(3.236.214.19) 您好!臺灣時間:2021/05/09 22:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:何權倫
研究生(外文):HE, CYUAN-LUN
論文名稱:新穎可拉伸自我修復共聚高分子合成與其新世代多功能智慧光電元件的應用
論文名稱(外文):Synthesis of novel stretchable self-healing copolymers and application of new-generation multifunctional smart optoelectronic devices
指導教授:郭霽慶
指導教授(外文):KUO, CHI-CHING
口試委員:林家弘江偉宏卓家榮
口試委員(外文):LIN, JA-HONCHIANG, WEI-HUNGCHO, CHIA-JUNG
口試日期:2020-10-20
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:分子科學與工程系有機高分子碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:109
語文別:中文
論文頁數:71
中文關鍵詞:自我修復共聚高分子白光LED背光顯示器導電電極柔性電子元件
外文關鍵詞:Self-healingCopolymerWhite light LED deviceElectrodeFlexible electronic device
相關次數:
  • 被引用被引用:0
  • 點閱點閱:52
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究使用雙(3-氨基丙基)封端聚二甲基矽氧烷(NH2-PDMS-NH2)、二苯基甲烷二異氰酸酯(MDI)與1,3,5-苯三甲醛(TFB)進行縮合聚合,合成出自我修復共聚合高分子(PDMS-MDIx-TFB1-x),調控MDI與TFB比例合成出一系列之自我修復共聚合高分子(不同MDI/TFB比例)(10/0、8/2、6/4、4/6、8/2、0/10)。
經由1H-NMR確認脲基團與亞胺基團形成,在化學位移6.92、7.62 ppm與化學位移8.15 ppm出現新訊號。利用FT-IR觀察出,隨著MDI比例增加時,由3300-3350 cm-1、1635-1645 cm-1分析-NH訊號增強,可表示產生氫鍵之官能基增加,隨著TFB比例增加時,由1650-1665 cm-1分析-C=N訊號增強,表示產生可逆共價鍵之官能基增加。由GPC量測分子量分布(材料的分子量大約4萬,PDI約1.5),然而,當PDI值過高時,分子鏈長度不均,造成自我修復基團分離後,不易進行重組而產生自我修復效果下降。由TGA曲線顯示TFB比例增加時,可提升熱穩溫定性(最高Td點為380℃)。DMA進行量測材料的Tg,Tg隨著TFB比例增加而下降,自我修復能力增強(表示高分子鏈越容易移動而彼此碰觸),因此較高比例的TFB有較好的自我修復效率。拉伸測試中,發現在室溫下3小時,材料的修復效率就可達到80%,在各種不同環境下也可進行自我修復。
本研究的應用:將自我修復高分子混摻鈣鈦礦量子點,其接觸角為103°具有疏水性,高分子材料可保護鈣鈦礦量子點不會受到水氣侵襲而失去光學性質,將此高分子/鈣鈦礦量子點的混合薄膜放入藍光LED芯片中,可製作出自我修復白光LED背光顯示器。此外,利用奈米銀線噴塗在高分子薄膜上,製作出自我修復導電電極,將聚芴高分子以旋轉塗佈於自我修復高分子,並製作成自我修復有機發光二極體。最後,我們將絕緣PET在兩端進行阻隔電極與發光層,改良自我修復發光二極體,貼覆於手指後進行彎曲,當電極與發光層接觸而通電後發亮,成功製作出自我修復柔性電子元件。

This study uses bis(3-aminopropyl) blocked polydimethylsiloxane (NH2-PDMS-NH2), diphenylmethane diisocyanate (MDI) and 1,3,5-benzenetricarbaldehyde (TFB) Carry out condensation polymerization to synthesize self-healing copolymer (PDMS-MDIx-TFB1-x), regulate the ratio of MDI and TFB to synthesize a series of self-healing copolymer (different MDI/TFB ratio) (10/0, 8/2, 6/4, 4/6, 8/2, 0/10).
The formation of urea groups and imine groups was confirmed by 1H-NMR, and new signals appeared at chemical shifts of 6.92, 7.62 ppm, and chemical shifts of 8.15 ppm. It was observed by FT-IR that as the ratio of MDI increases, the -NH signal analysis from 3300-3350 cm-1 and 1635-1645 cm-1 increases, which can indicate that the functional groups that generate hydrogen bonds increase. As the ratio of TFB increases Analyzed by 1650-1665 cm-1-C=N signal enhancement, which means that the functional groups that produce reversible covalent bonds increase. The molecular weight distribution is measured by GPC (the molecular weight of the material is about 40,000, and the PDI is about 1.5). However, when the PDI value is too high, the length of the molecular chain will be uneven, resulting in the separation of the self-healing group, which is difficult to recombine and produce a self-healing effect decline. The TGA curve shows that when the TFB ratio increases, the thermal stability, and temperature stability can be improved (the highest Td point is 380°C). DMA measures the Tg of the material. Tg decreases as the proportion of TFB increases, and the self-healing ability increases (indicating that the polymer chains are easier to move and touch each other), so a higher proportion of TFB has better self-healing efficiency. In the tensile test, it was found that the healing efficiency of the material can reach 80% in 3 hours at room temperature, and it can also heal itself in various environments.
The application of this research: The self-healing polymer is mixed with perovskite quantum dots, and its contact angle is 103°, which is hydrophobic. The polymer material can protect the perovskite quantum dots from being attacked by moisture and lose their optical properties. This polymer/perovskite quantum dot hybrid film is put into a blue LED chip to produce a self-healing white LED backlight display. In addition, a self-healing conductive electrode was made by spraying nano-silver wire on the polymer film, and the polyfluorene polymer was spin-coated on the self-healing polymer to make a self-healing organic light-emitting diode. Finally, we used insulated PET to block the electrode and the light-emitting layer at both ends to improve the self-healing light-emitting diode, and then bend it after attaching it to the finger. When the electrode is in contact with the light-emitting layer and energized, it glows, successfully fabricating the self-healing flexibility Electronic device.

目錄
摘要 i
ABSTRACT iii
目錄 v
表目錄 viii
圖目錄 ix
第一章 緒論 1
1.1 前言 1
1.2 研究動機 2
第二章 文獻回顧 3
2.1 自我修復材料 3
2.2 氫鍵型自我修復高分子彈性體 5
2.3 可逆共價鍵型自我修復高分子 7
2.5 雙重自我修復機制高分子 9
2.6 自我修復高分子之應用 11
2.7 LED芯片應用 13
2.8 聚芴Polyfluorene(PF)光電元件應用 15
2.9 柔性電子元件應用 16
第三章 實驗設備與流程 17
3.1 實驗設備 17
3.2 聚二甲基矽氧烷自我修復高分子(PDMS-MDIx-TFB1-x)合成 22
3.3實驗儀器與原理介紹 24
3.3.1 核磁共振光譜儀 (1H-NMR) 24
3.3.2 傅立葉轉換紅外光譜儀 (FT-IR) 25
3.3.3凝膠滲透層析儀 (GPC) 26
3.3.4 熱重分析儀 (TGA) 27
3.3.5動態熱機械分析儀 (DMA) 28
3.3.6萬能拉力試驗機 29
3.3.7 接觸角儀 (Contact angle) 30
3.3.8光學顯微鏡 (OM) 31
3.3.9場發式電子顯微鏡 (FE-SEM) 32
3.3.10紫外光-可見光光譜儀 (UV-Vis) 33
3.3.11 螢光光譜儀 (PL) 34
3.3.12 分光式輝度色度計 (PR-670) 35
3.4 樣品製備與實驗方法 36
3.4.1 自我修復高分子薄膜製備 36
3.4.2 結構分析 36
3.4.3 熱穩定性分析 37
3.4.4相對分子量分析 37
3.4.5玻璃轉移溫度分析 37
3.4.6 機械性質測試 37
3.4.7 表面結構分析 38
3.4.8 光學性質分析 38
3.5 實驗流程大綱 39
第四章 結果與討論 40
4.1 自我修復高分子修復機制 40
4.2 自我修復高分子結構鑑定 41
4.2.1 NMR圖譜分析 41
4.2.2 FT-IR光譜分析 43
4.2.3 GPC分子量鑑定 45
4.3 自我修復高分子物理性質分析 46
4.3.1 TGA熱穩定性分析 46
4.3.2 DMA動態熱機械分析 47
4.3.3 自我修復與機械性質分析 48
4.4 自我修復高分子之應用 52
4.4.1 自我修復高分子混摻鈣鈦礦量子點 52
4.4.2 自我修復鈣鈦礦量子點薄膜應用於背光顯示器 56
4.4.3 自我修復高分子應用於有機發光二極體(OLED) 58
4.4.4 自我修復高分子應用於柔性電子元件 61
第五章 結論 64
第六章 參考文獻 66


1.Chengbin Zhang, Wei Gao, Yuanjin Zhao, and Yongping Chen, Microfluidic generation of self-contained multicomponent microcapsules for self-healing materials. Appl. Phys. Lett. 2018, 113, 203702.
2.Qi Liu, Jiupeng Zhang*, Wolong Liu, Fucheng Guo, Jianzhong Pei , Cunzhen Zhu , Wenwu Zhang, Preparation and characterization of self-healing microcapsules embedding waterborne epoxy resin and curing agent for asphalt materials. Constr. Build. Mater.. 2018,183, 384-394.
3.Reza Najjar*, Morteza Akbari, Abdolreza Mirmohseni, Mirghasem Hosseini, Preparation and corrosion performance of healable waterborne polyurethane coatings containing isophoronediisocyanate loaded silica capsules. Prog. Org. Coat. 2017,104, 232-249.
4.T. E. Sadrabadi, S. R. Allahkaram*, N. Towhidi, Preparation and Property Investigation of Epoxy/Amine Micro/Nanocapsule Based Self-healing Coatings. Intern. Polymer Processing. 2018, 5, 721-730.
5.Katharina Urdla∗, Andreas Kandelbauer, Wolfgang Kern, Uwe Müller,Marion Thebault, Edith Zikulnig-Rusch, Self-healing of densely crosslinked thermoset polymers-a critical review. Prog. Org. Coat. 2017 104, 232–249.
6.Borui Zhang, Jun Ke, Jafer R. Vakil, Sean C. Cummings, Zachary A. Digby, Jessica L. Sparks, Zhijiang Ye, Mehdi B. Zanjani and Dominik Konkolewicz*, Dual-dynamic interpenetrated networks tuned through macromolecular architecture. Polym. Chem., 2019, 10, 6290–6304.
7.Shiwen Yanga, Xiaosheng Dua, Sha Deng, Jinghong Qiu, Zongliang Dua, Xu Chenga, Haibo Wang*, Recyclable and self-healing polyurethane composites based on Diels-Alder reaction for efficient solar-to-thermal energy storage. Chem. Eng. J.. 2020,398, 125654.
8.Fei Ji, Jinhui Li*, Guoping Zhang**, Wenjie Lan, Rong Sun, Ching-Ping Wong, Alkaline monomer for mechanical enhanced and self-healing hydrogels based on dynamic borate ester bonds. Polymer. 2019, 184, 121882
9.Brian B. Jing and Christopher M. Evans*, Catalyst-Free Dynamic Networks for Recyclable, Self-Healing Solid Polymer Electrolytes. J. Am. Chem. Soc. 2019, 141, 18932−18937.
10.Yulong Wang, Yaqiong Li, Jingjing Bai, Zhenzhong Li, and Guosheng Hu*, A Robust and High Self-Healing Efficiency Poly(Urea-Urethane) Based on Disulfide Bonds with Cost-Effective Strategy. Macromol. Chem. Phys. 2019, 220, 1900340
11.Xinpan Li, Ran Yu*, Yangyang He, Ying Zhang, Xin Yang, Xiaojuan Zhao and Wei Huang*, Self-Healing Polyurethane Elastomers Based on a Disulfide Bond by Digital Light Processing 3D Printing. ACS Macro Lett. 2019, 8, 1511−1516.
12.Jian Zhao, Rui Xu, Gaoxing Luo*, Jun Wub and Hesheng Xia*, Self-healing poly(siloxane-urethane) elastomers with remoldability, shape memory and biocompatibility, Polym. Chem., 2016, 7, 7278-7286.
13.Jiheong Kang, Donghee Son, Ging-Ji Nathan Wang, Yuxin Liu, Jeffrey Lopez, Yeongin Kim, Jin Young Oh, Toru Katsumata, Jaewan Mun, Yeongjun Lee, Lihua Jin, Jeffrey B.-H. Tok, and Zhenan Bao*, Tough and Water-Insensitive Self-Healing Elastomer for Robust Electronic Skin. Adv. Mater. 2018, 30, 1706846.
14.Yulong Wang, Yaqiong Li, Jingjing Bai, Zhenzhong Li, and Guosheng Hu*, A Robust and High Self-Healing Efficiency Poly(Urea-Urethane) Based on Disulfide Bonds with Cost-Effective Strategy. Macromol. Chem. Phys. 2019, 220, 1900340.
15.Miaomiao Li, Binghua Zhou, Quanqian Lyu, Lizhen Jia, Haiying Tan, Zhanjun Xie, Bijin Xiong, Zhigang Xue*, Lianbin Zhang* and Jintao Zhu*, Self-healing and recyclable photonic elastomers based on a water soluble supramolecular polymer. Mater. Chem. Front., 2019, 3, 2707-2715.
16.Minjie Fang, Dong Li, Hechun Lin, Chunhua Luo*, Ruijuan Qi, Hui Peng*, Flexible and recyclable conductive composite based on few-layered graphene with excellent self-healing capability. Eur. Polym. J. 2018, 108, 536-541.
17.Shipeng Chen, Nanxiang Zhang, Baohao Zhang, Bao Zhang* and Jian Song*, Multifunctional Self-Healing Ionogels from Supramolecular Assembly: Smart Conductive and Remarkable Lubricating Materials. ACS Appl. Mater. Interfaces 2018, 10, 44706-44715.
18.Yan Song, Yuan Liu, Tao Qi, and Guo Liang Li*, Towards Dynamic but Supertough Healable Polymers through Biomimetic Hierarchical Hydrogen-Bonding Interactions. Angew. Chem. Int. Ed. 2018, 57, 13838-13842.
19.Yinlei Lin and Guangji Li*, An intermolecular quadruple hydrogen-bonding strategy to fabricate self-healing and highly deformable polyurethane hydrogels. J. Mater. Chem. B, 2014, 2, 6878-6885.
20.Yunhua Chen, Wenhua Cheng, Lijing Teng, Min Jin, Bingheng Lu, Li Ren,* and Yingjun Wang*, Graphene Oxide Hybrid Supramolecular Hydrogels with Self-Healable, Bioadhesive and Stimuli-Responsive Properties and Drug Delivery Application. Macromol. Mater. Eng. 2018, 303, 1700660.
21.Chih-Chia Cheng,* Feng-Chih Chang, Jem-Kun Chen, Tzu-Yin Wang and Duu-Jong Lee, High-efficiency self-healing materials based on supramolecular polymer networks. RSC Adv., 2015, 5, 101148-101154.
22.Dandan Zhu, Qiang Ye, Xuemin Lu and Qinghua Lu*, Self-healing polymers with PEG oligomer side chains based on multiple H-bonding and adhesion properties. Polym. Chem., 2015, 6, 5086–5092.
23.Baolin Zhang, Ping Zhang, Hanzhi Zhang, Casey Yan, Zijian Zheng, Biao Wu, You Yu*, A Transparent, Highly Stretchable,Autonomous Self-Healing Poly(dimethylsiloxane) Elastomer. Macromol. Rapid Commun. 2017, 1700110.
24.Maxwell J. Robb and Jeffrey S. Moore*, A Retro-Staudinger Cycloaddition: Mechanochemical Cycloelimination of a β‑Lactam Mechanophore. J. Am. Chem. Soc. 2015, 137, 10946-10949.
25.Zhao Wei, Sharon Gerecht*, A self-healing hydrogel as an injectable instructive carrier for cellular morphogenesis. Biomaterials , 2018,185, 86-96.
26.Michael Kathan, Petr Kovar&cek, Christoph Jurissek, Antti Senf, Andre Dallmann, Andreas F. Thgnemann, and Stefan Hecht*, Control of Imine Exchange Kinetics with Photoswitches to Modulate Self-Healing in Polysiloxane Networks by Light Illumination. Angew. Chem. Int. Ed. 2016, 55, 13882-13886.
27.Xiu Hana, Xuanyu Menga, Ziheng Wub, Zhenghong Wua*, Xiaole Qia*, Dynamic imine bond cross-linked self-healing thermosensitive hydrogels for sustained anticancer therapy via intratumoral injection. Mater. Sci. Eng., C 2018, 93, 1064-1072.
28.Zhao Wei, Jian Hai Yang , Zhen Qi Liu , Feng Xu , Jin Xiong Zhou , Miklós Zrínyi , Yoshihito Osada , and Yong Mei Chen*, Novel Biocompatible Polysaccharide-Based Self-Healing Hydrogel. Adv. Funct. Mater. 2015, 25, 1352-1359.
29.Changhong Lin, Dekun Sheng, Xiangdong Liu, Shaobin Xu, Fance Ji, Li Dong,1,2 Yan Zhou, Yuming Yang, Coordination Bonds and Diels-Alder Bonds Dual Crosslinked Polymer Networks of Self-healing Polyurethane. Polym. Chem, 2019, 57, 2228-2234.
30.Sandra Schäfer and Guido Kickelbick*, Double Reversible Networks: Improvement of Self-Healing in Hybrid Materials via Combination of Diels-Alder Cross-Linking and Hydrogen Bonds. Macromolecules, 2018, 51, 6099-6110.
31.Guilherme Macedo R. Lima, Felipe Orozco, Francesco Picchioni, Ignacio Moreno-Villoslada, Andrea Pucci, Ranjita K. Bose*, Rodrigo Araya-Hermosilla*, Electrically Self-Healing ThermosetMWCNTs Composites Based on Diels-Alder and Hydrogen Bonds. Polymers, 2019, 11, 1885.
32.Yongsan Li, Lei Yang, Yuan Zeng, Yuwei Wu, Yen Wei, and Lei Tao*, Self-Healing Hydrogel with a Double Dynamic Network Comprising Imine and Borate Ester Linkages. Chem. Mater. 2019, 31, 5576-5583.
33.Xianzhang Wu, Jinqing Wang,* Jingxia Huang, and Shengrong Yang*, Robust, Stretchable, and Self-Healable Supramolecular Elastomers Synergistically Cross-Linked by Hydrogen Bonds and Coordination Bonds. ACS Appl. Mater. Interfaces 2019, 11, 7387-7396.
34.Hongshuang Guo, Yi Han, Weiqiang Zhao, Jing Yang*, Lei Zhang*, Universally autonomous self-healing elastomer with high stretchability. Nat. Commu.., 2020, 11, 2037.
35.Donghee Son, Jiheong Kang, Orestis Vardoulis, Yeongin Kim, Naoji Matsuhisa, Jin Young Oh, John WF To1, Jaewan Mun, Toru Katsumata, Yuxin Liu, Allister F. McGuire, Marta Krason, Francisco Molina-Lopez, Jooyeun Ham, Ulrike Kraft, Yeongjun Lee, Youngjun Yun , Jeffrey B.-H. Tok and Zhenan Bao*, An integrated self-healable electronic skin system fabricated via dynamic reconstruction of a nanostructured conducting network. Nat. Nanotechnol., 2018, 13, 1057-1065.
36. La Li, Zheng Lou, Di Chen, Kai Jiang, Wei Han* and Guozhen Shen*, Recent Advances in Flexible/Stretchable Supercapacitors for Wearable Electronics. Small 2018, 14, 1702829.
37.Hyeon Jun Sim, Hyunsoo Kim, Yongwoo Jang, Geoffrey M. Spinks, Sanjeev Gambhir, David L. Officer, Gordon G. Wallace, and Seon Jeong Kim*, Self-Healing Electrode with High Electrical Conductivity and Mechanical Strength for Artificial Electronic Skin. ACS Appl. Mater. Interfaces, 2019, 11, 46026-46033.
38.Chun Che Lin, Dai-Hua Jiang, Chi-Ching Kuo* Chia-Jung Cho, Yi-Hsuan Tsai, Toshifumi Satoh, and Chaochin Su, Water-Resistant Efficient Stretchable Perovskite-Embedded Fiber Membranes for Light-Emitting Diodes. ACS Appl. Mater. Interfaces, 2018, 10, 2210-2215.
39.Dai-Hua Jiang, Yi-Hsuan Tsai, Loganathan Veeramuthu, Fang-Cheng Liang, Lung-Chin Chen, Chun Che Lin, Toshifumi Satoh , Shih-Huang Tung, and Chi-Ching Kuo*, Novel ultra-stable and highly luminescent white light-emitting diodes from perovskite quantum dots-Polymer nanofibers through biaxial electrospinning. APL Mater., 2019, 7, 111105.
40.Dieter Neher*, Polyfluorene Homopolymers: Conjugated Liquid-Crystalline Polymers for Bright Blue Emission and Polarized Electroluminescence. Macromol. Rapid Commun. 2001, 22, 1365-1385.
41.Chih-Chun Jao, Jia-Rui Chang, Chia-Yu Ya, Wei-Cheng Chen, Chia-Jung Cho, Ja-Hon Lin, Yu-Cheng Chiu*, Ye Zhou and Chi-Ching Kuo*, Novel stretchable light-emitting diodes based on conjugated-rod block elastic-coil copolymers. Polym Int, 2020.
42.Dai-Hua Jiang, Yi-Chun Liao, Chia-Jung Cho, Loganathan Veeramuthu, Fang-Cheng Liang, Ting-Chieh Wang, Chu-Chen Chueh, Toshifumi Satoh*, Shih-Huang Tung*, and Chi-Ching Kuo*, Facile Fabrication of Stretchable Touch-Responsive Perovskite Light-Emitting Diodes Using Robust Stretchable Composite Electrodes. ACS Appl. Mater. Interfaces 2020, 12, 14408-14415.

電子全文 電子全文(網際網路公開日期:20251030)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔