跳到主要內容

臺灣博碩士論文加值系統

(44.222.64.76) 您好!臺灣時間:2024/06/17 08:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:廖崑傑
研究生(外文):LIAO, KUN-JIE
論文名稱:真空燒結法對添加Mo2C微粉之鈦鈮鈷合金的顯微組織與強化機制之研究
論文名稱(外文):Investigation of the Microstructure and Strengthening Mechanisms of Mo2C Powders Added to Ti-Nb-Co Alloy via Vacuum Sintering Process
指導教授:張世賢張世賢引用關係梁誠梁誠引用關係
指導教授(外文):CHANG, SHIH-HSIENLIANG, CHENG
口試委員:張世賢梁誠陳貞光黃國聰
口試委員(外文):CHANG, SHIH-HSIENLIANG, CHENGCHEN, JHEWN-KUANGHUANG, KUO-TSUNG
口試日期:2021-07-02
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:材料科學與工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:121
中文關鍵詞:粉末冶金碳化二鉬鈦基複合材料真空燒結鈦鈮鈷合金橫向破裂強度電子背向散射繞射
外文關鍵詞:Powder MetallurgyMo2CTitanium Matrix CompositesVacuum SinteringTi-Nb-Co AlloysTransverse Rupture StrengthEBSD
相關次數:
  • 被引用被引用:2
  • 點閱點閱:114
  • 評分評分:
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:0
鈦合金因為具有高比強度、優異的抗腐蝕性和低彈性模數,被廣泛使用於汽車、航太工業及生醫材料上。過去經常使用鑄造及後續的熱處理和機械加工來製備鈦合金,近年來則是改以粉末冶金技術代替,為鈦合金提供一個在低成本下發展及生產的機會,且此製程能生產形狀複雜的工件,以避免材料浪費,有效的降低生產成本。此外,添加碳化二鉬(Mo2C)可對鈦合金產生細晶強化與散佈強化的效果,提升鈦合金之機械性質,並形成鈦基複合材料,且因自發反應還原的鉬原子可做為β相的穩定元素,固溶至鈦基地中使其延性增加。因此,本實驗利用粉末冶金法之真空燒結製程進行鈦鈮鈷合金(Ti-Nb-Co Alloy)之製備,並以Mo2C作為強化相添加物,希望達到強化鈦鈮鈷合金之目的。
本實驗第一階段使用鈦粉、鈮粉及鈷粉三種純金屬粉末,分別配製成Ti-8Nb-2Co、Ti-8Nb-4Co和Ti-8Nb-6Co三種不同配比的鈦鈮鈷合金,於1200°C、1225°C、1250°C和1275°C之溫度下進行真空燒結,並持溫一小時。第二階段是以第一階段之最佳參數的鈦鈮鈷合金,分別添加1、3、5 wt%之Mo2C粉末作為強化相添加物,並在1240°C、1270°C、1300°C和1330°C之溫度下進行真空燒結,持溫一小時。最後,利用相對密度、視孔隙率、橫向破裂強度(Transverse Rupture Strength, TRS)和硬度來評估燒結後之機械性質,並以掃描式電子顯微鏡(SEM)和X光繞射(XRD)等方式進行顯微組織觀察與分析,同時利用電子背向散射繞射(Electron Back-Scattered Diffraction, EBSD)對第二階段之最佳參數的鈦合金進行相組成與結晶取向分析。
第一階段實驗結果顯示,於1250°C燒結一小時後之Ti-8Nb-4Co合金具有最佳的綜合性質,其相對密度達97.35%、硬度為67.89 HRA,橫向破裂強度達到1715.72 MPa。因此本實驗第二階段將選用Ti-8Nb-4Co合金,將Mo2C粉末作為強化相添加物,進一步改善機械性質並分析。研究結果顯示,添加3 wt% Mo2C之Ti-8Nb-4Co合金,於1300°C燒結一小時後,擁有較佳之相對密度98.02%,硬度及橫向破裂強度分別提升至69.63 HRA與1816.73 MPa。而EBSD結果顯示, Mo2C在燒結過程中會自發分解成TiC,並均勻散佈在鈦基地中,同時還原出來之鉬原子,則成為β相的穩定元素,固溶在鈦基地中。

Due to their high specific strength, excellent corrosion resistance, and low elastic modulus, titanium alloys are commonly used in automotive and aerospace industries, as well as in biomedical materials. In the past, casting and subsequent thermomechanical treatment were often used to prepare titanium alloys. However, this has been replaced by powder metallurgy (PM), which provides great opportunities for the development and production of high-performance titanium alloys at lower cost. In recent years, this process has been applied to produce complex-shaped components to avoid material loss. Furthermore, the addition of Mo2C can form titanium matrix composites (TMCs), which enhance the mechanical properties of titanium alloys through fine-grain and dispersion strengthening mechanisms. Meanwhile, the molybdenum atoms, which are reduced by a spontaneous reaction, can be used as a β-stabilizer element solid solution in the titanium matrix, and causes the ductility to increase slightly. Therefore, in this experiment, the vacuum sintering process of powder metallurgy was used to prepare Ti-Nb-Co alloy, and Mo2C was used as the strengthening phase additive, which was intended to achieve the purpose of strengthening the Ti-Nb-Co alloy.
In the first part of this study, three different powders (Ti, Nb and Co) were uniformly mixed and used to produce three different proportions of Ti-Nb-Co alloys: Ti-8Nb-2Co, Ti-8Nb-4Co, and Ti-8Nb-6Co alloys. Moreover, the Ti-Nb-Co alloys underwent a vacuum sintering process at various sintering temperatures of 1200°C, 1225°C, 1250°C, and 1275°C for 1 h. The second part of this study utilized the optimal sintered parameters of Ti-Nb-Co alloys and added 1, 3, and 5 wt% Mo2C powders as the strengthening phase additives. Subsequently, the alloys were vacuum sintered at 1240°C, 1270°C, 1300°C, and 1330°C for 1h. Finally, the mechanical properties of the Ti-Nb-Co alloys were evaluated by measuring the relative density, apparent porosity, transverse rupture strength (TRS), and hardness. The microstructures were examined using a scanning electron microscope (SEM) and X-ray diffraction (XRD). Furthermore, the crystallographic orientation of the structure of the optimal sintered parameters from the second part of the experiment was assessed using electron back-scattered diffraction (EBSD).
The first part of the experimental results show that the Ti-8Nb-4Co alloys sintered at 1250°C for 1 h had better comprehensive properties. The relative density reached 97.35%, the hardness and TRS reached 67.89 HRA, and 1715.72 MPa, respectively. Consequently, this study utilized Ti-8Nb-4Co alloys with added Mo2C powders for subsequent improvements and analysis. The results indicate that when 3 wt% Mo2C powders were added to the Ti-8Nb-4Co alloys, the specimen possessed optimal properties after sintering at 1300°C for 1 h. The relative density was 98.02%, the hardness and TRS enhanced to 69.63 HRA and 1816.73 MPa, respectively. The EBSD results represent that the Mo2C in situ decomposed into TiC during the sintering process and was evenly dispersed in the titanium matrix. Moreover, the reduced molybdenum atom acted as a β-phase stabilizing element and solid-solution in the titanium matrix.

摘 要 i
ABSTRACT iii
誌謝 v
目錄 vi
表目錄 ix
圖目錄 xi
第一章 緒論 1
1.1前言 1
1.2研究目的與動機 2
第二章 文獻回顧 3
2.1 鈦及鈦合金 3
2.1.1 鈦合金的特性 4
2.1.2 鈦合金的分類 8
2.1.3鈦合金組織結構 13
2.1.4鈦及鈦合金的應用 16
2.2 鈦基複合材料(Titanium Matrix Composites, TMCs) 20
2.3 粉末冶金(Powder Metallurgy, PM) 21
2.4 燒結原理 22
2.4.1 固相燒結 22
2.4.2 液相燒結(Liquid Phase Sintering) 24
2.5 真空燒結(Vacuum Sintering) 29
2.6 強化機制 30
2.6.1固溶強化(Solid Solution Strengthening) 30
2.6.2析出硬化(Precipitation Hardening) 33
2.6.3散佈強化(Dispersion Strengthening or Hardening) 34
2.6.4細晶強化(Fine Grain Size Strengthening) 34
2.6.5強化相碳化物 34
2.7 破斷面分析 37
2.7.1 韌窩破裂(Dimple rupture) 37
2.7.2 劈裂(Cleavage) 38
2.8 腐蝕行為 39
2.8.1 腐蝕形態 40
2.8.2 腐蝕測試 42
第三章 實驗流程與研究方法 43
3.1實驗步驟與流程 43
3.1.1 粉末配製 44
3.1.2 混合粉末 44
3.1.3 成形 45
3.1.4 真空燒結 47
3.2 性質分析 48
3.2.1雷射粒徑分析 48
3.2.2 X-ray繞射分析 48
3.2.3金相顯微組織觀察 49
3.2.4 SEM顯微組織結構與成分分析 50
3.2.5電子微探儀(EPMA) 51
3.2.6電子背向散射繞射(EBSD) 51
3.2.7體積收縮率、視孔隙率及燒結密度 53
3.2.8洛氏硬度試驗(Rockwell hardness test) 54
3.2.9橫向破裂強度量測 55
3.2.10動態電位極化試驗 56
3.2.11晶粒尺寸分析 57
第四章 結果與討論 58
4.1粉末分析 58
4.1.1原始基材粉末 58
4.1.2 強化相粉末 60
4.2 鈦鈮鈷合金之性質 60
4.2.1 混合後之粉末 61
4.2.2 燒結體特性分析 62
4.2.3 微觀組織與結構分析 67
4.2.4 機械性質分析 75
4.2.5腐蝕特性分析 82
4.2.6 Ti-8Nb-xCo合金性質之小結 84
4.3鈦鈮鈷合金添加Mo2C後之性質 85
4.3.1 混合後之Ti-8Nb-4Co-xMo2C粉末 85
4.3.2添加Mo2C後之燒結體特性分析 86
4.3.3 添加Mo2C後微觀組織與結構分析 90
4.3.4 添加Mo2C後之機械性質分析 105
4.3.5 添加Mo2C後之腐蝕特性分析 110
4.3.6 添加Mo2C後Ti-8Nb-4Co合金性質之小結 112
第五章 結論 113
參考文獻 115
[1]趙永慶,陳永楠,張學敏,曾衛東,王磊,鈦合金相變及熱處理,中國:中南大學出版社,2012。
[2]黃坤祥,粉末冶金學,台灣:中華民國粉末冶金協會,2014。
[3]洪胤庭,「純鈦及鈦合金特性及製程介紹」,中工高雄會刊,第21卷,第1期,高雄,2013,第12-22頁。
[4]林翠、杜楠,鈦合金選用與設計,中國:化學工業出版社,2014。
[5]S. L. Wei, L. J. Huang, X. T. Li, Y. Jiao, W. Ren and L. Geng, "Network-strengthened Ti-6Al-4V/(TiC+TiB) composites: powder metallurgy processing and enhanced tensile properties at elevated temperatures," Metallurgical and Materials Transactions A, vol. 50, 2019, pp. 3629-3645.
[6]張翥,葉鎮焜,林東耘,鈦業綜合技術,北京:冶金工業出版社,2011。
[7]E. Delvat, D. M. Gordin, T. Gloriant, J. L. Duval and M. D. Nagel, "Microstructure, mechanical properties and cytocompatibility of stable beta Ti-Mo-Ta sintered alloys," Journal of the mechanical behavior of biomedical materials, vol. 1, no. 4, 2008, pp. 345-351.
[8]賴耿陽,金屬鈦理論與應用,北京:復漢出版社,2003,第32-40頁。
[9]A. H. Hussein, M. A. H. Gepreel, M. K. Gouda, A. M. Hefnawy and S. H. Kandil, "Biocompatibility of new Ti-Nb-Ta base alloys," Materials Science and Engineering C, vol. 61, 2016, pp. 574-578.
[10]Y. Liu, K. Li, H. Wu, M. Song, W. Wang, N. Li and H. Tang, "Synthesis of Ti-Ta alloys with dual structure by incomplete diffusion between elemental powders, " Journal of the mechanical behavior of biomedical materials, vol. 51, 2015, pp. 302-312.
[11]Y. H. Li, C. Yang, H. D. Zhao, S. G. Qu, X. Q. Li and Y. Y. Li, "New developments of Ti-based alloys for biomedical applications," Materials, vol. 7, 2014, pp. 1709-1800.
[12]V. A. Joshi, Titanium alloys: an atlas of structures and fracture features, United States of America, Taylor & Francis Group, 2006, pp. 11-14.
[13]G. Lütjering and J. C. Williams, Titanium 2nd Edition, Springer, 2007, Ch.5, pp. 203-245.
[14]鄒豔梅、張凤霞,鈦合金製備及應用,冶金工業出版社,2019。
[15]趙永慶、辛社偉、陳永楠、毛小南,新型合金材料-鈦合金,中國:中國鐵道出版社,2017。
[16]H. J. Yi, J. W. Kim, Y. L. Kim and S. Shin, "Effects of cooling rate on the microstructure and tensile properties of wire-Arc additive manufactured Ti–6Al–4V Alloy," Metals and Materials International, vol. 26, 2020, pp. 1235-1246.
[17]洪稜貽,真空燒結法對添加不同碳化物之鈦鉬鈷合金的微觀組織與強化機制探討,碩士論文,臺北科技大學材料科學與工程研究所,台北,2017。
[18]C. Leyens and M. Peters, Titanium and Titanium Alloys, WILEY-VCH, 2003, pp. 7.
[19]R. Dabrowski, "The kinetics of phase transformations during continuous cooling of Ti6Al4V alloy from the diphase α + β range," Archives of Metallurgy and Materials, vol. 56, 2011, pp. 217-221.
[20]X. S. Zhang, Y. J. Chen and J. L. Hu, "Recent advances in the development of aerospace materials, "Progress in Aerospace Sciences, vol. 97, 2018, pp. 25-26.
[21]B. Y. Chen and K. S. Hwang, "Sintered Ti-Fe alloys with in situ synthesized TiC dispersoids," Materials and Design, vol. 60, 2014, pp. 193-197.
[22]S. Yan, G. L. Song, Z. Li, H. Wang, D. Zheng, F. Cao, M. Horynova, M. S. Dargusch and L. Zhou, "A state-of-the-art review on passivation and biofouling of Ti and its alloys in marine environments," Journal of Materials Science & Technology, vol. 34, 2018, pp. 421-435.
[23]R. Schmidt , S. Pilz, I. Lindemann, C. Damm, J. Hufenbach, A. Helth, D. Geissler, A. Henss, M. Rohnke, M. Calin, M. Zimmermann, J. Eckert, M. H. Lee and A. Gebert, "Powder metallurgical processing of low modulus β-type Ti-45Nb to bulk and macro-porous compacts, "Powder Technology, vol. 322, 2017, pp. 393-401.
[24]J. Liu, L. Chang, H. Liu, Y. Li, H. Yang and J. Rua, "Microstructure, mechanical behavior and biocompatibility of powder metallurgy Nb-Ti-Ta alloys as biomedical material," Materials Science & Engineering, vol. 71, 2017, pp.512-519.
[25]M. Norouzpour, Titanimun, University of Victoria, Derrick Hellings, 2012 https://slideplayer.com/slide/3809344/,(accessed 2021-6-20)。
[26]Y. Liu, S. H. Xu, X. Wang, K. Y. Li, B. Liu, H. Wu and H. P. Tang, "Ultra-High Strength and Ductile Lamellar-Structured Powder Metallurgy Binary Ti-Ta Alloys,The Minerals, "Metals & Materials Society, vol. 68, no. 3, 2016, pp. 899-907.
[27]R. Dong, J. Li, H. Kou, J. Fan, B. Tang and M. Sun, "Precipitation behavior of α phase during aging treatment in a β-quenched Ti-7333, "Materials Characterization, vol. 140, 2018, pp. 275-280.
[28]曾婉如,「鈦金屬市場現況與應用商機」,中工高雄會刊,第21卷,第1期, 2013,第41-46頁。
[29]侯貫智,「汽車用鈦合金發展現況」,金屬中心-產業評析,2007,第2頁。
[30]周連在,鈦材料及其應用,台灣:冶金工業出版社,2008。
[31]Z. Yan, F. Chen, Y. Cai, J. Yin and Y. Zheng, "Preparation and properties of Ti-4.5Al-6.8Mo-1.5Fe alloy by high-velocity compaction," Powder Technology, vol. 246, 2013, pp. 345-350.
[32]杭州德靈電子商務有限公司,工程材料,中國氣體分離設備商務網,2001年,九章四節。
[33]呂凱文,利用真空燒結法探討鈦鉭鐵合金的微觀組織與強化機制,碩士論文,臺北科技大學材料科學與工程研究所,台北,2018。
[34]崔占全、王昆林、吳潤,金屬學與熱處理,北京:北京大學出版社,2010,第336-339頁、第435-436頁。
[35]M. Balog, P. Krizik, O. Bajana, T. Hu, H. Yang, J. M. Schoenung and E. J. Lavernia, "Influence of grain boundaries with dispersed nanoscale Al2O3 particles on the strength of Al for a wide range of homologous temperatures," Journal of Alloys and Compounds, vol. 772, 2019, pp. 472-481.
[36]M. D. Hayat, H. Singh, Z. He and P. Cao, "Titanium metal matrix composites: An overview," Composites Part A: Applied Science and Manufacturing, vol. 121, 2019, pp. 418-438.
[37]徐昱瑄,真空燒結法製備添加Mo2C微粉之鈦鉭銅合金的微觀組織與強化機制之探討,碩士論文,臺北科技大學材料科學與工程研究所,台北,2020。
[38]H. Tanaka, A. Yamamoto, J. Shimoyama, H. Ogino and K. Kishio, "Strongly connected ex-situ MgB2 polycrystalline bulks fabricated by solid-state self-sintering," Superconductor Science and Technology, vol. 25, 2012, 115022.
[39]R. M. German, "Coarsening in sintering: grain shape distribution, grain size distribution, and grain growth kinetics in solid-pore systems," Critical Reviews in Solid State and Material Sciences, vol. 35, 2010, pp. 263-305.
[40]S-J. L. Kang, Sintering Densification Grain Growth and Microstructure, Elsevier Butterworth-Heinemann, 2005, pp. 4-5.
[41]R. M. German, P. Suri and S. J. Park, "Review: liquid phase sintering," Journal of Materials Science, vol. 44, 2009, pp. 1-39.
[42]梁誠,張世賢,「熱均壓強化之完全緻密型粉末冶金零件」,粉末冶金會刊,第二十七卷,第四期,2002,第261-270頁。
[43]阮建明、黃培云主編,粉末冶金原理,北京市:機械工業出版社,2012,第221-223頁,第245-263頁。
[44]翁承郁,真空燒結法對添加Cr3C2微粉之鈦銅鈮合金的顯微組織與強化機制之探討,碩士論文,臺北科技大學材料科學與工程研究所,台北,2020。
[45]梁哲瑄,真空燒結法製備添加TiB2及Mo2C微粉之鈦鉭鎳合金的微觀組織與強化機制探討,碩士論文,臺北科技大學材料科學與工程研究所,台北,2019。
[46]F. C. Campbell, Phase Diagrams: Understanding the Basics, United States of America: ASM International, 2012.
[47]王心慈,真空燒結法對添加不同碳化物之鈦鎳鉻合金的微觀組織與強化機制探討,碩士論文,臺北科技大學材料科學與工程研究所,台北,2016。
[48]V. N. Moiseyev, Titanium Alloys Russian Aircraft and Aerospace Applications, Taylor & Francis, 2006, Ch.1, pp. 9-13.
[49]王瑋德,真空燒結法對添加不同碳化物之鈦鎳鉬合金的微觀組織與強化機制,碩士論文,臺北科技大學材料科學與工程研究所,台北,2015。
[50]刘海平,刘伟东,屈 华,刘斯琦,「TC4 合金滲硼層TiB和TiB2價電子結構與滲層硬化」,稀有金屬材料與工程,2015,第44卷第5期,第1139-1143頁。
[51]L. S. Macedo, R. R. Oliveira Jr., T. van Haasterecht, V. T. da Silvaa and H. Bitter, "Influence of synthesis method on molybdenum carbide crystal structure and catalytic performance in stearic acid hydrodeoxygenation, "Applied Catalysis B: Environmental, vol. 241, 2019, pp81-88.
[52]Y. Liu, L. F. Chen, H. P. Tang, C. T. Liu, B. Liu and B. Y. Huang, "Design of powder metallurgy titanium alloys and composites," Materials Science and Engineering A, vol. 418, 2006, pp. 25-35.
[53]S. R. Shatynski, "The thermochemistry of transition metal carbides," Oxidation of Metals, vol. 13, 1979, pp. 105-118.
[54]鐘群鵬、趙子華,斷口學,高等教育出版社,2006。
[55]I. Konovalenko, P. Maruschak and O. Prentkovskis, "Automated method for fractographic analysis of shape and size of dimples on fracture surface of high-strength titanium alloys," Metals, vol. 8, no. 3, 2018, pp. 1-13.
[56]曾傑享,鐵-9鋁-30錳-1.6碳合金顯微結構與機械性質,碩士論文,國立交通大學材料科學與工程研究所,新竹,2005。
[57]A. Kovalev and D. L. Wainstein, Design simulation of kinetics of multicomponent grain boundary segregations in the engineering steels under quenching and tempering, Physical Metallurgy Institute, Moscow, Russia, 2003, Ch. 2, pp. 12.
[58]楊東、郭金明,「鈦合金的腐蝕機理及耐蝕鈦合金的發展現狀」,鈦工業進展,第二十八卷,第二期,2011,第4-7頁。
[59]莊東漢,材料破損分析,五南圖書出版有限公司,2007,第10、11章,第340-440頁。
[60]蔡松雨,「熱腐蝕簡介」,華藝線上圖書館-防蝕工程,第一卷,第九期,1987,第26-33頁。
[61]熊楚強、王月,電化學,台北:新文京開發股份有限公司,2008,第414-422頁。
[62]祥勝機械工業股份有限公司,http://www.hsm.com.tw/.,(accessed 2020-5-20)。
[63]洪英傑、郭育秀,「電子背向散射繞射技術最新發展」,國家奈米元件實驗室奈米通訊,第21卷,第4期,2014,第8 -13頁。
[64]陳忠偉,楊延清,航空材料EBSD技術,北京,國防工業出版品,2016,第三章,第38-59頁。
[65]H. Paqueton and J. Ruste, "Microscopie électronique à balayage - images, appli-cations et développements," Techniques de l’Ingénieur, 2006, pp. 866.
[66]陳厚光、張立,「掃描式電子顯微鏡中之背向電子繞射分析技術」,科儀新知,第二十七卷,第六期,2006。
[67]ASTM C830, Standard Test Methods for Apparent Porosity, Liquid Absorption, Apparent Specific Gravity, and Bulk Density of Refractory Shapes by Vacuum Pressure, Designation.
[68]ASTM B311-13, Standard Test Method for Density of Powder Metallurgy (PM) Materials Containing Less Than Two Percent Porosity.
[69]ASTM E18-15, Standard Test Methods for Rockwell Hardness of Metallic Materials.
[70]ASTM B528-12, Standard Test Method for Transverse Rupture Strength of Powder Metallurgy (PM) Specimens.
[71]ASTM G59-97, Standard Test Method for Conducting Potentiodynamic Polarization Resistance Measurements.
[72]ASTM E112-13, Standard Test Methods for Determining Average Grain Size.
[73]M. J. Torkamany, F. M. Ghaini, R. Poursalehi, "Dissimilar pulsed Nd: YAG laser welding of pure niobium to Ti–6Al–4V," Materials & Design, vol. 53, 2014, pp. 915-920.
[74]Y. Xue, H. M. Wang, "Microstructure and dry sliding wear resistance of CoTi intermetallic alloy," Intermetallics, vol. 17, 2009, pp. 89-97.
[75]X. H. Shi, W. D. Zeng, C. L. Shi, H. J. Wang and Z. Q. Jia, "The fracture toughness and its prediction model for Ti-5Al-5Mo-5V-1Cr-1Fe titanium alloy with basket-weave microstructure," Journal of Alloys and Compounds, vol. 632, 2015, pp. 748-755.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊