跳到主要內容

臺灣博碩士論文加值系統

(44.222.64.76) 您好!臺灣時間:2024/06/17 10:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:何勝裕
研究生(外文):HE, SHENG-YU
論文名稱:碳纖維布基材應用在鋰離子電池矽負極電化學性能之研究
論文名稱(外文):Carbon cloth as conductive matrix for applications on the anodes of Li-Si batteries
指導教授:陳貞光李嘉甄
指導教授(外文):CHEN, JHEWN-KUANGLI, CHIA-CHEN
口試委員:陳貞光李嘉甄陳柏宇
口試委員(外文):CHEN, JHEWN-KUANGLI, CHIA-CHENCHEN, PO-YU
口試日期:2021-07-26
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:材料科學與工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:32
中文關鍵詞:鋰離子電池矽負極分散劑奈米碳管碳纖維布
外文關鍵詞:Lithium-ion batterySilicon anodeDispersantCarbon nanotubesCarbon fiber cloth
相關次數:
  • 被引用被引用:0
  • 點閱點閱:124
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著科技的進步,許多高科技產品已成為生活中不可或缺的部分,例如:智慧型手機、平板電腦、電動機車等,因此小型及高能量密度電池的需求越來越高,而鋰離子電池近年來也成為電池領域中研究的熱門項目之一。如何提高能量密度、提升循環壽命、改善電池穩定性等,為該領域主要的研究重點。其中矽近年來被認為是下一個最具有潛力的負極材料之一,具有很高的理論電容量達 4200 mAh/g 以及蘊含量豐富、容易取得等優點。然而,矽本身導電性差,而且在充放電過程中會發生劇烈的體積膨脹 (320%) ,造成矽負極的破損,導致電容嚴重的衰退及短路,這些因素使得鋰矽電池在發展中受阻,造成至今仍然無法商業化的主要因素。本研究利用具有柔性的 3D 結構碳纖維布將其取代傳統銅箔而製備成矽負極,其特殊的 3D 結構不僅擁有容納矽在充放電過程中體積劇烈膨脹的空間,進而改善傳統矽負極破裂的問題,也能提供鋰離子更多的傳導路徑提升其導電性。另外,本實驗將使用奈米碳管 (CNT) 當作矽負極漿料的助導碳,由於奈米碳管特殊結構與形狀,使鋰離子不僅能嵌入於管的內部空間,也能嵌入於外表面,與傳統奈米石墨 Super-p 相比能儲存更多的鋰離子,進而提升電容量。然而,奈米碳管本身表面積大非常容易造成團聚現象,導致製備矽負極時漿料分散不均而影響電性表現。為了解決此問題,在實驗中分別將奈米碳管添加於不同分散劑進行分散測試,透過沉降測試得知添加 polyvinyl pyrrolidone (PVP) 分散劑對於奈米碳管的分散效果為最佳,當添加量比例為 CNT:PVP = 2:1 所製備的矽負極經過 150 次充放電測試後仍有良好的電容保持率為 99%。
With the advancement in technology, high-tech products such as smartphones, tablets, and electric motorcycles have become an integral part of the day-to-day life. Consequently, the demand for compact high energy density batteries rises, thereby making Lithium-ion batteries (LIBs) the prime research focus in the battery industry; the research on LIBs aims to enhance the energy density, extend cycle life, and improve battery stability. Among all the potential LIBs anode materials, recently, silicon has been considered as one of the most promising next-generation candidates owing to its exceptional theoretical capacity of 4200 mAh/g, resource abundance, and accessibility. Nevertheless, the poor electrical conductivity of silicon and its drastic volume expansion (320%) during charging and discharging tend to compromise the anode, thereby causing severe capacitance degradation and internal short circuit. These safety concerns have hindered the development of lithium-silicon batteries and restricted its commercial application. In this study, a flexible three-dimensional (3D) carbon fiber structure is employed to replace the conventional copper foil in the silicon anode. The designed 3D structure not only provides space for Si expansion during lithiation and delithiation, which avoids the anode pulverization, but also facilitates the conductivity by offering more conductive pathways for the lithium ions. Furthermore, this study utilizes carbon nanotubes (CNT) as conductive agent fo the preparation of silicon anode slurries. The special structure and shape of the CNT allows the lithium ions to be embedded not only within the tube but also on the outer surface. As a result, more lithium ions can be stored in the new design compared to the conventional nano-graphite Super-p, thereby yielding higher electrical capacity. However, the large surface area of CNTs can lead to agglomeration, resulting in non-uniform slurry distribution during silicon anode preparation, which affects the electrical performance. To address this issue, CNTs were added with different dispersants for dispersion tests. Sedimentation tests have shown that the dispersant polyvinyl pyrrolidone has the best dispersion effect. When the silicon anode is prepared in a ratio of CNT:PVP = 2:1, capacitance retention of 99% is observed after 150 charge/discharge tests.
摘要 i
ABSTRACT iii
謝誌 v
目錄 vi
圖表目錄 viii
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 1
第二章 文獻回顧 3
2.1 鋰離子電池原理簡介 3
2.2 負極材料 4
2.2.1 石墨負極材料 4
2.2.2 矽負極材料 5
2.2.3 矽負極鋰化機制 5
2.3 改善矽膨脹造成電容衰退的辦法 6
2.3.1 矽奈米線 6
2.3.2 核殼結構 7
2.3.3 多孔複合物 8
2.4 多孔材料 8
2.4.1 直接發泡法 9
2.4.2 犧牲模板法 9
2.4.3 拓印法 10
第三章 實驗方法與步驟 11
3.1 樣品製備與實驗流程 11
3.1.1 電極製備方法 11
3.1.2 電解液之製備 12
3.1.3 組裝電池 12
3.2 實驗分析儀器 13
3.2.1 X-ray 繞射光譜儀 (XRD) 13
3.2.2 掃描式電子顯微鏡 (SEM) 13
3.2.3 穿透式電子顯微鏡 (TEM) 14
3.2.4 能量色散X射線分析儀 (EDS) 15
3.2.5 電池充放電測試機 16
3.2.6 循環伏安法 16
3.2.7 交流阻抗法 17
第四章 結果與討論 18
4.1 分散劑對於矽負極漿料之影響 18
4.2 漿料均勻性對碳纖維布之影響 19
4.3 碳纖維布塗佈後之顯微結構分析 20
4.4 X-ray 繞射圖譜分析 21
4.5 穿透式電子顯微鏡分析 22
4.6 CV 循環伏安法 22
4.7 交流阻抗測試 23
4.8 碳纖維布矽負極循環壽命影響 24
4.9 碳纖維布矽負極不同循環速率之影響 26
4.10 碳纖維布矽負極鋰化前後表面形貌分析 26
第五章 結論 28
參考文獻 29
附錄 32

1.S. Li, Y.-M. Liu, Y.-C. Zhang, Y. Song, G.-K. Wang, Y.-X. Liu, Z.-G. Wu, B.-H. Zhong, Y.-J. Zhong, X.-D. Guo, A review of rational design and investigation of binders applied in silicon-based anodes for lithium-ion batteries, J. Power Sources 485 (2021) 229331.
2.S. Goriparti, E. Miele, F.D. Angelis, E.D. Fabrizio, R.P. Zaccaria, C. Capiglia, Review on recent progress of nanostructured anode materials for Li-ion batteries, J. Power Sources 257 (2014) 421–443.
3.B. Dunn, H. Kamath, J.-M. Tarascon, Electrical energy storage for the grid: A battery of choices, Science 334 (2011) 928–935.
4.M. Yamagataa, N. Nishigakia, S. Nishishitaa, Y. Matsuia, T. Sugimotoa, M. Kikutac, T. Higashizaki, M. Konob, M. Ishikawa, Charge–discharge behavior of graphite negative electrodes inbis(fluorosulfonyl)imide-based ionic liquid and structural aspects oftheir electrode/electrolyte interfaces, Electrochim. Acta 110 (2013) 181–190.
5.W.U. Rehman, H. Wang, R.Z.A. Manj, W. Luo, J. Yang, When silicon materials meet natural sources: opportunities and challenges for low-cost lithium storage, Small 17 (2021) 1904508.
6.H. Wu, Y. Cui, Designing nanostructured Si anodes for high energy lithium ion batteries, Nano Today 7 (2012) 414–429.
7.M. Ge, C. Cao, G.M. Biesold, C.D. Sewell, S.-M. Hao, J. Huang, W. Zhang, Y. Lai, Z. Lin, Recent advances in silicon-based electrodes: from fundamental research toward practical applications, Adv. Mater. 33 (2021) 2004577.
8.M.A. Azam, N.E. Safie, A.S. Ahmad, N.A. Yuza, N.S.A. Zulkifli, Recent advances of silicon, carbon composites and tin oxide as new anode materials for lithium-ion battery: A comprehensive review, J. Energy Storage 33 (2021) 102096.
9.N. Harpak, G. Davidi, Y. Melamed, A. Cohen, F. Patolsky, Self-catalyzed vertically aligned carbon nanotube−silicon core−shell array for highly stable, high-capacity lithium-ion batteries, Langmuir 36 (2020) 889–896.
10.N. Liu, H. Wu, M.T. McDowell, Y. Yao, C. Wang, Y. Cui, A yolk-shell design for stabilized and scalable Li-ion battery alloy anodes, Nano Lett. 12 (2012) 3315–3321.
11.F. Di, N. Wang, L. Li, X. Geng, H. Yang, W. Zhou, C. Sun, B. An, Coral-like porous composite material of silicon and carbon synthesized by using diatomite as self-template and precursor with a good performance as anode of lithium-ions battery, J. Alloys Compd. 854 (2021) 157253.
12.B.D. Zdravkov, J.J. Cerm´ak, M. Sefara, J. Janku, Pore classification in the characterization of porous materials: A perspective, Cent. Eur. J. Chem. 5 (2007) 385–395.
13.A.R. Studart, U.T. Gonzenbach, E. Tervoort, L.J. Gauckler, Processing routes to macroporous ceramics: A review, J. Am. Ceram. Soc. 89 (2006) 1771–1789.
14.T. Ohji, M. Fukushima, Macro-porous ceramics: processing and properties, Int. Mater. Rev. (2012) 57 115-131.
15.Q. Shi, J. Zhou, S. Ullah, X. Yang, K. Tokarska, B. Trzebicka, H.Q. Ta, M.H. Rümmeli, A review of recent developments in Si/C composite materials for li-ion batteries, Energy Stor. Mater. 34 (2021) 735–754.
16.M.A. Sutton, N. Li, D.C. Joy, A.P. Reynolds, X. Li, Scanning electron microscopy for quantitative small, Exp. Mech. 47 (2007) 775–787.
17.N. Marturi, Vision and visual servoing for nanomanipulation and nanocharacterization in scanning electron microscope, (2013).
18.J. Ayache, L. Beaunier, J. Boumendil, G. Ehret, D. Laub, The different observation modes in electron microscopy, (2010).
19.B. Li, F. Yao, J.J. Bae, J. Chang, M.R. Zamfir, D.T. Le, D.T. Pham, H. Yue, Y.H. Lee, Hollow carbon nanospheres/silicon/ alumina core-shell film as an anode for lithium-ion batteries, Sci. Rep. 5 (2015) 7659.
20.F. Saidani, F.X. Hutter, R.-G. Scurtu, W. Braunwarth, J.N. Burghartz, Lithium-ion battery models: a comparative study and a model-based powerline communication, Adv. Radio Sci. 15 (2017) 83.
21.T. Sato, R. Ruch, Stabilization of colloidal dispersions by polymer adsorption, Marcel Dekker Inc., New York City (1980).
22.C.C. Li, S.J. Chang, C.W. Wu, C.W. Chang, R.H. Yu, Newly designed diblock dispersant for powder stabilization in water-based suspensions, J. Colloid Interface Sci. 506 (2017) 180–187.
23.A. Mukanova, A. Nurpeissova, S.S. Kim, M. Myronov, Z. Bakenov, N-type doped silicon thin film on a porous Cu current collector as the negative electrode for Li-ion batteries, ChemistryOpen 7 (2018) 92–96.
24.B. Jerliu, E. Hüger, L. Dörrer, B.K. Seidlhofer, R. Steitz, M. Horisberger, H. Schmidt, Lithium insertion into silicon electrodes studied by cyclic voltammetry and operando neutron reflectometry, Phys. Chem. Chem. Phys. 20 (2018) 23480–23491.
25.H. Deng, F. Qiu, X. Li, H. Qin, S. Zhao, P. He, H. Zhou, A Li-ion oxygen battery with Li-Si alloy anode prepared by a mechanical method, Electrochem. Commun. 78 (2017) 11–15.

電子全文 電子全文(網際網路公開日期:20260906)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊