跳到主要內容

臺灣博碩士論文加值系統

(44.201.92.114) 您好!臺灣時間:2023/03/31 11:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鍾啟睿
研究生(外文):CHUNG, CHI-JUI
論文名稱:鋁鈦鋯元素添加對MAR-M247鎳基超合金之微觀組織及機械性質影響
論文名稱(外文):Effects of Aluminum Zirconium and Titanium Element Addition on Microstructure and Mechanical Properties of MAR-M247 Nickel-based Superalloy
指導教授:王錫九陳適範陳適範引用關係
指導教授(外文):WANG, SHEA-JUECHEN, SHIH-FAN
口試委員:王錫九陳適範林於隆
口試委員(外文):WANG, SHEA-JUECHEN, SHIH-FANLIN, YU-LUNG
口試日期:2021-06-15
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:材料科學與工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:103
中文關鍵詞:MAR-M247鎳基超合金碳化物γ′高溫性質潛變性質元素添加
外文關鍵詞:MAR-M247nickel-based SuperalloyCarbideγ′high temperature propertycreep propertyelement addition
相關次數:
  • 被引用被引用:0
  • 點閱點閱:143
  • 評分評分:
  • 下載下載:15
  • 收藏至我的研究室書目清單書目收藏:0
超合金又稱耐熱合金或高溫合金,依據其基底材料可分為:鐵基、鈷基、鎳基三種類,其中以鎳基超合金的應用範圍最為廣泛,目前市售之商用超合金也多以鎳基為主,因其具有良好的高溫性質及抗腐蝕性。
本研究選用MAR-M247鎳基超合金為研究材料,其多應用於渦輪發電機葉片以及部分軍用設備上。實驗方法以添加元素的方式,調整MAR-M247中合金的比例成分,觀察其對MAR-M247超合金之顯微組織及機械性質的影響。
實驗以添加鋁、鈦、鋯三種元素來對合金比例進行調配,總共設計母材、M1、M2、M3、M4共5種樣本。由實驗結果來看,在物理性質方面,鈦元素含量的增加可有效降低合金的整體密度,M3、M4兩樣本之鈦含量皆為1.5wt%,密度分別為7.947及8.019g/cm3,相較母材(8.103g/cm3),約降低1.9%左右。
接著是顯微組織的部分,隨著鈦鋯元素的含量增加改變了碳化物的形貌,使粗大團聚的文字狀碳化物轉化為細小分散的球狀碳化物;也增加了γ՛相的面積分率,最高為M4的樣本68%,比母材(60%)多了8%;同時也增加了共晶相的面積分率,在M4樣本中為最高的18.786%。
再來是機械性質的部分,由於鋯元素的添加提供晶界強化的效果,鋁鈦元素添加提高γ՛相的比例,因此讓高溫拉伸性質(982oC)有顯著的提升,最高提升9.9%。而在高溫潛變(982oC/200MPa)測試下,除M3以外,其餘實驗樣本(M1、M2、M4)都有比母材更好的潛變壽命,造成M3潛變壽命下降的原因,與其視孔隙率較高有關,超合金在高溫下較容易受到孔洞的影響而降低使用壽命。
最後是各項數據與機械性質的對應關係,從結果可得知,M23C6型碳化物與γ՛相的含量提高對於高溫機械性質是有所幫助的,而由視孔隙率與各項機械性質對應關係來看,孔隙率的提高對於合金性質都有著不良的影響,因此如何減少孔洞的產生也是合金在鑄造時的重要環節,在元素比與潛變性質的關係中可以得知,若是還有考慮以元素添加的方式來改善合金性能,可以添加更多的鋯元素來嘗試。
從上述結果來看,利用透過元素添加改變合金比例的方法,降低了製造成本且成功的提升了MAR-M247的合金性能。

Superalloys are also known as heat-resistant alloys or high-temperature alloys. According to their base materials, they can be divided into three types: iron-based, cobalt-based, and nickel-based. Among them, nickel-based superalloys have the most extensive applications. Now the avalible commercial superalloys are mostly nickel-based, because of its good high-temperature properties and corrosion resistance ability.
In this study, MAR-M247 nickel-based superalloy is picked as the research material, which is usually used in turbine generator blades and some military equipment. The experimental method is to adjust the proportion of the alloy in MAR-M247 by adding elements, and observe its effects on microstructure and mechanical properties of MAR-M247 superalloy.
For experiment, three elements: aluminum, titanium and zirconium are added to adjust the alloy ratio. There are total of 5 samples: base material, M1, M2, M3, and M4 were designed. From the experimental results, in terms of physical properties, titanium content increase can effectively reduce density of the alloy. The titanium content of the M3 and M4 samples is 1.5wt%, and the density is 7.947 and 8.019g/cm3, respectively. Compare with base material (8.103g/cm3) is lower about 1.9% .
Next part is microstructure. As the content of titanium and zirconium increases, the morphology of the carbides is changed, the coarse and focused text-like carbides are transformed into finely dispersed spherical carbides; the area of the γ՛ phase is also increased. The highest γ՛ phase is 68% for the M4 sample, which is 8% more than the base metal (60%); it also increases the area fraction of the eutectic phase, which the highest is 18.786% in the M4 sample.
After that is mechanical properties results. Since the addition of zirconium provides the effect of grain boundary strengthening, the addition of aluminum and titanium increases the proportion of γ՛ phase, so the high temperature tensile properties (982oC) have a significant improvement, the improve rate is about 9.9%. Under the high temperature creep (982oC/200MPa) test, except for M3 sample, the remaining experimental samples (M1, M2, M4) have a better creep life than the base sample. The reason for the decrease in the creep life of M3 is it has higher porosity than other samples. Superalloy will get more influence by porosities then decrease it’s life time at high temperature.
Finally, the corresponding relationship between various data and mechanical properties. From the results, it can be seen that the increase in the content of M23C6 type carbide and γ՛ phase is helpful for high-temperature mechanical properties, and the porosity corresponds to various mechanical properties. In terms of relationships, the increase in porosity has a negative impact on the properties of the alloy, so how to reduce the generation of pores is also an important part of the alloy during casting. From the results of relationship between element ratio and creep properties can know, if it considers to improve alloy property by adding element that can try adding more Zirconium.
From the above results, the method of changing the alloy ratio through element addition reduces the manufacturing cost and successfully improves the alloy performance of MAR-M247.

目 錄

摘 要 i
ABSTRACT iii
誌 謝 vi
目 錄 vii
表目錄 x
圖目錄 xi
第一章 研究背景 1
1.2 燃氣渦輪機組介紹 2
1.3 研究動機 2
第二章 文獻回顧 6
2.1 鎳基超合金介紹與發展 6
2.2 MAR-M247介紹 8
2.3 鎳基超合金中的組成相 9
2.3.1 γ相 9
2.3.2 γ′相 9
2.3.3 γ-γ′共晶相 10
2.3.4 碳化物 11
第三章 實驗方法及流程 23
3.1 實驗流程 23
3.2 合金設計 24
3.2.1真空感應熔煉 25
3.2.2鑄造法介紹 26
3.3 熱處理 27
3.3.1固溶熱處理 28
3.3.2淬火 28
3.3.3時效熱處理 28
3.4 成分分析 28
3.4.1 Spark OES 29
3.4.2 EDS分析 29
3.5 研磨及拋光 29
3.6 金相腐蝕 30
3.7 顯微組織與結構 30
3.7.1 光學顯微鏡(OM) 30
3.7.2 掃描式電子顯微鏡 (SEM) 31
3.8 機械性質分析 33
3.8.1 硬度分析 33
3.8.2 拉伸測試 34
3.8.3潛變試驗 34
3.9 物理性質 35
3.9.1密度測試 35
3.10 影像分析 35
第四章 結果與討論 36
4.1 SPARK OES 成分分析 36
4.2光學顯微鏡觀察 37
4.2.1晶粒觀察 37
4.2.2碳化物觀察 38
4.3 SEM觀察與元素分析 42
4.3.1 MC型碳化物 42
4.3.2 M23C6型碳化物 45
4.3.3 γ՛相組織 49
4.3.4 γ-γ՛共晶相組織 54
4.4物理性質 58
4.4.1 密度 58
4.4.2視孔隙率 59
4.5機械性質分析 61
4.5.1 硬度 61
4.5.2高溫拉伸性質(982°C) 62
4.5.3中溫拉伸性質(760°C) 64
4.5.4室溫拉伸性質 68
4.5.5潛變性質(982°C /200 Mpa) 71
4.6各項數據與機械性質相對應關係 75
4.6.1 晶粒大小與機械性質之對應關係 75
4.6.2 碳化物含量與機械性質之關係 77
4.6.3 M23C6碳化物含量與機械性質之關係 79
4.6.4 γ՛相含量與機械性質之關係 82
4.6.5共晶相含量與機械性質之關係 84
4.6.6視孔隙率與機械性質之關係 86
4.6.7 元素比對潛變性質之關係 89
第五章 結論 91
參考文獻 93
附錄 100


1. 維基百科(https://zh.wikipedia.org/wiki/%E7%81%AB%E5%8A%9B%E7%99%BC%E9%9B%BB%E5%BB%A0)
2. 台灣電力公司網站資料(https://www.taipower.com.tw/TC/search.aspx?q=%e7%81%ab%e5%8a%9b%e7%99%bc%e9%9b%bb)
3. 網站REALPARS(https://realpars.com/gas-turbine)
4. 葉哲政,鎳基合金市場現況與應用商機,中工高雄會刊第21卷第1期,pp.47-51,2013
5. J.R. Elliott, C.T. Lira, “Introductory Chemical Engineering Thermodynamics”, Pearson, pp110,1999
6. J.R. Elliott, C.T. Lira, “Introductory Chemical Engineering Thermodynamics”, Pearson, pp156,1999
7. C. T. Sims, “A history of superalloy metallurgy for superalloy metallurgists”, Material Science,1984
8. K. Harris, G.L. Erickson and R.E. Schwer ,“MAR- M247 DERIVATIONS - CM 247 LC DS ALLOY CMSX SINGLE CRYSTAL ALLOYS PROPERTIES & PERFORMANCE”, Superalloys, pp.221-230, 1984 January
9. R.C. Reed, The Superalloys: Fundamentals and Applications, Cambridge University Press, pp. 40-45, 2006
10. S. H. Chang, K. T. Huang, C. M. Liu, “Effect of HIP temperature on microstructure and tensile properties of 713LC cast superalloy,” International Journal of Cast Metals Research, Vol. 24 No. 2, pp. 113-117, 2011
11. Y. Ro, Y. Koizumi, H. Harada, “High temperature tensile properties of a series of nickel-base superalloys on a γ-γ՛ tie line”, Materials Science and Engineering A223 pp59-63 ,1997
12. Mengtao Xie, Randolph. C. Helmink, Sammy Tin, “Polycrystalline γ(Ni)/γ′ (Ni3Al)-δ(Ni3Nb) eutectic Ni-base superalloys : chemistry, solidification and microstructure,” The Minerals, Metals & Materials Society, pp. 633-642, 2012
13. H.S. Whitesell, R.A. Overfelt “Influence of solidification variables on the microstructure, macrosegregation, and porosity of directionally solidified Mar-M247”, Materials Science and Engineering A318 pp264–276, 2001
14. S.M. SEO, J.H. LEE, Y.S. YOO, C.Y. JO, H. MIYAHARA, and K. OGI, “ A Comparative Study of the γ/γ′ Eutectic Evolution During the Solidification of Ni-Base Superalloys,” METALLURGICAL AND MATERIALS TRANSACTIONS A, Vol. 42A, pp. 3150-3159, 2011
15. H.Y. Bor , C. Hsu, C.N. Wei, “Influence of hot isostatic pressing on the fracture transitions in the fine grain MAR-M247 superalloys”, Materials Chemistry and Physics 84 pp284-290, 2004
16. S.A. Hosseini, S.M. Abbasi, K.Z. Madar, H.M.K. Yazdi, “The effect of boron and zirconium on wrought structure and γ-γ՛ lattice misfit characterization in nickel-based superalloy ATI 718Plus”, Materials Chemistry and Physics 211 pp302-311, 2018
17. S.A. Hosseini, S.M. Abbasi, K.Z. Madar, “The effect of boron and zirconium on microstructure and tensile properties of the wrought nickel-based superalloy ATI 718Plus”, Materials Science & Engineering A 712 pp780–789, 2018
18. C.N. Wei, H.Y. Bor, L. Chang, “The effects of carbon content on the microstructure and elevated temperature tensile strength of a nickel-base superalloy”, Materials Science and Engineering A 527 pp3741–3747, 2010
19. H.Y. Bor, C.G. Chao, and C.Y. Ma, “The influence of magnesium on carbide characteristics and creep behavior of the MAR-M247 superalloy,” Scripta Materialia, Vol. 38, No. 2, pp. 329-335, 1998.
20. S.Y. Lee, B.K. Kim, S.H. Lee, D.I. Kim, J.H. Shim, W.S. Jung, J.Y. Suh, “Formation of needle-like MC carbide at or near incoherent twin boundary in IN740H Ni-based superalloy” Journal of Alloys and Compounds 813 152222, 2020
21. Y. Tan, C. L. Ma, R. Tanaka, and J.-M. Yang, “High Temperature Deformation of ZrC Particulate-Reinforced Nb-Mo-W Composites” , Materials Transactions, Vol. 47, No. 6, pp. 1527-1531, 2006
22. B. Kursuncu, H. Caliskan, S. Y. Guven, P. Panjan, “Improvement of cutting performance of carbide cutting tools in milling of the Inconel 718 superalloy using multilayer nanocomposite hard coating and cryogenic heat treatment”, The International Journal of Advanced Manufacturing Technology 97 pp467–479, 2018
23. L.N. Wang, X.F. Sun, H.R. Guan, “Effect of melt heat treatment on MC carbide formation in nickel-based superalloy K465”, Results in Physics 7 pp2111–2117, 2017
24. R.Y. Hua, G.Y. Xiang, H.G. Xiang, “Characterization of M23C6 carbide precipitated at grain boundaries in a superalloy”, Metallography volume 22 pp47-55, January 1989
25. M.J. Donachie, S.J. Donachie, “Superalloys A Technical Guide”, ASM International Second Edition pp29-37, 2003
26. S.H. Lee, H.S. Na, K.W. Lee, Y. Choe, C.Y. Kang, “Microstructural Characteristics and M23C6 Precipitate Behavior of the Course-Grained Heat-Affected Zone of T23 Steel without Post-Weld Heat Treatment”, Metals, 9 March 2018
27. L. Jiang, R. Hu, H. Kou, J. Li, G. Bai, H. Fu, “The effect of M23C6 carbides on the formation of grain boundary serrations in a wrought Ni-based superalloy,” Materials Science and Engineering A, pp. 37-44, 2012
28. S.S. Handa, “Precipitation of Carbides in a Ni-based Superalloy”, University West, Department of Engineering Science pp5, June 30, 2014
29. M.J. Donachie, S.J. Donachie, “Superalloys A Technical Guide”, ASM International Second Edition pp29-32, 2003
30. 何維彬,熱處理對MAR-M247鎳基超合金單方向凝固之高溫機械性質影響,義守大學材料科學與工程學所論文,2013。
31. 顏嘉緯,單方向凝固CM247LC鎳基超合金添加不同比例鋁元素高溫氧化行為研究,義守大學材料科學與工程學所論文,2016。
32. 廖健鴻,薄慧雲,倪國裕,魏肇男,釕元素對鎳基超合金在中溫及高溫潛變性能影響之研究,鑄造工程學刊第41卷,第165期,pp. 24-30,2015。
33. M. Mansuri, S.M.M. Hadavi, E. Zare, “Effect of Al-Si Pack Cementation Diffusion Coating on High-Temperature Low-Cycle Fatigue Behavior of MAR-M247,” Metallurgical and Materials Transactions A, Volume 47, Issue 1, pp. 293-300, 2016。
34. M.Z. Yavorska, J. Sieniawski, R. Filip, “The influence of the chemical composition of superalloys on the oxidation resistance of aluminide coating,” Solid State Phenomena ISSN: 1662-9779, Vol. 227, pp.365-368, 2015.
35. 廖健鴻,錸元素添加對鎳基 Mar-M247 超合金顯微組織及機械性能之影響,交通大學材料科學與工程學系,2011
36. T. Hino, “Nickel-base single-crystal superalloys, method of manufacturing same and gas turbine high temperature parts made thereof,” US6673308 B2, 2004
37. J.H. Schneibel, Beyond Nickel-Base Superalloys, 2008.
38. R.C. Reed , The superalloys: fundamentals and applications, Cambridge, 2006
39. M.J. Donachie, S.J. Donachie, “Superalloys A Technical Guide”, ASM International Second Edition pp32-38, 2003
40. M. Pouranvari , A. Ekrami, A.H. Kokabi, “TLP bonding of cast IN718 nickel based superalloy: Process–microstructure–strength characteristics”, Materials Science & Engineering A 568 pp76-82, 2013
41. R.S. Moshtaghin, S. Asgari, “Growth kinetics of γ՛ precipitates in superalloy IN-738LC during long term aging”, Materials and Design 24 pp325–330, 2003
42. R.A. Stevens, P.E.J. Flewitt, “The effects of γ′ precipitate coarsening during isothermal aging and creep of the nickel-base superalloy IN-738”, Materials Science and Engineering volume 37 pp237-247, 1979
43. W.D. Callister, D.G. Rethwisch, Materials Science and Engineering, 8th Edition, John Wiley & Sons Pte Ltd, pp. 212-215, 2011
44. N. WANG, Z. WANG, K.T. AUST, U. ERB, “ Effect of grain size on mechanical properties of nanocrystalline materials”, Acta metall, mater. Vol. 43, No. 2. pp. 519 528, 1995
45. J. Coakley, D. Dye, “Lattice strain evolution in a high volume fraction polycrystal nickel superalloy”, Scripta Materialia 67 pp435-438, 2012
46. H.Y. Bor, C.G. Chao, and C.Y. Ma, ” The Effects of Mg Microaddition on the Mechanical Behavior and Fracture Mechanism of MAR-M247 Superalloy At Elevated Temperatures,” Metallurgical and materials transactiocs A, Volume 30A, p.551-561, 1999.
47. Y. Xu, L. Zhang, J. Li, X. Xiao, X. Cao, G. Jia, Z. Shen, “Relationship between Ti/Al ratio and stress-rupture properties in nickel-based superalloy”, Materials Science and Engineering A 544 pp 48– 53, 2012
48. M.J. Donachie, S.J. Donachie, “Superalloys A Technical Guide”, ASM International Second Edition pp35-36, 2003
49. T. J. Garosshen, T. D. Tillman and G. P. Mccarthy, “Effects of B, C and Zr on the structure and properties of a P/M nickel base superalloy ,” Metallurgica Transactions, vol. 18A, pp.69-77, 1987
50. H. E. Huang and C. H. Koo, “Effect of zirconium on microstructure and mechanical properties of fine- grain CM 247LC superalloy,” Metallurgica Transactions, vol. 45, no. 2, pp.554-561, 2004
51. J. Chen, J.H. Lee, C.Y. Jo, S.J. Choe, Y.T. Lee, “MC carbide formation in directionally solidified MAR-M247 LC superalloy”, Materials Science and Engineering A247 pp113–125, 1998
52. Y.L. Tsai, S.F. Wang, H.Y. Bor, Y.F. Hsu, “Effects of Zr addition on the microstructure and mechanical behavior of a fine-grained nickel-based superalloy at elevated temperatures,” Materials Science & Engineering A, Vol. 607, pp. 294-301, 2014
53. E. Cortes, A.B. Jacuinde, M. Rainforth, I. Mejia, A. Ruiz, N. Ortiz, J. Zuno, “Role of Titanium, Carbon, Boron, and Zirconium in Carbide and Porosity Formation during Equiaxed Solidification of Nickel-Based Superalloys”, Journal of Materials Engineering and Performance Volume 28(7) 4171, July 2019
54. M. Palumbo, D. Baldissin, L. Battezzati, O. Tassa, R. Wunderlich, H.-J. Fecht, R. Brooks, K. Mills, “Thermodynamic properties of CMSX-4 superalloy: results from the ThermoLab project”, Materials Science Forum, March 2006
55. H.B. Cheng, “Effects of Addition Aluminum and Titanium Elements on In-713LC, Addition Aluminum, Titanium and Zirconium Elements on Phase Change and Heat Treatment of MAR-M247 Nickel-based Superalloy”, Master Thesis, July 2020
56. Y.C. Tsai, “Effect of Aluminum Zirconium and Titanium Element Addition on Mechanical Properties of Nickel-based Superalloy”, Master Thesis, July 2020
57. J.J. Shia, X. Lia, Z.X. Zhanga, G.H. Cao, A.M. Russell, Z.J. Zhou, C.P. Li, G.F. Chen, “Study on the microstructure and creep behavior of Inconel 718 superalloy fabricated by selective laser melting”, Materials Science & Engineering A 765 (138282), 2019

58. A. Maa, D. Dye, R.C. Reed, “A model for the creep deformation behaviour
of single-crystal superalloy CMSX-4”, Acta Materialia 56 pp.1657–1670, 2008
59. L. Gong, B. Chen, Y. Yang, Z, Du, K. Liu, “Effect of N content on microsegregation, microstructure and mechanical property of cast Ni-base superalloy K417G”, Materials Science & Engineering A 701 pp.111–119, 2017
60. B. Ruttert, C. Meid, L.M. Roncery, I.L. Galilea, M. Bartsch, W. Theisen, “Effect of porosity and eutectics on the high-temperature low-cycle fatigue performance of a nickel-base single-crystal superalloy”, Scripta Materialia 155 pp.139–143, 2018

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top