跳到主要內容

臺灣博碩士論文加值系統

(44.221.73.157) 您好!臺灣時間:2024/06/17 23:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊安琪
研究生(外文):YANG, AN-CHI
論文名稱:二維鈣鈦礦材料摻雜金屬離子之合成與應用
論文名稱(外文):Synthesis and Application of Two-Dimensional Perovskite Doped Metal Ions
指導教授:林群哲
指導教授(外文):LIN, CHUN-CHE
口試委員:林家弘林嘉和趙宇強林群哲
口試委員(外文):LIN, JA-HONLIN, CHIA-HERCHAO, YU-CHIANGLIN, CHUN-CHE
口試日期:2021-07-16
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:分子科學與工程系有機高分子碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:93
中文關鍵詞:二維鈣鈦礦雙帶隙摻雜近紅外光
外文關鍵詞:2D perovskitedual bandgapdopingNear Infrared (NIR)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:141
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
二維(2D)Ruddlesden–popper(RP)有機–無機鹵化鈣鈦礦(Organic–inorganic halide perovskite;OI–HP)以有序地排列並結合有機陽離子鏈堆疊,具優異之光致發光量子效率(PLQYs)、出色之光源可調控性與環境穩定性。本研究利用簡易之水熱法合成2D OI–HP PEA2PbX4(PEA = C6H5C2H4NH3+;X = Br-、I-或兩者之組合),發現鈣鈦礦單晶因電子–聲子相互作用使表面/亞表面區域與內部缺陷晶格振動形成雙帶隙,形成本身激子放光與內部缺陷放光,導致光源性能受到限制。此外,利用溶劑修補晶體內部缺陷改善光譜,通過調節實驗參數改變晶體形貌,並使用固態研磨法摻雜錳與錫化合物之金屬離子,使離子之間能量轉移調控光譜,進而產生不同放光效果,有趣的是,藉由摻雜錫金屬離子與內部缺陷結合,其電子–電洞相互作用進而引起能量轉移,使光譜拉長至1,000 nm形成極寬之光譜。此多元之晶體放光系統,對於未來光電產業(例如:感測器、發光二極體與監控)具有無窮之潛力。
The two dimensional (2D) Ruddlesden–popper (RP) organic–inorganic halide perovskite (OI–HP) which is combined with inorganic octahedrons and stacking layers of organic cation chains, has a high photoluminescence quantum yields (PLQYs), easily tunable light emission, and high stability. In this study, a simple and low cost hydrothermal method is used to synthesize 2D OI–HP PEA2PbX4 (PEA = C6H5C2H4NH3+; X = Br-, I-, or a combination of both). For perovskite single crystals, the electron–phonon vibration to form a double band gap in the surface/subsurface region and defect lattice, which forms its own exciton emission and internal defect emission, resulting in limiting their light source performance.
It is interesting that a solvent (enthanol and toluene) can reduce the internal defects of the crystal and modify the emission spectra. Also the crystal morphology can be controlled by adjusting the experimental parameters, such as reaction temperature and time. The energy transfer between exction and dopants is observed clearly in Mn- and Sn-doped PEA2PbX4 compounds by the solid-state grinding method. The stagety is sueful for the multi-light emitting crystal system has infinite potential for optoelectronic industry (such as sensors, light-emitting diodes and monitoring) in the future.

摘 要 i
ABSTRACT ii
誌 謝 iv
目錄 v
圖目錄 ix
表目錄 xiv
第一章 緒論 1
1 前言 1
第二章 基本原理與文獻回顧 2
2.1 鈣鈦礦簡介 2
2.1.1 3D鈣鈦礦結構 2
2.1.2 2D鈣鈦礦結構 3
2.1.3 單層2D鈣鈦礦 5
2.1.4 單晶鈣鈦礦 5
2.2 金屬離子摻雜鈣鈦礦 8
2.2.1 2D鈣鈦礦摻雜錳離子 9
2.3 鈣鈦礦發光原理 13
2.3.1 光之應用 13
2.3.2 發光之種類 13
2.3.2.1 電致發光(Electroluminescence;EL) 14
2.3.2.2 光致發光(Photoluminescence;PL) 14
2.3.3 鈣鈦礦能隙 15
2.3.4 法蘭克–康頓原理(Franck–Condon principle) 16
2.3.5 斯托克斯位移 17
2.3.6 螢光與溫度關係 18
2.3.7 材料表面與內部放光 19
2.4 發光二極體 21
2.4.1 發光二極體之歷史 22
2.5 紅外光 23
2.6 植物生長 25
2.7 研究動機與目的 27
第三章 實驗藥品與儀器分析原理 28
3.1 實驗藥品 28
3.2 實驗方法 29
3.2.1 2D PEA2PbBr4鈣鈦礦晶體之合成 30
3.2.2 以金屬離子摻雜PEA2PbX4之合成 30
3.2.3 LED元件製作 30
3.3 儀器分析 31
3.3.1 X-Ray繞射分析儀(X-Ray diffractometer;XRD) 31
3.3.2 掃描電子顯微鏡(Scanning Electron Microscope;SEM) 33
3.3.3 能量色散X射線光譜儀(Energy dispersive spectroscopy;EDS) 34
3.3.4 紫外光-可見光吸收光譜儀(Ultraviolet–visible absorption spectroscopy;UV-Vis) 35
3.3.5 螢光光譜儀(Photoluminescence spectrometer;PL) 37
3.3.6 雷射光光譜儀 39
3.3.7 化學分析影像能譜儀(Electron Spectroscopy for chemical Analysis;XPS) 40
3.3.8 時間解析螢光光譜儀(Time-resolvedphotoluminescence;TRPL) 41
3.3.9 電致發光光譜儀(Electroluminescence spectrometer;EL) 43
3.3.10 顯微拉曼光譜儀(Micro-Raman Spectrum) 44
3.3.11 單光子&雙光子吸收光譜儀(One-photon&Two-photon Absorption Spectrum;OPA&TPA) 45
3.3.12 電子順磁共振光譜儀(Electron Paramagnetic Resonance;EPR) 47
第四章 結果與討論 50
4.1 2D PEA2PbX4鈣鈦礦之性質探討 50
4.1.1 2D PEA2PbX4鈣鈦礦合成之參數調控 50
4.1.2 2D PEA2PbX4鈣鈦礦之粉末繞射結構解析 51
4.1.3 2D PEA2PbX4鈣鈦礦之形貌與元素分析 52
4.1.4 2D PEA2PbX4鈣鈦礦之電子能譜儀分析 53
4.1.5 2D PEA2PbX4之光學性質鑑定 54
4.1.6 2D PEA2PbX4之多重帶隙來源解析 55
4.1.7 2D PEA2PbX4之時間解析螢光光譜分析 58
4.1.8 PEA2PbBr4與PEA2PbI4之PL量測判別帶隙 59
4.2 2D PEA2PbX4鈣鈦礦晶體之結構修補 61
4.2.1 修補之2D PEA2PbX4鈣鈦礦之晶體結構分析 62
4.2.2 修補之2D PEA2PbX4鈣鈦礦之光學性質鑑定 64
4.2.3 2D PEA2PbX4結構修補之溶劑選擇性 66
4.3 2D PEA2PbX4摻雜金屬離子 67
4.3.1 2D PEA2PbX4摻雜錳離子 68
4.3.2 2D PEA2PbX4摻雜錫離子 74
4.3.3 2D PEA2PbBr4摻雜其他金屬離子 77
4.3.4 2D PEA2PbX4摻雜金屬離子之電子順磁共振光譜分析 78
4.3.5 2D PEA2PbX4摻雜金屬離子之拉曼光譜儀量測 79
4.4 2D PEA2PbX4之應用 80
4.4.1 2D PEA2PbI4封裝於LED應用於植物生長照明 82
第五章 結論 86
參考文獻 87

1.De Graef, M.; McHenry, M. E., Structure of Materials: An Introduction to Crystallography, Diffraction and Symmetry, Cambridge: University Press, Cambridge. 2012, ed. 2.
2.Akihiro, K.; Kenjiro, T.; Yasuo, S.; Tsutomu, M., Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. Journal of the American Chemical Society 2009, 131 (17), 6050–6051.
3.Ma, S.; Cai, M.; Cheng, T.; Ding, X.; Shi, X.; Alsaedi, A.; Hayat, T.; Ding, Y.; Tan, Z. A.; Dai, S., Two-dimensional organic-inorganic hybrid perovskite: from material properties to device applications. Science China Materials 2018, 61 (10), 1257–1277.
4.Sadhanala, A.; Ahmad, S.; Zhao, B.; Giesbrecht, N.; Pearce, P. M.; Deschler, F.; Hoye, R. L.; Godel, K. C.; Bein, T.; Docampo, P.; Dutton, S. E.; De Volder, M. F.; Friend, R. H., Blue-Green Color Tunable Solution Processable Organolead Chloride-Bromide Mixed Halide Perovskites for Optoelectronic Applications. Nano Letters 2015, 15 (9), 6095–6101.
5.Dou, L.; Wong, A. B.; Yu, Y.; Lai, M.; Kornienko, N.; Eaton, S. W.; Fu, A.; Bischak, C. G.; Ma, J.; Ding, T.; Ginsberg, N. S.; Wang, L. W.; Alivisatos, A. P.; Yang, P., Atomically thin two-dimensional organic–inorganic hybrid perovskites. Science 2015, 349 (6255), 1518–1521.
6.Dong, Q.; Fang, Y.; Shao, Y.; Mulligan, P.; Qiu, J.; Cao, L.; Huang, J., Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals. Science 2015, 347 (6225), 967.
7.Chen, M. Y.; Lin, J. T.; Hsu, C. S.; Chang, C. K.; Chiu, C. W.; Chen, H. M.; Chou, P. T., Strongly Coupled Tin-Halide Perovskites to Modulate Light Emission: Tunable 550-640 nm Light Emission (FWHM 36-80 nm) with a Quantum Yield of up to 6.4. Advanced Materials 2018, 30 (20), 1706592.
8.Chen, H.; Lin, J.; Kang, J.; Kong, Q.; Lu, D.; Kang, J.; Lai, M.; Quan, L. N.; Lin, Z.; Jin, J.; Wang, L. W.; Toney, M. F.; Yang, P., Structural and spectral dynamics of single-crystalline Ruddlesden–Popper phase halide perovskite blue light-emitting diodes. Science Advances 2020, 6 (4), eaay4045.
9.Yin, J.; Naphade, R.; Gutiérrez Arzaluz, L.; Brédas, J. L.; Bakr, O. M.; Mohammed, O. F., Modulation of Broadband Emissions in Two-Dimensional ⟨100⟩-Oriented Ruddlesden–Popper Hybrid Perovskites. ACS Energy Letters 2020, 5 (7), 2149–2155.
10.Sutherland, B. R.; Sargent, E. H., Perovskite photonic sources. Nature Photonics 2016, 10 (5), 295–302.
11.Noh, J. H.; Im, S. H.; Heo, J. H.; Mandal, T. N.; Seok, S. I., Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. Nano Letters 2013, 13 (4), 1764–1769.
12.Lee, J. W.; Kim, D. H.; Kim, H. S.; Seo, S. W.; Cho, S. M.; Park, N. G., Formamidinium and Cesium Hybridization for Photo- and Moisture-Stable Perovskite Solar Cell. Advanced Energy Materials 2015, 5 (20), 1501310.
13.McMeekin, D. P.; Sadoughi, G.; Rehman, W.; Eperon, G. E.; Saliba, M.; Hörantner, M. T.; Haghighirad, A.; Sakai, N.; Korte, L.; Rech, B.; Johnston, M. B.; Herz, L. M.; Snaith, H. J., A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells. Science 2016, 351 (6269), 151–155.
14.Yang, W. S.; Park, B. W.; Jung, E. A. O. X.; Jeon, N. J.; Kim, Y. C.; Lee, D. A. O.; Shin, S. A. O.; Seo, J.; Kim, E. A. O. X.; Noh, J. A. O.; Seok, S. A. O., Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells. Science 2017, 356 (6345), 1376–1379.
15.Yi, C.; Luo, J.; Meloni, S.; Boziki, A.; Ashari-Astani, N.; Grätzel, C.; Zakeeruddin, S. M.; Röthlisberger, U.; Grätzel, M., Entropic stabilization of mixed A-cation ABX3 metal halide perovskites for high performance perovskite solar cells. Energy & Environmental Science 2016, 9 (2), 656–662.
16.Zhou, Y.; Chen, J.; Bakr, O. M.; Sun, H.-T., Metal-Doped Lead Halide Perovskites: Synthesis, Properties, and Optoelectronic Applications. Chemistry of Materials 2018, 30 (19), 6589–6613.
17.Su, B.; Zhou, G.; Huang, J.; Song, E.; Nag, A.; Xia, Z., Mn2+-Doped Metal Halide Perovskites: Structure, Photoluminescence, and Application. Laser & Photonics Reviews 2021, 15 (1), 2000334.
18.Das Adhikari, S.; Dutta, A.; Dutta, S. K.; Pradhan, N., Layered Perovskites L2(Pb1–xMnx)Cl4 to Mn-Doped CsPbCl3 Perovskite Platelets. ACS Energy Letters 2018, 3 (6), 1247–1253.
19.Vashishtha, P.; Ng, M.; Shivarudraiah, S. B.; Halpert, J. E., High Efficiency Blue and Green Light-Emitting Diodes Using Ruddlesden–Popper Inorganic Mixed Halide Perovskites with Butylammonium Interlayers. Chemistry of Materials 2019, 31 (1), 83–89.
20.Biswas, A.; Bakthavatsalam, R.; Kundu, J., Efficient Exciton to Dopant Energy Transfer in Mn2+-Doped (C4H9NH3)2PbBr4 Two-Dimensional (2D) Layered Perovskites. Chemistry of Materials 2017, 29 (18), 7816–7825.
21.Yuan, H.; Massuyeau, F.; Gautier, N.; Kama, A. B.; Faulques, E.; Chen, F.; Shen, Q.; Zhang, L.; Paris, M.; Gautier, R., Doped Lead Halide White Phosphors for Very High Efficiency and Ultra-High Color Rendering. Angewandte Chemie International Edition 2020, 59 (7), 2802–2807.
22.Zhou, G.; Jiang, X.; Molokeev, M.; Lin, Z.; Zhao, J.; Wang, J.; Xia, Z., Optically Modulated Ultra-Broad-Band Warm White Emission in Mn2+-Doped (C6H18N2O2)PbBr4 Hybrid Metal Halide Phosphor. Chemistry of Materials 2019, 31 (15), 5788–5795.
23.Zhou, C.; Tian, Y.; Khabou, O.; Worku, M.; Zhou, Y.; Hurley, J.; Lin, H.; Ma, B., Manganese-Doped One-Dimensional Organic Lead Bromide Perovskites with Bright White Emissions. ACS Applied Materials & Interfaces 2017, 9 (46), 40446–40451.
24.Su, B.; Molokeev, M. S.; Xia, Z., Mn2+-Based narrow-band green-emitting Cs3MnBr5 phosphor and the performance optimization by Zn2+ alloying. Journal of Materials Chemistry C 2019, 7 (36), 11220–11226.
25.Zhou, G.; Liu, Z.; Huang, J.; Molokeev, M. S.; Xiao, Z.; Ma, C.; Xia, Z., Unraveling the Near-Unity Narrow-Band Green Emission in Zero-Dimensional Mn2+-Based Metal Halides: A Case Study of (C10H16N)2Zn1-xMnxBr4 Solid Solutions. The Journal of Physical Chemistry Letters 2020, 11 (15), 5956–5962.
26.D. Heiman., Photoluminescence Spectroscopy. Adv Lab I-Physics of Waves and Optics-Summer, 2004.
27.John, R.; Padmavathi, S., Ab Initio Calculations on Structural, Electronic and Optical Properties of ZnO in Wurtzite Phase. Crystal Structure Theory and Applications 2016, 05 (02), 24–41.
28.Franck, J.; Dymond, E. G., Elementary processes of photochemical reactions. Transactions of the Faraday Society 1926, 21, 536–542.
29.Condon, E., A Theory of Intensity Distribution in Band Systems. Physical Review 1926, 28 (6), 1182–1201.
30.Lu, Y.; Warner, J. H., Synthesis and Applications of Wide Bandgap 2D Layered Semiconductors Reaching the Green and Blue Wavelengths. ACS Applied Electronic Materials 2020, 2 (7), 1777–1814.
31.Sheikh, T.; Shinde, A.; Mahamuni, S.; Nag, A., Possible Dual Bandgap in (C4H9NH3)2PbI4 2D Layered Perovskite: Single-Crystal and Exfoliated Few-Layer. ACS Energy Letters 2018, 3 (12), 2940–2946.
32.Du, Q.; Zhu, C.; Yin, Z.; Na, G.; Cheng, C.; Han, Y.; Liu, N.; Niu, X.; Zhou, H.; Chen, H.; Zhang, L.; Jin, S.; Chen, Q., Stacking Effects on Electron-Phonon Coupling in Layered Hybrid Perovskites via Microstrain Manipulation. ACS Nano 2020, 14 (5), 5806–5817.
33.Schubert, E. F.; Kim, J. K., Solid-State Light Sources Getting Smart. Science 2005, 308 (5726), 1274.
34.MicroLED Displays 2017 report; Yole Developpement February, 2017.
35.Aenugu, H. P. R.; Kumar, D. S.; Srisudharson, N. P.; Ghosh, S.; Banji, D., Near Infrared Spectroscopy–an Overview. International Journal of ChemTech Research 2011, 3, 825–836.
36.Butz, P.; Hofmann, C.; Tauscher, B., Recent Developments in Noninvasive Techniques for Fresh Fruit and Vegetable Internal Quality Analysis. Journal of Food Science 2005, 70 (9), R131–R141.
37.Pasquini, C., Near infrared spectroscopy: A mature analytical technique with new perspectives - A review. Analytica Chimica Acta 2018, 1026, 8–36.
38.Ozaki, Y., Near-infrared spectroscopy-its versatility in analytical chemistry. Analytical Sciences 2012, 28, 545–563.
39.Li, J.; Wang, Q.; Xu, L.; Tian, X.; Xia, Y.; Fan, S., Comparison and Optimization of Models for Determination of Sugar Content in Pear by Portable Vis-NIR Spectroscopy Coupled with Wavelength Selection Algorithm. Food Analytical Methods 2019, 12 (1), 12–22.
40.Beghi, R.; Buratti, S.; Giovenzana, V.; Benedetti, S.; Guidetti, R., Electronic nose and visible-near infrared spectroscopy in fruit and vegetable monitoring. Reviews in Analytical Chemistry 2017, 36 (4).
41.Halsey, S. A., The use of transmission and transflectance near infrared spectroscopy for the analysis of beer. Journal of the Institute of Brewing 1985, 91 (5), 306–312.
42.LED inside, a Business Division of TrendForce Corp.r全球IR LED市場概況及專利申請趨勢分析”,(2016)。.
43.LED inside, a Business Division of TrendForce Corp.r手機創造虹膜辨識 IR LED 商機”,(2016)。.
44.Von Wettstein, D.; Gough, S.; Kannangara, C. G., Chlorophyll Biosynthesis. The Plant Cell 1995, 7 (7), 1039–1057.
45.Sharrock, R. A., The phytochrome red/far-red photoreceptor superfamily. Genome Biology 2008, 9 (8), 230.
46.Avinash, A.; Gupta, S. D., Impact of Light-Emitting Diodes (LEDs) and its Potential on Plant Growth and Development in Controlled-Environment Plant Production System. Current Biotechnology 2016, 5 (1), 28–43.
47.Fattori, V.; Williams, J. A. G.; Murphy, L.; Cocchi, M.; Kalinowski, J., Organic light sources look forward to optimize the photosynthesis process. Photonics and Nanostructures: Fundamentals and Applications 2008, 6 (3), 225–230.
48.Fang, M. H.; De Guzman, G. N. A.; Bao, Z.; Majewska, N.; Mahlik, S.; Grinberg, M.; Leniec, G.; Kaczmarek, S. M.; Yang, C. W.; Lu, K. M.; Sheu, H. S.; Hu, S. F.; Liu, R. S., Ultra-high-efficiency near-infrared Ga2O3:Cr3+ phosphor and controlling of phytochrome. Journal of Materials Chemistry C 2020, 8 (32), 11013–11017.
49.Harris, D. C., Quantitative Chemical Analysis. W. H. Freeman: 2010.
50.莫定山. Raman光譜原理與應用. 崑山科技大學電子工程系. 2006.
51.李健瑋, 黃志嘉. 國立成功大學光電科學與工程學系. 奈米生醫光電:表面增強拉曼散射應用於分子檢測與分子影像. 化學 2016, 第七十四卷第一期, 21–31頁.
52.Duke., Introduction to Microscopy. Light Microscopy Core Facility.
53.電子順磁共振光譜儀. 國立臺灣師範大學貴重儀器中心.
54. Zhou, G.; Guo, S.; Zhao, J.; Molokeev, M.; Liu, Q.; Zhang, J.; Xia, Z., Unraveling the mechanochemical synthesis and luminescence in MnII-based two-dimensional hybrid perovskite (C4H9NH3)2PbCl4. Science China Materials 2019, 62 (7), 1013–1022.
55. Yu, J.; Kong, J.; Hao, W.; Guo, X.; He, H.; Leow, W. R.; Liu, Z.; Cai, P.; Qian, G.; Li, S.; Chen, X.; Chen, X., Broadband Extrinsic Self-Trapped Exciton Emission in Sn-Doped 2D Lead-Halide Perovskites. Advanced Materials 2019, 31, 1806385.

電子全文 電子全文(網際網路公開日期:20260825)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top