跳到主要內容

臺灣博碩士論文加值系統

(44.222.64.76) 您好!臺灣時間:2024/06/14 03:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:呂欣翰
研究生(外文):LU, HSIN-HAN
論文名稱:使用可控的差異壓縮方法的自適應HDR色調映射
論文名稱(外文):Adaptive HDR Tone Mapping Using Controllable Difference Compression Method
指導教授:林顯易
指導教授(外文):LIN, HSIEN-I
口試委員:陳永耀黃正民簡士哲林顯易
口試委員(外文):CHEN, YUNG-YAOHUANG, CHENG-MINGCHIEN, SHIN-CHELIN, HSIEN-I
口試日期:2020-07-20
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:自動化科技研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:109
語文別:中文
論文頁數:45
中文關鍵詞:高動態範圍圖像色調映射運算子細節可控牛頓法分層壓縮
外文關鍵詞:High dynamic range imageTone mapping operatorDetailness controllableNewton methodLayer-selective compression scheme
相關次數:
  • 被引用被引用:0
  • 點閱點閱:191
  • 評分評分:
  • 下載下載:24
  • 收藏至我的研究室書目清單書目收藏:0
高動態範圍成像的目的,在於捕捉真實世界場景的整個亮度範圍。為了能夠在低動態範圍的顯示器上顯示高動態範圍圖像,需要一種稱為色調映射的技術。色調映射除了要進行大幅度的對比度衰減之外,同時還要保持圖像的細節。雖然目前針對高動態範圍圖像開發各式各樣的色調映射運算子,不過色調映射要在所有環境中產生高質量的成像仍然是一個具有挑戰性的問題。在本文中,我們透過先前的色調映射方法:差異壓縮,提出改良的可控差異壓縮,可以有效的改善此方法容易受到一些參數的差別而影響輸出的表現。我們提出了差異量的概念,基於牛頓法開發了細節可控的色調映射運算符。為了進一步的提高差異壓縮的穩健性,我們測量輸入圖像的梯度等級,並且結合差異量,提出自適應差異量。透過分層壓縮的概念,進一步增強局部對比度與區域細節。所提出的方法在細節與自然度之間可以達到良好的平衡。
The purpose of high dynamic range imaging is to capture the entire brightness range of real-world scenes. In order to be able to display high dynamic range images on a low dynamic range display, a technique called tone mapping is needed. In addition to the large-scale contrast attenuation, tone mapping also maintains the details of the image. Although various tone mapping operators are currently being developed for high dynamic range images, it is still a challenging problem for tone mapping to produce high-quality imaging in all environments. In this article, we propose an improved controllable difference compression through the previous tone mapping method: difference compression, which can effectively improve the method's vulnerability to some parameters and affect the output performance. We proposed the concept of Value of Difference index (VoD) and developed a tone mapping operator with detailness-controllable based on Newton's method. In order to further improve the robustness of difference compression, we measure the gradient level of the input image, and combine the VoD to propose an adaptive VoD. Through the concept of layer-selective compression scheme, local contrast and regional details are further enhanced. The proposed method can achieve a good balance between detail and naturalness.
中文摘要...................................................i
ABSTRACT..................................................ii
誌 謝.....................................................iv
目 錄......................................................v
圖目錄...................................................vii
第一章 緒論...............................................1
  1.1 研究背景與動機.....................................1
  1.2 文獻回顧...........................................2
  1.3 研究方法...........................................5
  1.4 論文架構...........................................6
第二章 相關背景與研究.....................................7
  2.1 用於HDRI的細節保留再現增強局部色調映射.............7
  2.2 圖像動態範圍調整的自適應方法......................13
  2.3 自適應參考值差異壓縮的HDR算法.....................19
第三章 可控的差異壓縮方法的自適應色調映射演算法..........24
  3.1 演算法設計動機與理念..............................24
  3.2 介紹差異量的概念..................................27
  3.2.1 差異量指數......................................27
  3.2.2 極值問題........................................29
  3.3 細節控制..........................................30
  3.4 分層壓縮與色調調整................................32
第四章 實驗結果..........................................35
  4.1 前言..............................................35
  4.2 實驗結果..........................................35
第五章 結論..............................................41
第六章 參考文獻..........................................42
1.J. Tumblin and H. Rushmeier, “Tone reproduction for computer generated images,” IEEE Computer Graphics and Applications, vol. 13, no. 6, 1993, pp. 42-48.
2.G.W. Larson, H. Rushmeier and C. Piatko, “A visibility matching tone reproduction operator for high dynamic range scenes,” IEEE Transactions on Visualization and Computer Graphics, vol. 3, no. 4, 1997, pp. 291-306.
3.Drago F., Myszkowski K., Annen T., and Chiba N, “Adaptive logarithmic mapping for displaying high contrast scenes,” Computer Graphics Forum, vol. 22, no. 3, 2003, pp. 419-426.
4.R. Mantiuk, S. Daly and L. Kerofsky, "Display adaptive tone mapping," ACM Trans. Graphics-TOG, vol. 27, no. 3, 2008, pp. 68-68.
5.Chiu K., Herf M., Shirley P., Swamy S., Wang C. and Zimmerman. K, “Spatially Nonuniform Scaling Functions for High Contrast Images,” Proceedings of Graphics Interface ’93, May 1993, pp. 245-253.
6.S.N. Pattanaik, J.A. Ferwerda, M.D. Fairchild and D.P. Greenberg, “A Multiscale Model of Adaptation and Spatial Vision for Realistic Image Display,” Proceedings of SIGGRAPH '98, July 1998, pp. 287-298.
7.J. Tumblin and G. Turk, “LCIS: A boundary hierarchy for detail-preserving contrast reduction,” Proceedings of SIGGRAPH 1999 Annu. Conf. Computer Graphics, CA USA, Aug. 1999, pp. 83-90.
8.P. Shirley, J. Ferwerda, E. Reinhard and M. Stark, "Photographic tone reproduction for digital images," Proceedings of the 29th annual conference on Computer graphics and interactive techniques, NY USA, July 2002, pp. 267-276.
9.R. Fattal, D. Lischinski and M. Werman, "Gradient Domain High Dynamic Range Compression," Proceedings of the 29th annual conference on Computer graphics and interactive techniques, NY USA, July 2002, pp. 249-256.
10.Y. Li, L. Sharan and E. H. Adelson, "Compressing and companding high dynamic range images with subband architectures," Proceedings of ACM Transactions on Graphics, July 2005, pp. 836-844.
11.R. Mantiuk, K. Myszkowski and H. Seidel, "A perceptual framework for contrast processing of high dynamic range images," Proceedings of ACM Transactions on Applied Perception, July 2006, pp. 87-94.
12.M. Qiao and M. K. Ng, "Tone mapping for high-dynamic-range images using localized gamma correction," J. Electron. Imag., vol. 24, no. 1, 2015, pp. 1-12.
13.K. Gu, G. Zhai, X. Yang, W. Zhang and C. W. Chen, "Automatic contrast enhancement technology with saliency preservation," IEEE Transactions on Image Processing, vol. 24, no. 10, 2016, pp. 3218-3231.
14.F. Durand and J. Dorsey, "Fast Bilateral Filtering for the Display of High-Dynamic-Range Images," Proceedings of the 29th annual conference on Computer graphics and interactive techniques, NY USA, July 2002, pp. 257-266.
15.X. Li, K. M. Lam, and L. Shen, "An adaptive algorithm for the display of high-dynamic range images," Journal of Visual Communication and Image Representation, vol. 18, no. 5, 2007, pp. 397-405.
16.Z. Farbman, R. Fattal, D. Lischinski and R. Szeliski, "Edge-preserving decompositions for multi-scale tone and detail manipulation," ACM Transactions on Graphics, vol. 27, no. 3, 2008, pp. 67-1.
17.S. Paris, S.W. Hasinoff and J. Kautz, "Local Laplacian Filters: Edge-Aware Image Processing with a Laplacian Pyramid," Communications of the ACM, vol. 30, no. 4, 2011, pp. 68:1-68:12.
18.L. Xu, C. Lu, Y. Xu and J. Jia, "Image Smoothing via L0 Gradient Minimization," Proceedings of the 2011 SIGGRAPH Asia Conference, HK China, Dec. 2011, pp. 1-12.
19.B. Gu, W. Li, M. Zhu and M. Wang, "Local edge-preserving multiscale decomposition for high dynamic range image tone mapping," IEEE Transactions on Image Processing, vol. 22, no. 1, 2013, pp. 70-79.
20.T. Qiu, A. Wang, N. Yu and A. Song, "LLSURE: Local linear sure-based edge-preserving image filtering," IEEE Transactions on Image Processing, vol. 22, no. 1, 2013, pp. 80-90.
21.K. He, J. Sun and X. Tang, "Guided image filtering," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 35, no. 6, 2013, pp. 1397-1409.
22.A. Artusi, A.O. Akyuz, B. Roch, D. Michael, Y. Chrysanthou and A. Chalmers, "Selective local tone mapping," Proceedings of 2013 IEEE International Conference on Image Processing, Melbourne VIC Australia, Sept. 2013, pp. 2309-2313.
23.J Ok and C. Lee, "HDR Tone Mapping Algorithm Based on Difference Compression with Adaptive Reference Values," Journal of Visual Communication & Image Representation, vol. 43, 2017, pp. 61-76.
24.E. Mezeni and L. V. Saranovac, "Enhanced local tone mapping for detail preserving reproduction of high dynamic range images," Journal of Visual Communication and Image Representation, vol. 53, 2018, pp. 122-133.
25.K. F. Yang, H. Li, H. Kuang, C. Y. Li and Y. J. Li, "An adaptive method for image dynamic range adjustment," IEEE Transactions on Circuits and Systems for Video Technology, vol. 29, no. 3, 2019, pp. 640-652.
26.H. Yeganeh and Z. Wang, "Objective quality assessment of tone-mapped images," IEEE Transactions on Image Processing, vol. 22, no. 2, 2013, pp. 657-667.
27.Kwon, H.-J.; Lee, S.-H.; Lee, G.-Y.; Sohng, K.-I. “Enhanced high dynamic-range image rendering using a surround map based on edge-adaptive layer blurring,” The Institution of Engineering and Technology, vol. 10, no. 7, 2016, pp. 689-699.
28.HDR Dataset, <https://www2.cs.sfu.ca/~colour/data/funt_hdr/#DATA>
29.HDR Dataset, <http://www.anyhere.com/gward/hdrenc/pages/originals.html>
30.HDR Dataset, <https://www.epfl.ch/labs/mmspg/>

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top