.; Polavarapu, L.; Zheng, J.; Qi, X.; Bao, Q., Synthesis, Properties, and Optical Applications of Low-Dimensional Perovskites. Chem. Commun. 2016, 52, 13637–13655.
[28] Schmidt, L. C.; Pertegas, A.; Gonzalez-Carrero, S.; Malinkiewicz, O.; Agouram, S.; Minguez Espallargas, G.; Bolink, H. J.; Galian, R. E.; Perez-Prieto, J., Nontemplate Synthesis of CH3NH3PbBr3 Perovskite Nanoparticles. J. Am. Chem. Soc. 2014, 136, 850–853.
[29] Liang, X.; Baker, R. W.; Wu, K.; Deng, W.; Ferdani, D.; Kubiak, P. S.; Marken, F.; Torrente-Murciano, L.; Cameron, P. J., Continuous Low Temperature Synthesis of MAPbX3 Perovskite Nanocrystals in a Flow Reactor. React. Chem. Eng. 2018, 3, 640–644.
[30] Møller, C. K., Crystal Structure and Photoconductivity of Caesium Plumbohalides. Nature 1958, 182, 1436.
[31] Saidaminov, M. I.; Almutlaq, J.; Sarmah, S.; Dursun, I.; Zhumekenov, A. A.; Begum, R.; Pan, J.; Cho, N.; Mohammed, O. F.; Bakr, O. M., Pure Cs4PbBr6: Highly Luminescent Zero-Dimensional Perovskite Solids. ACS Energy Lett. 2016, 1, 840–845.
[32] Zhou, Y.; Zhao, Y., Chemical Stability and Instability of Inorganic Halide Perovskites. Energy Environ. Sci. 2019, 12, 1495–1511.
[33] Huang, S.; Li, Z.; Wang, B.; Zhu, N.; Zhang, C.; Kong, L.; Zhang, Q.; Shan, A.; Li, L., Morphology Evolution and Degradation of CsPbBr3 Nanocrystals under Blue Light-Emitting Diode Illumination. ACS Appl. Mater. Interfaces 2017, 9, 7249–7258.
[34] Chen, J.; Liu, D.; Al-Marri, M. J.; Nuuttila, L.; Lehtivuori, H.; Zheng, K., Photo-Stability of CsPbBr3 Perovskite Quantum Dots for Optoelectronic Application. Sci. China Mater. 2016, 59, 719–727.
[35] Xu, L.; Li, J.; Fang, T.; Zhao, Y.; Yuan, S.; Dong, Y.; Song, J., Synthesis of Stable and Phase-Adjustable CsPbBr3@Cs4PbBr6 Nanocrystals via Novel Anion–Cation Reactions. Nanoscale Adv. 2019, 1, 980–988.
[36] Zhang, Y.; Saidaminov, M. I.; Dursun, I.; Yang, H.; Murali, B.; Alarousu, E.; Yengel, E.; Alshankiti, B. A.; Bakr, O. M.; Mohammed, O. F., Zero-Dimensional Cs4PbBr6 Perovskite Nanocrystals. J. Phys. Chem. Lett. 2017, 8, 961–965.
[37] Jing, Q.; Xu, Y.; Su, Y.; Xing, X.; Lu, Z., A Systematic Study of the Synthesis of Cesium Lead Halide Nanocrystals: Does Cs4PbBr6 or CsPbBr3 Form? Nanoscale 2019, 11, 1784–1789.
[38] Zhang, H.; Liao, Q.; Wu, Y.; Chen, J.; Gao, Q.; Fu, H., Pure Zero-Dimensional Cs4PbBr6 Single Crystal Rhombohedral Microdisks with High Luminescence and Stability. Phys. Chem. Chem. Phys. 2017, 19, 29092–29098.
[39] Chen, Y. M.; Zhou, Y.; Zhao, Q.; Zhang, J. Y.; Ma, J. P.; Xuan, T. T.; Guo, S. Q.; Yong, Z. J.; Wang, J.; Kuroiwa, Y.; Moriyoshi, C.; Sun, H. T., Cs4PbBr6/CsPbBr3 Perovskite Composites with Near-Unity Luminescence Quantum Yield: Large-Scale Synthesis, Luminescence and Formation Mechanism, and White Light-Emitting Diode Application. ACS Appl. Mater. Interfaces 2018, 10, 15905–15912.
[40] Phillips, T. W.; Lignos, I. G.; Maceiczyk, R. M.; deMello, A. J.; deMello, J. C., Nanocrystal Synthesis in Microfluidic Reactors: Where Next? Lab Chip 2014, 14, 3172–3180.
[41] Lignos, I.; Stavrakis, S.; Nedelcu, G.; Protesescu, L.; deMello, A. J.; Kovalenko, M. V., Synthesis of Cesium Lead Halide Perovskite Nanocrystals in a Droplet-Based Microfluidic Platform: Fast Parametric Space Mapping. Nano Lett. 2016, 16, 1869–1877.
[42] De Bastiani, M.; Dursun, I.; Zhang, Y.; Alshankiti, B. A.; Miao, X.-H.; Yin, J.; Yengel, E.; Alarousu, E.; Turedi, B.; Almutlaq, J. M.; Saidaminov, M. I.; Mitra, S.; Gereige, I.; AlSaggaf, A.; Zhu, Y.; Han, Y.; Roqan, I. S.; Bredas, J.-L.; Mohammed, O. F.; Bakr, O. M., Inside Perovskites: Quantum Luminescence from Bulk Cs4PbBr6 Single Crystals. Chem. Mater. 2017, 29, 7108–7113.
[43] Yin, J.; Yang, H.; Song, K.; El-Zohry, A. M.; Han, Y.; Bakr, O. M.; Bredas, J. L.; Mohammed, O. F., Point Defects and Green Emission in Zero-Dimensional Perovskites. J. Phys. Chem. Lett. 2018, 9, 5490–5495.
[44] Seth, S.; Samanta, A., Photoluminescence of Zero-Dimensional Perovskites and Perovskite-Related Materials. J. Phys. Chem. Lett. 2018, 9, 176–183.
[45] Akkerman, Q. A.; Park, S.; Radicchi, E.; Nunzi, F.; Mosconi, E.; De Angelis, F.; Brescia, R.; Rastogi, P.; Prato, M.; Manna, L., Nearly Monodisperse Insulator Cs4PbX6 (X = Cl, Br, I) Nanocrystals, Their Mixed Halide Compositions, and Their Transformation into CsPbX3 Nanocrystals. Nano Lett. 2017, 17, 1924–1930.
[46] Nikl, M.; Mihokova, E.; Nitsch, K.; Somma, F.; Giampaolo, C.; Pazzi, G. P.; Fabeni, P.; Zazubovich, S., Photoluminescence of Cs4PbBr6 Crystals and Thin Films. Chem. Phys. Lett. 1999, 306, 280–284.
[47] Nikl, M.; Nitsch, K.; Mihokova, E.; Polak, K.; Fabeni, P.; Pazzi, G. P.; Gurioli, M.; Santucci, S.; Phani, R.; Scacco, A.; Somma, F., Luminescence of CsPbBr3-Like Quantum Dots in CsBr Single Crystals. Physica E 1999, 4, 323–331.
[48] Nitsch, K.; Cihlar, A.; Dusek, M.; Hamplova, V.; Nikl, M.; Rodova, M.; Rysava, N., Growth and Characterization of Crystals of Incongruently Melting Ternary Alkali Lead Chlorides. Phys. Status Solidi 1993, 135, 565.
[49] Chen, X.; Zhang, F.; Ge, Y.; Shi, L.; Huang, S.; Tang, J.; Lv, Z.; Zhang, L.; Zou, B.; Zhong, H., Centimeter-Sized Cs4PbBr6 Crystals with Embedded CsPbBr3 Nanocrystals Showing Superior Photoluminescence: Nonstoichiometry Induced Transformation and Light-Emitting Applications. Adv. Funct. Mater. 2018, 28, 1706567.
[50] Bao, Z.; Tseng, Y. J.; You, W.; Zheng, W.; Chen, X.; Mahlik, S.; Lazarowska, A.; Lesniewski, T.; Grinberg, M.; Ma, C.; Sun, W.; Zhou, W.; Liu, R. S.; Attfield, J. P., Efficient Luminescence from CsPbBr3 Nanoparticles Embedded in Cs4PbBr6. J. Phys. Chem. Lett. 2020, 11, 7637–7642.
[51] Raino, G.; Becker, M. A.; Bodnarchuk, M. I.; Mahrt, R. F.; Kovalenko, M. V.; Stoferle, T., Superfluorescence from Lead Halide Perovskite Quantum Dot Superlattices. Nature 2018, 563, 671–675.
[52] Pust, P.; Schmidt, P. J.; Schnick, W., A Revolution in Lighting. Nat. Mater. 2015, 14, 454–458.
[53] Zou, C.; Chang, C.; Sun, D.; Bohringer, K. F.; Lin, L. Y., Photolithographic Patterning of Perovskite Thin Films for Multicolor Display Applications. Nano Lett. 2020, 20, 3710–3717.
[54] Ko, J.; Ma, K.; Joung, J. F.; Park, S.; Bang, J., Ligand-Assisted Direct Photolithography of Perovskite Nanocrystals Encapsulated with Multifunctional Polymer Ligands for Stable, Full-Colored, High-Resolution Displays. Nano Lett. 2021, 21, 2288–2295.
[55] Gu, Z.; Wang, K.; Li, H.; Gao, M.; Li, L.; Kuang, M.; Zhao, Y. S.; Li, M.; Song, Y., Direct-Writing Multifunctional Perovskite Single Crystal Arrays by Inkjet Printing. Small 2017, 13, 1603217.
[56] Liu, Y.; Li, F.; Qiu, L.; Yang, K.; Li, Q.; Zheng, X.; Hu, H.; Guo, T.; Wu, C.; Kim, T. W., Fluorescent Microarrays of In-Situ Crystallized Perovskite Nanocomposites Fabricated for Patterned Applications by Using Inkjet Printing. ACS Nano 2019, 13, 2042–2049.
[57] Shi, L.; Meng, L.; Jiang, F.; Ge, Y.; Li, F.; Wu, X. g.; Zhong, H., In-Situ Inkjet Printing Strategy for Fabricating Perovskite Quantum Dot Patterns. Adv. Funct. Mater. 2019, 29, 1903648.
[58] Zhu, M.; Duan, Y.; Liu, N.; Li, H.; Li, J.; Du, P.; Tan, Z.; Niu, G.; Gao, L.; Huang, Y.; Yin, Z.; Tang, J., Electrohydrodynamically Printed High‐Resolution Full‐Color Hybrid Perovskites. Adv. Funct. Mater. 2019, 29, 1903294.
[59] Gao, A.; Yan, J.; Wang, Z.; Liu, P.; Wu, D.; Tang, X.; Fang, F.; Ding, S.; Li, X.; Sun, J.; Cao, M.; Wang, L.; Li, L.; Wang, K.; Sun, X. W., Printable CsPbBr3 Perovskite Quantum Dot Ink for Coffee Ring-Free Fluorescent Microarrays Using Inkjet Printing. Nanoscale 2020, 12, 2569–2577.
[60] Alshibli, K.; Cil, M. B.; Kenesei, P.; Lienert, U., Strain Tensor Determination of Compressed Individual Silica Sand Particles Using High-Energy Synchrotron Diffraction. Granular Matter 2013, 15, 517–530.
[61] Jia, C.; Li, H.; Meng, X.; Li, H., CsPbX3/Cs4PbX6 Core/Shell Perovskite Nanocrystals. Chem. Commun. 2018, 54, 6300–6303.
[62] Yarita, N.; Tahara, H.; Ihara, T.; Kawawaki, T.; Sato, R.; Saruyama, M.; Teranishi, T.; Kanemitsu, Y., Dynamics of Charged Excitons and Biexcitons in CsPbBr3 Perovskite Nanocrystals Revealed by Femtosecond Transient-Absorption and Single-Dot Luminescence Spectroscopy. J. Phys. Chem. Lett. 2017, 8, 1413–1418.

電子全文 電子全文(網際網路公開日期:20260615)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top