跳到主要內容

臺灣博碩士論文加值系統

(44.192.48.196) 您好!臺灣時間:2024/06/23 19:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:Nithiya Jeromiyas
研究生(外文):NITHIYA JEROMIYAS
論文名稱:製造奈米結構式電極應用於即時檢測活體細胞內氧化還原型信號分子
論文名稱(外文):Engineering nanostructured electrode for real-time monitoring of endogenous oxido reductants signaling molecules from live cells
指導教授:黃聲東
指導教授(外文):HUANG, SHENG-TUNG
口試委員:黃聲東PONNUSAMY ARULMANI GOVINDASAMY林俊茂吳瑞裕
口試委員(外文):HUANG, SHENG-TUNGPONNUSAMY ARULMANI GOVINDASAMYLIN, JUN-MAOWU, RUI-YU
口試日期:2021-01-08
學位類別:博士
校院名稱:國立臺北科技大學
系所名稱:能源與光電材料外國學生專班(EOMP)
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:英文
論文頁數:93
中文關鍵詞:Cell signaling moleculesnanomaterialsanti-poisoninganti-cancer drugreal-time monitoring
外文關鍵詞:Cell signaling moleculesnanomaterialsanti-poisoninganti-cancer drugreal-time monitoring
相關次數:
  • 被引用被引用:0
  • 點閱點閱:103
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
The combination of nanomaterials in electrochemical sensors are an attractive approach to improving sensitivity and can also provide improved stability and selectivity.In this report, the new trend and the current state of the art of nanostructure-based on electrochemical detection of endogenous production of hydrogen peroxide (H2O2) and hydrogen sulfide (H2S) from live cells. A series of three nanostructured electrodes ZnCo2O4/Co3O4/CF, POPD/RGO-MoS2, and POPD/ Laser-scribed graphene based on their selective and anti-biofouling properties were designed to specifically target and quantify endogenous H2O2, H2S, and H2S releasing profiling of anti-cancer drugs. The proposed electrochemical platform involves four crucial steps started from 1.Design and Synthesis of nanostructured material, 2. Material characterization, electrode fabrication, 3.Proof-of-concept, and electrocatalytic determination of lab samples, 4. Examine the real-time monitoring and quantification of biological fluids such as fetal bovine serum, human serum, human blood, and live cells. The ZnCo2O4/Co3O4/CF promotes H2O2 reduction at minimized overpotential (−0.10 V vs Ag/AgCl). which is several millivolts away from the voltammetric regions of common biological and oxygen interferences, and highly selective in the presence of 5-fold excess concentrations of biological species. In further that electrode endows ultrasensitivity (detection limit = 1 nM) and quantifies the amount of H2O2 released from RAW 264.7 (8.7 × 10−14 mol).For hydrogen sulfide detection, sulfur passivation, electrode poisoning, and interferences from complex biological environments are major challenges in the development of in-situ H2S sensors. The POPD/RGO-MoS2-modified electrode catalyzed H2S oxidation at a minimized overpotential (+0.15 V vs. Ag/AgCl). The RGO-MoS2 with o-phenylenediamine (POPD) electropolymerized films were characterized for their H2S permselective behavior against common biological interferents. Moreover, this method displayed a detection limit of 10 nM, which covers the endogenous H2S levels. Further real-time monitoring of H2S production demonstrated in live Escherichia MG1655 and quantification of H2S spiked in FBS human serum, and human blood samples accurately quantified with excellent practical feasibility. In addition H2S is involved in biological processes of cancer and H2S has involves both pro-cancer and anti-cancer effects. H2S-releasing donors exhibit anti-cancer effects. The POPD/Laser-scribed graphene electrode has been designed for the in-situ profiling of H2S and a handy analytical accessory for cancer therapy. The POPD/Laser-scribed graphene (LSG) electrode delivered an outstanding electrocatalytic performance of point-of-care H2S sensing with a detection limit of 1 nM. In further, POPD/Laser-scribed graphene has been employed in situ real-time tracking of H2S monitoring and the H2S releasing profile of anti-cancer drugs from live cells as early diagnostic strategies.
The combination of nanomaterials in electrochemical sensors are an attractive approach to improving sensitivity and can also provide improved stability and selectivity.In this report, the new trend and the current state of the art of nanostructure-based on electrochemical detection of endogenous production of hydrogen peroxide (H2O2) and hydrogen sulfide (H2S) from live cells. A series of three nanostructured electrodes ZnCo2O4/Co3O4/CF, POPD/RGO-MoS2, and POPD/ Laser-scribed graphene based on their selective and anti-biofouling properties were designed to specifically target and quantify endogenous H2O2, H2S, and H2S releasing profiling of anti-cancer drugs. The proposed electrochemical platform involves four crucial steps started from 1.Design and Synthesis of nanostructured material, 2. Material characterization, electrode fabrication, 3.Proof-of-concept, and electrocatalytic determination of lab samples, 4. Examine the real-time monitoring and quantification of biological fluids such as fetal bovine serum, human serum, human blood, and live cells. The ZnCo2O4/Co3O4/CF promotes H2O2 reduction at minimized overpotential (−0.10 V vs Ag/AgCl). which is several millivolts away from the voltammetric regions of common biological and oxygen interferences, and highly selective in the presence of 5-fold excess concentrations of biological species. In further that electrode endows ultrasensitivity (detection limit = 1 nM) and quantifies the amount of H2O2 released from RAW 264.7 (8.7 × 10−14 mol).For hydrogen sulfide detection, sulfur passivation, electrode poisoning, and interferences from complex biological environments are major challenges in the development of in-situ H2S sensors. The POPD/RGO-MoS2-modified electrode catalyzed H2S oxidation at a minimized overpotential (+0.15 V vs. Ag/AgCl). The RGO-MoS2 with o-phenylenediamine (POPD) electropolymerized films were characterized for their H2S permselective behavior against common biological interferents. Moreover, this method displayed a detection limit of 10 nM, which covers the endogenous H2S levels. Further real-time monitoring of H2S production demonstrated in live Escherichia MG1655 and quantification of H2S spiked in FBS human serum, and human blood samples accurately quantified with excellent practical feasibility. In addition H2S is involved in biological processes of cancer and H2S has involves both pro-cancer and anti-cancer effects. H2S-releasing donors exhibit anti-cancer effects. The POPD/Laser-scribed graphene electrode has been designed for the in-situ profiling of H2S and a handy analytical accessory for cancer therapy. The POPD/Laser-scribed graphene (LSG) electrode delivered an outstanding electrocatalytic performance of point-of-care H2S sensing with a detection limit of 1 nM. In further, POPD/Laser-scribed graphene has been employed in situ real-time tracking of H2S monitoring and the H2S releasing profile of anti-cancer drugs from live cells as early diagnostic strategies.
Table of Contents
Chapter 1 Introduction 1
1.1 Cell signaling molecules and Nanomaterials 1
1.1.1 Clinical significance of cell signaling molecules 1
1.1.2 Nanomaterials for signaling molecules 1
1.2 Background perspective of electrode design 3
1.3 Advantages of Metal oxides based 3D electrodes for H2O2 detection 4
1.4 Advantages of 2D electrodes for H2S detection 5
1.5 Objectives 5
1.6 Electrode design and mechanism 7
1.6.1 Detection mechanism of H2O2 7
1.6.2 Detection mechanism of H2S 8
Chapter 2 Literature review 10
2.1 Electrochemical detection techniques and principles 10
2.2 Importance of H2O2 and major problems in detection 11
2.3 Importance of H2S and major problems in detection 13
2.4 H2S in cancer and anti-cancer effect 14
2.5 Nanomaterials core concept 16
2.6 ZnCo2O4/Co3O4/CF for H2O2 detection 17
2.7 POPD/RGO-MoS2-modified electrode for H2S detection 19
2.8 POPD/Laser-scribed graphene electrode for H2S detection and H2S releasing an anti-cancer drug 20
Chapter 3 Materials and methods 23
3.1 Materials 23
3.2 Instrumentation 24
3.3 Methods 24
3.3.1 Synthesis of ZnCo2O4/Co3O4/CF for H2O2 detection 24
3.3.2 Synthesis of RGO-MoS2 H2S detection 26
3.3.3 Fabrication of LSG electrode device for H2S releasing profile of anti-cancer drugs 27
3.4 Assay conditions 28
3.4.1 Experimental procedure for H2O2 detection 28
3.4.2 Experimental procedure for H2S detection 29
3.4.3 Experimental procedure for H2S releasing profile of anti-cancer drug 30
Chapter 4 Results and Discussion 32
4.1 In-situ profiling of H2O2 in live cells and biological media 32
4.1.1 Characterization studies of ZnCo2O4/Co3O4/CF 32
4.1.2 Proof of concept of H2O2 on ZnCo2O4/Co3O4/CF 38
4.1.3 Effect of concentration and scan rate study 40
4.1.4 Stability, repeatability, and reproducibility study of H2O2 detection on ZnCo2O4/Co3O4/CF 42
4.1.5 Sensitive quantification of H2O2 via amperometry 44
4.1.6 Selectivity of H2O2 through various biological compounds 45
4.1.7 Real sample analysis in human blood, fetal bovine serum DMEM and RAW 264.7 47
4.1.8 Real-time tracking and quantification of endogenously produced H2O2 in living cells 48
4.1.9 Summary of H2O2 determination using ZnCo2O4/Co3O4/CF fabricated electrode 51
4.2 Real-time in-situ monitoring of endogenous H2S 51
4.2.1 Characterization studies of POPD/RGO-MoS2 52
4.2.2 Elemental composition analysis by EDX 53
4.2.3 Crystalline structure analysis by XRD 54
4.2.4 Vibrational analysis by Raman spectrum 55
4.2.5 H2S detection via POPD/RGO-MoS2 electrode: proof of concept 56
4.2.6 Effect of scan rate 58
4.2.7 Stability, reproducibility, and repeatability study of POPD/RGO-MOS2 58
4.2.8 Sensitivity of H2S via Amperometry 60
4.2.9 Selectivity of H2S through POD/RGO-MoS2 at various biological compounds 62
4.2.10 Practicality in biological fluids 64
4.2.11 Real-time tracking and quantification of H2S release in live bacteria 65
4.2.12 Summary of H2S determination using POPD/RGO-MoS2 modified electrode 67
4.3 Real-time in-situ monitoring of H2S and H2S realasing anti-cancer drug 68
4.3.1 H2S detection via POPD/LSG electrode: proof of concept 69
4.3.2 Effect of potential in amperometric detection : Proof of concept 70
4.3.3 Sensitive determination of H2S via Amperometry 71
4.3.4 Real sample analysis quantification of H2S activity in A375 human melanoma cells 72
4.3.5 Release of H2S from anti-cancer drug on A375 75
Chapter 5 Conclusions 77


References
1.Knight, H.; Knight, M. R., Abiotic stress signalling pathways: specificity and cross-talk. Trends in plant science 2001, 6, (6), 262-267.
2.Bedioui, F.; Griveau, S., Electrochemical detection of nitric oxide: assessement of twenty years of strategies. Electroanalysis 2013, 25, (3), 587-600.
3.Wang, Y.; Zhao, X.; Jin, H.; Wei, H.; Li, W.; Bu, D.; Tang, X.; Ren, Y.; Tang, C.; Du, J., Role of hydrogen sulfide in the development of atherosclerotic lesions in apolipoprotein E knockout mice. Arteriosclerosis, thrombosis, and vascular biology 2009, 29, (2), 173-179.
4.Hurst, R. D.; Clark, J. B., The utility of the nitric oxide electrochemical sensor in biomedical research. Sensors 2003, 3, (8), 321-329.
5.Rhee, S. G.; Chang, T.-S.; Jeong, W.; Kang, D., Methods for detection and measurement of hydrogen peroxide inside and outside of cells. Molecules and cells 2010, 29, (6), 539-549.
6.Yagati, A. K.; Choi, J. W., Protein based electrochemical biosensors for H2O2 detection towards clinical diagnostics. Electroanalysis 2014, 26, (6), 1259-1276.
7.Li, J.; Yin, C.; Huo, F., Chromogenic and fluorogenic chemosensors for hydrogen sulfide: review of detection mechanisms since the year 2009. RSC Advances 2015, 5, (3), 2191-2206.
8.Lippert, A. R., Designing reaction-based fluorescent probes for selective hydrogen sulfide detection. Journal of Inorganic Biochemistry 2014, 133, 136-142.
9.Shi, X.; Gu, W.; Li, B.; Chen, N.; Zhao, K.; Xian, Y., Enzymatic biosensors based on the use of metal oxide nanoparticles. Microchimica Acta 2014, 181, (1-2), 1-22.
10.Chen, D.; Feng, H.; Li, J., Graphene oxide: preparation, functionalization, and electrochemical applications. Chemical reviews 2012, 112, (11), 6027-6053.
11.Moriguchi, K.; Ohno, N.; Ogawa, T.; Hirai, K.-I., Highly specific detection of H2O2-dependent luminol chemiluminescence in stimulated human leukocytes using polyvinyl films. Microscopy 1999, 48, (2), 177-179.
12.Planchet, E.; Kaiser, W. M., Nitric oxide (NO) detection by DAF fluorescence and chemiluminescence: a comparison using abiotic and biotic NO sources. Journal of experimental botany 2006, 57, (12), 3043-3055.
13.Yao, D.; Vlessidis, A. G.; Evmiridis, N. P., Determination of nitric oxide in biological samples. Microchimica Acta 2004, 147, (1-2), 1-20.
14.Xu, T.; Scafa, N.; Xu, L. P.; Su, L.; Li, C.; Zhou, S.; Liu, Y.; Zhang, X., Electrochemical sensors for nitric oxide detection in biological applications. Electroanalysis 2014, 26, (3), 449-468.
15.Griveau, S.; Bedioui, F., Overview of significant examples of electrochemical sensor arrays designed for detection of nitric oxide and relevant species in a biological environment. Analytical and bioanalytical chemistry 2013, 405, (11), 3475-3488.
16.Bathany, C.; Han, J.-R.; Abi-Samra, K.; Takayama, S.; Cho, Y.-K., An electrochemical-sensor system for real-time flow measurements in porous materials. Biosensors and Bioelectronics 2015, 70, 115-121.
17.Marmisollé, W. A.; Azzaroni, O., Recent developments in the layer-by-layer assembly of polyaniline and carbon nanomaterials for energy storage and sensing applications. From synthetic aspects to structural and functional characterization. Nanoscale 2016, 8, (19), 9890-9918.
18.Farka, Z.; Jurik, T.; Kovář, D.; Trnková, L. e.; Skládal, P., Nanoparticle-based immunochemical biosensors and assays: recent advances and challenges. Chemical Reviews 2017, 117, (15), 9973-10042.
19.Piscitelli, A.; Pennacchio, A.; Longobardi, S.; Velotta, R.; Giardina, P., Vmh2 hydrophobin as a tool for the development of “self‐immobilizing” enzymes for biosensing. Biotechnology and bioengineering 2017, 114, (1), 46-52.
20.Liu, H.; Weng, L.; Yang, C., A review on nanomaterial-based electrochemical sensors for H2O2, H2S and NO inside cells or released by cells. Microchimica Acta 2017, 184, (5), 1267-1283.
21.Kuo, C.-C.; Lan, W.-J.; Chen, C.-H., Redox preparation of mixed-valence cobalt manganese oxide nanostructured materials: highly efficient noble metal-free electrocatalysts for sensing hydrogen peroxide. Nanoscale 2014, 6, (1), 334-341.
22.Wu, M.; Meng, S.; Wang, Q.; Si, W.; Huang, W.; Dong, X., Nickel–cobalt oxide decorated three-dimensional graphene as an enzyme mimic for glucose and calcium detection. ACS applied materials & interfaces 2015, 7, (38), 21089-21094.
23.Sun, C.; Yang, J.; Dai, Z.; Wang, X.; Zhang, Y.; Li, L.; Chen, P.; Huang, W.; Dong, X., Nanowires assembled from MnCo2O4@ C nanoparticles for water splitting and all-solid-state supercapacitor. Nano Research 2016, 9, (5), 1300-1309.
24.Xing, C.; Chen, X.; Huang, W.; Song, Y.; Li, J.; Chen, S.; Zhou, Y.; Dong, B.; Fan, D.; Zhu, X., Two-dimensional lead monoxide: facile liquid phase exfoliation, excellent photoresponse performance, and theoretical investigation. Acs Photonics 2018, 5, (12), 5055-5067.
25.Tang, X.; Chen, H.; Ponraj, J. S.; Dhanabalan, S. C.; Xiao, Q.; Fan, D.; Zhang, H., Fluorination‐Enhanced Ambient Stability and Electronic Tolerance of Black Phosphorus Quantum Dots. Advanced Science 2018, 5, (9), 1800420.
26.Sharma, A.; Wen, B.; Liu, B.; Myint, Y. W.; Zhang, H.; Lu, Y., Defect Engineering in Few‐Layer Phosphorene. Small 2018, 14, (16), 1704556.
27.Li, Z.; Qiao, H.; Guo, Z.; Ren, X.; Huang, Z.; Qi, X.; Dhanabalan, S. C.; Ponraj, J. S.; Zhang, D.; Li, J., High‐performance photo‐electrochemical photodetector based on liquid‐exfoliated few‐layered InSe nanosheets with enhanced stability. Advanced Functional Materials 2018, 28, (16), 1705237.
28.Shi, J.; Li, Z.; Sang, D. K.; Xiang, Y.; Li, J.; Zhang, S.; Zhang, H., THz photonics in two dimensional materials and metamaterials: properties, devices and prospects. Journal of Materials Chemistry C 2018, 6, (6), 1291-1306.
29.Tang, X.; Liang, W.; Zhao, J.; Li, Z.; Qiu, M.; Fan, T.; Luo, C. S.; Zhou, Y.; Li, Y.; Guo, Z., Fluorinated phosphorene: electrochemical synthesis, atomistic fluorination, and enhanced stability. Small 2017, 13, (47), 1702739.
30.Yan, P., Photonics of 2D materials. Optics Communications 2018, 406, 1-2.
31.Xu, Y.; Yuan, J.; Zhang, K.; Hou, Y.; Sun, Q.; Yao, Y.; Li, S.; Bao, Q.; Zhang, H.; Zhang, Y., Field‐Induced n‐Doping of Black Phosphorus for CMOS Compatible 2D Logic Electronics with High Electron Mobility. Advanced Functional Materials 2017, 27, (38), 1702211.
32.Huang, W.; Xie, Z.; Fan, T.; Li, J.; Wang, Y.; Wu, L.; Ma, D.; Li, Z.; Ge, Y.; Huang, Z. N., Black-phosphorus-analogue tin monosulfide: an emerging optoelectronic two-dimensional material for high-performance photodetection with improved stability under ambient/harsh conditions. Journal of Materials Chemistry C 2018, 6, (36), 9582-9593.
33.Zhang, C.; Li, Y.; Zhang, P.; Qiu, M.; Jiang, X.; Zhang, H., Antimonene quantum dot-based solid-state solar cells with enhanced performance and high stability. Solar Energy Materials and Solar Cells 2019, 189, 11-20.
34.Tao, W.; Ji, X.; Zhu, X.; Li, L.; Wang, J.; Zhang, Y.; Saw, P. E.; Li, W.; Kong, N.; Islam, M. A., Cancer Theranostics: Two‐Dimensional Antimonene‐Based Photonic Nanomedicine for Cancer Theranostics (Adv. Mater. 38/2018). Advanced Materials 2018, 30, (38), 1870283.
35.Liu, J.; Jiang, X.; Zhang, R.; Zhang, Y.; Wu, L.; Lu, W.; Li, J.; Li, Y.; Zhang, H., MXene‐Enabled Electrochemical Microfluidic Biosensor: Applications toward Multicomponent Continuous Monitoring in Whole Blood. Advanced Functional Materials 2019, 29, (6), 1807326.
36.Bai, S.; Sun, C.; Yan, H.; Sun, X.; Zhang, H.; Luo, L.; Lei, X.; Wan, P.; Chen, X., Healable, transparent, room‐temperature electronic sensors based on carbon nanotube network‐coated polyelectrolyte multilayers. Small 2015, 11, (43), 5807-5813.
37.Wan, P.; Wen, X.; Sun, C.; Chandran, B. K.; Zhang, H.; Sun, X.; Chen, X., Flexible transparent films based on nanocomposite networks of polyaniline and carbon nanotubes for high‐performance gas sensing. Small 2015, 11, (40), 5409-5415.
38.Ou, Q.; Zhang, Y.; Wang, Z.; Yuwono, J. A.; Wang, R.; Dai, Z.; Li, W.; Zheng, C.; Xu, Z. Q.; Qi, X., Strong depletion in hybrid perovskite p–n junctions induced by local electronic doping. Advanced Materials 2018, 30, (15), 1705792.
39.Zheng, J.; Yang, Z.; Si, C.; Liang, Z.; Chen, X.; Cao, R.; Guo, Z.; Wang, K.; Zhang, Y.; Ji, J., Black phosphorus based all-optical-signal-processing: toward high performances and enhanced stability. Acs Photonics 2017, 4, (6), 1466-1476.
40.Grieshaber, D.; MacKenzie, R.; Vörös, J.; Reimhult, E., Electrochemical biosensors-sensor principles and architectures. Sensors 2008, 8, (3), 1400-1458.
41.Wu, P.; Cai, Z.; Gao, Y.; Zhang, H.; Cai, C., Enhancing the electrochemical reduction of hydrogen peroxide based on nitrogen-doped graphene for measurement of its releasing process from living cells. Chemical Communications 2011, 47, (40), 11327-11329.
42.Brown, M. D.; Hall, J. R.; Schoenfisch, M. H., A direct and selective electrochemical hydrogen sulfide sensor. Analytica chimica acta 2019, 1045, 67-76.
43.Uniyal, S.; Sharma, R. K., Technological advancement in electrochemical biosensor based detection of Organophosphate pesticide chlorpyrifos in the environment: a review of status and prospects. Biosensors and bioelectronics 2018, 116, 37-50.
44.Rhee, S. G., H2O2, a necessary evil for cell signaling. Science 2006, 312, (5782), 1882-1883.
45.Zhang, R.; Chen, W., Recent advances in graphene-based nanomaterials for fabricating electrochemical hydrogen peroxide sensors. Biosensors and Bioelectronics 2017, 89, 249-268.
46.Winterbourn, C. C., Reconciling the chemistry and biology of reactive oxygen species. Nature chemical biology 2008, 4, (5), 278-286.
47.Ishikawa, K.; Takenaga, K.; Akimoto, M.; Koshikawa, N.; Yamaguchi, A.; Imanishi, H.; Nakada, K.; Honma, Y.; Hayashi, J.-I., ROS-generating mitochondrial DNA mutations can regulate tumor cell metastasis. Science 2008, 320, (5876), 661-664.
48.Douglass, W. C., Medical Miracle. 1990.
49.Miller, E. W.; Dickinson, B. C.; Chang, C. J., Aquaporin-3 mediates hydrogen peroxide uptake to regulate downstream intracellular signaling. Proceedings of the National Academy of Sciences 2010, 107, (36), 15681-15686.
50.Zhao, C.; Wu, X.; Li, P.; Zhao, C.; Qian, X., Hydrothermal deposition of CuO/rGO/Cu 2 O nanocomposite on copper foil for sensitive nonenzymatic voltammetric determination of glucose and hydrogen peroxide. Microchimica Acta 2017, 184, (7), 2341-2348.
51.Nagaraja, P.; Prakash, J.; Asha, S.; Bhaskara, B.; Kumar, S. A., Dibenzazepin hydrochloride as a new spectrophotometric reagent for determination of hydrogen peroxide in plant extracts. Environmental monitoring and assessment 2012, 184, (10), 5983-5988.
52.Abo, M.; Urano, Y.; Hanaoka, K.; Terai, T.; Komatsu, T.; Nagano, T., Development of a highly sensitive fluorescence probe for hydrogen peroxide. Journal of the American Chemical Society 2011, 133, (27), 10629-10637.
53.Ding, L.; Ma, C.; Li, L.; Zhang, L.; Yu, J., A photoelectrochemical sensor for hydrogen sulfide in cancer cells based on the covalently and in situ grafting of CdS nanoparticles onto TiO2 nanotubes. Journal of Electroanalytical Chemistry 2016, 783, 176-181.
54.Doeller, J. E.; Isbell, T. S.; Benavides, G.; Koenitzer, J.; Patel, H.; Patel, R. P.; Lancaster Jr, J. R.; Darley-Usmar, V. M.; Kraus, D. W., Polarographic measurement of hydrogen sulfide production and consumption by mammalian tissues. Analytical biochemistry 2005, 341, (1), 40-51.
55.Wang, S.; Liu, X.; Zhang, M., Reduction of ammineruthenium (III) by sulfide enables in vivo electrochemical monitoring of free endogenous hydrogen sulfide. Analytical chemistry 2017, 89, (10), 5382-5388.
56.Devi, K. S.; Kumar, A. S., A blood-serum sulfide selective electrochemical sensor based on a 9, 10-phenanthrenequinone-tethered graphene oxide modified electrode. Analyst 2018, 143, (13), 3114-3123.
57.Perna, A. F.; Ingrosso, D., Low hydrogen sulphide and chronic kidney disease: a dangerous liaison. In Oxford University Press: 2012.
58.Szabo, C., Roles of hydrogen sulfide in the pathogenesis of diabetes mellitus and its complications. Antioxidants & redox signaling 2012, 17, (1), 68-80.
59.Han, Y.; Shang, Q.; Yao, J.; Ji, Y., Hydrogen sulfide: a gaseous signaling molecule modulates tissue homeostasis: implications in ophthalmic diseases. Cell death & disease 2019, 10, (4), 1-12.
60.Tabassum, R.; Jeong, N. Y., Potential for therapeutic use of hydrogen sulfide in oxidative stress-induced neurodegenerative diseases. International journal of medical sciences 2019, 16, (10), 1386.
61.Hartle, M. D.; Pluth, M. D., A practical guide to working with H 2 S at the interface of chemistry and biology. Chemical society reviews 2016, 45, (22), 6108-6117.
62.Peng, H.; Cheng, Y.; Dai, C.; King, A. L.; Predmore, B. L.; Lefer, D. J.; Wang, B., A fluorescent probe for fast and quantitative detection of hydrogen sulfide in blood. Angewandte Chemie 2011, 123, (41), 9846-9849.
63.Ciesielski, W.; Zakrzewski, R., Iodimetric titration of sulfur compounds in alkaline medium. Chemia analityczna 2006, 51, (5), 653.
64.Zhang, Y.-Y.; Zhou, H.; Wu, P.; Zhang, H.-R.; Xu, J.-J.; Chen, H.-Y., In situ activation of CdS electrochemiluminescence film and its application in H2S detection. Analytical chemistry 2014, 86, (17), 8657-8664.
65.Levitt, M. D.; Abdel-Rehim, M. S.; Furne, J., Free and acid-labile hydrogen sulfide concentrations in mouse tissues: anomalously high free hydrogen sulfide in aortic tissue. Antioxidants & redox signaling 2011, 15, (2), 373-378.
66.Eckert, W., Electrochemical Identification of the Hydrogen Sulfide System Using a pH2 S (glass/Ag°, Ag2 S) Electrode. Journal of the Electrochemical Society 1998, 145, (1), 77.
67.Yang, G.; Wu, L.; Jiang, B.; Yang, W.; Qi, J.; Cao, K.; Meng, Q.; Mustafa, A. K.; Mu, W.; Zhang, S., H2S as a physiologic vasorelaxant: hypertension in mice with deletion of cystathionine γ-lyase. Science 2008, 322, (5901), 587-590.
68.Dinesh, B.; Devi, K. S.; Kumar, A. S., Curcumin-quinone immobilised carbon black modified electrode prepared by in-situ electrochemical oxidation of curcumin-phytonutrient for mediated oxidation and flow injection analysis of sulfide. Journal of Electroanalytical Chemistry 2017, 804, 116-127.
69.Swensen, J. S.; Xiao, Y.; Ferguson, B. S.; Lubin, A. A.; Lai, R. Y.; Heeger, A. J.; Plaxco, K. W.; Soh, H. T., Continuous, real-time monitoring of cocaine in undiluted blood serum via a microfluidic, electrochemical aptamer-based sensor. Journal of the American Chemical Society 2009, 131, (12), 4262-4266.
70.Módis, K.; Asimakopoulou, A.; Coletta, C.; Papapetropoulos, A.; Szabo, C., Oxidative stress suppresses the cellular bioenergetic effect of the 3-mercaptopyruvate sulfurtransferase/hydrogen sulfide pathway. Biochemical and Biophysical Research Communications 2013, 433, (4), 401-407.
71.Kang, J.; Li, Z.; Organ, C. L.; Park, C.-M.; Yang, C.-t.; Pacheco, A.; Wang, D.; Lefer, D. J.; Xian, M., pH-controlled hydrogen sulfide release for myocardial ischemia-reperfusion injury. Journal of the American Chemical Society 2016, 138, (20), 6336-6339.
72.Abe, K.; Kimura, H., The possible role of hydrogen sulfide as an endogenous neuromodulator. Journal of Neuroscience 1996, 16, (3), 1066-1071.
73.Geng, B.; Yang, J.; Qi, Y.; Zhao, J.; Pang, Y.; Du, J.; Tang, C., H2S generated by heart in rat and its effects on cardiac function. Biochemical and biophysical research communications 2004, 313, (2), 362-368.
74.Tripatara, P.; Patel, N. S.; Collino, M.; Gallicchio, M.; Kieswich, J.; Castiglia, S.; Benetti, E.; Stewart, K. N.; Brown, P. A.; Yaqoob, M. M., Generation of endogenous hydrogen sulfide by cystathionine γ-lyase limits renal ischemia/reperfusion injury and dysfunction. Laboratory investigation 2008, 88, (10), 1038-1048.
75.Wang, K.; Ahmad, S.; Cai, M.; Rennie, J.; Fujisawa, T.; Crispi, F.; Baily, J.; Miller, M. R.; Cudmore, M.; Hadoke, P. W., Dysregulation of hydrogen sulfide producing enzyme cystathionine γ-lyase contributes to maternal hypertension and placental abnormalities in preeclampsia. Circulation 2013, 127, (25), 2514-2522.
76.Wu, D.; Si, W.; Wang, M.; Lv, S.; Ji, A.; Li, Y., Hydrogen sulfide in cancer: friend or foe? Nitric oxide 2015, 50, 38-45.
77.Coletta, C.; Papapetropoulos, A.; Erdelyi, K.; Olah, G.; Módis, K.; Panopoulos, P.; Asimakopoulou, A.; Gerö, D.; Sharina, I.; Martin, E., Hydrogen sulfide and nitric oxide are mutually dependent in the regulation of angiogenesis and endothelium-dependent vasorelaxation. Proceedings of the National Academy of Sciences 2012, 109, (23), 9161-9166.
78.Goubern, M.; Andriamihaja, M.; Nübel, T.; Blachier, F.; Bouillaud, F., Sulfide, the first inorganic substrate for human cells. The FASEB Journal 2007, 21, (8), 1699-1706.
79.Papapetropoulos, A.; Pyriochou, A.; Altaany, Z.; Yang, G.; Marazioti, A.; Zhou, Z.; Jeschke, M. G.; Branski, L. K.; Herndon, D. N.; Wang, R., Hydrogen sulfide is an endogenous stimulator of angiogenesis. Proceedings of the National Academy of Sciences 2009, 106, (51), 21972-21977.
80.Zhao, K.; Ju, Y.; Li, S.; Altaany, Z.; Wang, R.; Yang, G., S‐sulfhydration of MEK 1 leads to PARP‐1 activation and DNA damage repair. EMBO reports 2014, 15, (7), 792-800.
81.Yang, G.; Cao, K.; Wu, L.; Wang, R., Cystathionine γ-lyase overexpression inhibits cell proliferation via a H2S-dependent modulation of ERK1/2 phosphorylation and p21Cip/WAK-1. Journal of Biological Chemistry 2004, 279, (47), 49199-49205.
82.Lee, Z. W.; Teo, X. Y.; Tay, E. W.; Tan, C. H.; Hagen, T.; Moore, P.; Deng, L. W., Utilizing hydrogen sulfide as a novel anti‐cancer agent by targeting cancer glycolysis and p H imbalance. British journal of pharmacology 2014, 171, (18), 4322-4336.
83.Hanahan, D.; Weinberg, R. A., Hallmarks of cancer: the next generation. cell 2011, 144, (5), 646-674.
84.Rose, P.; Moore, P. K.; Ming, S. H.; Nam, O. C.; Armstrong, J. S.; Whiteman, M., Hydrogen sulfide protects colon cancer cells from chemopreventative agent β-phenylethyl isothiocyanate induced apoptosis. World journal of gastroenterology: WJG 2005, 11, (26), 3990.
85.Alexander, B. E.; Coles, S. J.; Fox, B. C.; Khan, T. F.; Maliszewski, J.; Perry, A.; Pitak, M. B.; Whiteman, M.; Wood, M. E., Investigating the generation of hydrogen sulfide from the phosphonamidodithioate slow-release donor GYY4137. MedChemComm 2015, 6, (9), 1649-1655.
86.Zhu, C.; Yang, G.; Li, H.; Du, D.; Lin, Y., Electrochemical sensors and biosensors based on nanomaterials and nanostructures. Analytical chemistry 2015, 87, (1), 230-249.
87.Kasai, N.; Han, C.; Torimitsu, K., Hydrogen peroxide distribution and neuronal cell death in a rat hippocampal slice. Sensors and Actuators B: Chemical 2005, 108, (1-2), 746-750.
88.Liu, X.; Feng, H.; Zhang, J.; Zhao, R.; Liu, X.; Wong, D. K., Hydrogen peroxide detection at a horseradish peroxidase biosensor with a Au nanoparticle–dotted titanate nanotube| hydrophobic ionic liquid scaffold. Biosensors and Bioelectronics 2012, 32, (1), 188-194.
89.Xi, F.; Liu, L.; Chen, Z.; Lin, X., One-step construction of reagentless biosensor based on chitosan-carbon nanotubes-nile blue-horseradish peroxidase biocomposite formed by electrodeposition. Talanta 2009, 78, (3), 1077-1082.
90.Chen, X.; Wu, G.; Cai, Z.; Oyama, M.; Chen, X., Advances in enzyme-free electrochemical sensors for hydrogen peroxide, glucose, and uric acid. Microchimica Acta 2014, 181, (7-8), 689-705.
91.Yao, Z.; Yang, X.; Wu, F.; Wu, W.; Wu, F., Synthesis of differently sized silver nanoparticles on a screen-printed electrode sensitized with a nanocomposites consisting of reduced graphene oxide and cerium (IV) oxide for nonenzymatic sensing of hydrogen peroxide. Microchimica Acta 2016, 183, (10), 2799-2806.
92.Yang, Z.; Qi, C.; Zheng, X.; Zheng, J., Sensing hydrogen peroxide with a glassy carbon electrode modified with silver nanoparticles, AlOOH and reduced graphene oxide. Microchimica Acta 2016, 183, (3), 1131-1136.
93.Kogularasu, S.; Govindasamy, M.; Chen, S.-M.; Akilarasan, M.; Mani, V., 3D graphene oxide-cobalt oxide polyhedrons for highly sensitive non-enzymatic electrochemical determination of hydrogen peroxide. Sensors and Actuators B: Chemical 2017, 253, 773-783.
94.Ensafi, A. A.; Jafari–Asl, M.; Rezaei, B., A novel enzyme-free amperometric sensor for hydrogen peroxide based on Nafion/exfoliated graphene oxide–Co3O4 nanocomposite. Talanta 2013, 103, 322-329.
95.Dai, H.; Chen, Y.; Niu, X.; Pan, C.; Chen, H.; Chen, X., High-performance electrochemical biosensor for nonenzymatic H2O2 sensing based on Au@ C-Co3O4 heterostructures. Biosensors and Bioelectronics 2018, 118, 36-43.
96.Das, R. K.; Golder, A. K., Co3O4 spinel nanoparticles decorated graphite electrode: Bio-mediated synthesis and electrochemical H2O2 sensing. Electrochimica Acta 2017, 251, 415-426.
97.Barkaoui, S.; Haddaoui, M.; Dhaouadi, H.; Raouafi, N.; Touati, F., Hydrothermal synthesis of urchin-like Co3O4 nanostructures and their electrochemical sensing performance of H2O2. Journal of Solid State Chemistry 2015, 228, 226-231.
98.Jia, W.; Guo, M.; Zheng, Z.; Yu, T.; Rodriguez, E. G.; Wang, Y.; Lei, Y., Electrocatalytic oxidation and reduction of H2O2 on vertically aligned Co3O4 nanowalls electrode: Toward H2O2 detection. Journal of Electroanalytical Chemistry 2009, 625, (1), 27-32.
99.Liu, M.; He, S.; Chen, W., Co3O4 nanowires supported on 3D N-doped carbon foam as an electrochemical sensing platform for efficient H2O2 detection. Nanoscale 2014, 6, (20), 11769-11776.
100.Zhu, B.; Tang, S.; Vongehr, S.; Xie, H.; Zhu, J.; Meng, X., FeCo2O4 submicron-tube arrays grown on Ni foam as high rate-capability and cycling-stability electrodes allowing superior energy and power densities with symmetric supercapacitors. Chemical Communications 2016, 52, (12), 2624-2627.
101.Qu, F.; Jiang, H.; Yang, M., Designed formation through a metal organic framework route of ZnO/ZnCo 2 O 4 hollow core–shell nanocages with enhanced gas sensing properties. Nanoscale 2016, 8, (36), 16349-16356.
102.Ge, X.; Li, Z.; Wang, C.; Yin, L., Metal–organic frameworks derived porous core/shell structured ZnO/ZnCo2O4/C hybrids as anodes for high-performance lithium-ion battery. ACS applied materials & interfaces 2015, 7, (48), 26633-26642.
103.Xiao, X.; Wang, G.; Zhang, M.; Wang, Z.; Zhao, R.; Wang, Y., Electrochemical performance of mesoporous ZnCo2O4 nanosheets as an electrode material for supercapacitor. Ionics 2018, 24, (8), 2435-2443.
104.Liu, J.; Xia, Q.; Wang, Y.; Xia, H., Mesoporous ZnCo2O4-ZnO hybrid nanotube arrays as advanced anodes for lithium-ion batteries. Materials Letters 2017, 193, 220-223.
105.Li, M.; Yang, W.; Huang, Y.; Yu, Y., Hierarchical mesoporous Co3O4@ ZnCo2O4 hybrid nanowire arrays supported on Ni foam for high-performance asymmetric supercapacitors. Science China Materials 2018, 61, (9), 1167-1176.
106.Dong, H.; Zhou, Q.; Zhang, L.; Tian, Y., Rational Design of Specific Recognition Molecules for Simultaneously Monitoring of Endogenous Polysulfide and Hydrogen Sulfide in the Mouse Brain. Angewandte Chemie International Edition 2019, 58, (39), 13948-13953.
107.Qi, P.; Wan, Y.; Zhang, D.; Wu, J., Reduced graphene sheets modified electrodes for electrochemical detection of sulfide. Electroanalysis 2011, 23, (12), 2796-2801.
108.Hu, X.-B.; Liu, Y.-L.; Wang, W.-J.; Zhang, H.-W.; Qin, Y.; Guo, S.; Zhang, X.-W.; Fu, L.; Huang, W.-H., Biomimetic graphene-based 3D scaffold for long-term cell culture and real-time electrochemical monitoring. Analytical chemistry 2018, 90, (2), 1136-1141.
109.Kumar, N. A.; Dar, M. A.; Gul, R.; Baek, J.-B., Graphene and molybdenum disulfide hybrids: synthesis and applications. Materials Today 2015, 18, (5), 286-298.
110.Govindasamy, M.; Chen, S.-M.; Mani, V.; Akilarasan, M.; Kogularasu, S.; Subramani, B., Nanocomposites composed of layered molybdenum disulfide and graphene for highly sensitive amperometric determination of methyl parathion. Microchimica Acta 2017, 184, (3), 725-733.
111.Wang, H.; Feng, H.; Li, J., Graphene and graphene‐like layered transition metal dichalcogenides in energy conversion and storage. Small 2014, 10, (11), 2165-2181.
112.Hall, J. R.; Schoenfisch, M. H., Direct electrochemical sensing of hydrogen sulfide without sulfur poisoning. Analytical chemistry 2018, 90, (8), 5194-5200.
113.Tran, P. D.; Tran, T. V.; Orio, M.; Torelli, S.; Truong, Q. D.; Nayuki, K.; Sasaki, Y.; Chiam, S. Y.; Yi, R.; Honma, I., Coordination polymer structure and revisited hydrogen evolution catalytic mechanism for amorphous molybdenum sulfide. Nature materials 2016, 15, (6), 640-646.
114.Dai, Y.-Q.; Zhou, D.-M.; Shiu, K.-K., Permeability and permselectivity of polyphenylenediamine films synthesized at a palladium disk electrode. Electrochimica Acta 2006, 52, (1), 297-303.
115.Ahmad, R.; Wolfbeis, O. S.; Hahn, Y.-B.; Alshareef, H. N.; Torsi, L.; Salama, K. N., Deposition of nanomaterials: a crucial step in biosensor fabrication. Materials Today Communications 2018, 17, 289-321.
116.Kurra, N.; Jiang, Q.; Nayak, P.; Alshareef, H. N., Laser-derived graphene: a three-dimensional printed graphene electrode and its emerging applications. Nano Today 2019, 24, 81-102.
117.Chen, Y.; Xu, J.; Yang, Y.; Zhao, Y.; Yang, W.; He, X.; Li, S.; Jia, C., Enhanced electrochemical performance of laser scribed graphene films decorated with manganese dioxide nanoparticles. Journal of Materials Science: Materials in Electronics 2016, 27, (3), 2564-2573.
118.Cardoso, A. R.; Marques, A. C.; Santos, L.; Carvalho, A. F.; Costa, F. M.; Martins, R.; Sales, M. G. F.; Fortunato, E., Molecularly-imprinted chloramphenicol sensor with laser-induced graphene electrodes. Biosensors and Bioelectronics 2019, 124, 167-175.
119.Hummers Jr, W. S.; Offeman, R. E., Preparation of graphitic oxide. Journal of the american chemical society 1958, 80, (6), 1339-1339.
120.Ma, M. X.; Chen, W. M.; Guo, L.; Li, J. H.; Chen, C. P.; Yang, S. H., Magnetic Co3O4 nanowires, preparation and properties. Chinese Chemical Letters 2012, 23, (7), 851-854.
121.Ning, F.; Shao, M.; Zhang, C.; Xu, S.; Wei, M.; Duan, X., Co3O4@ layered double hydroxide core/shell hierarchical nanowire arrays for enhanced supercapacitance performance. Nano Energy 2014, 7, 134-142.
122.Hou, X.; Bai, S.; Xue, S.; Shang, X.; Fu, Y.; He, D., Wrinkled-paper-like ZnCo2O4 nanoflakes as a superior anode material for ultrahigh-rate lithium-ion batteries. Journal of Alloys and Compounds 2017, 711, 592-597.
123.Kokane, S. B.; Suryawanshi, S. R.; Sasikala, R.; More, M. A.; Sartale, S. D., Architecture of 3D ZnCo2O4 marigold flowers: Influence of annealing on cold emission and photocatalytic behavior. Materials Chemistry and Physics 2017, 194, 55-64.
124.Debbichi, L.; Marco de Lucas, M.; Pierson, J.; Kruger, P., Vibrational properties of CuO and Cu4O3 from first-principles calculations, and Raman and infrared spectroscopy. The Journal of Physical Chemistry C 2012, 116, (18), 10232-10237.
125.Mishra, S.; Yogi, P.; Sagdeo, P.; Kumar, R., TiO2–Co3O4 core–shell nanorods: bifunctional role in better energy storage and electrochromism. ACS Applied Energy Materials 2018, 1, (2), 790-798.
126.Moon, I. K.; Yoon, S.; Oh, J., Three‐Dimensional Hierarchically Mesoporous ZnCo2O4 Nanowires Grown on Graphene/Sponge Foam for High‐Performance, Flexible, All‐Solid‐State Supercapacitors. Chemistry–A European Journal 2017, 23, (3), 597-604.
127.Sahoo, S.; Shim, J.-J., Facile synthesis of three-dimensional ternary ZnCo2O4/reduced graphene oxide/NiO composite film on nickel foam for next generation supercapacitor electrodes. ACS Sustainable Chemistry & Engineering 2017, 5, (1), 241-251.
128.Huang, J.; Hou, D.; Zhou, Y.; Zhou, W.; Li, G.; Tang, Z.; Li, L.; Chen, S., MoS 2 nanosheet-coated CoS 2 nanowire arrays on carbon cloth as three-dimensional electrodes for efficient electrocatalytic hydrogen evolution. Journal of Materials Chemistry A 2015, 3, (45), 22886-22891.
129.Kuang, M.; Li, T. T.; Chen, H.; Zhang, S. M.; Zhang, L. L.; Zhang, Y. X., Hierarchical Cu2O/CuO/Co3O4 core-shell nanowires: synthesis and electrochemical properties. Nanotechnology 2015, 26, (30), 304002.
130.Chen, S.; Yuan, R.; Chai, Y.; Hu, F., Electrochemical sensing of hydrogen peroxide using metal nanoparticles: a review. Microchimica Acta 2013, 180, (1), 15-32.
131.Gowthaman, N.; Sinduja, B.; John, S. A., Tuning the composition of gold–silver bimetallic nanoparticles for the electrochemical reduction of hydrogen peroxide and nitrobenzene. RSC advances 2016, 6, (68), 63433-63444.
132.Honda, M.; Kodera, T.; Kita, H., Electrochemical behavior of H2O2 at Ag in HClO4 aqueous solution. Electrochimica acta 1986, 31, (3), 377-383.
133.Kubendhiran, S.; Thirumalraj, B.; Chen, S.-M.; Karuppiah, C., Electrochemical co-preparation of cobalt sulfide/reduced graphene oxide composite for electrocatalytic activity and determination of H2O2 in biological samples. Journal of colloid and interface science 2018, 509, 153-162.
134.Allen, J. B.; Larry, R. F., Electrochemical methods fundamentals and applications. John Wiley & Sons: 2001.
135.Guo, Z.; Xu, J.; Zhang, J.; Hu, Y.; Pan, Y.; Miao, P., Facile strategy for electrochemical analysis of hydrogen peroxide based on multifunctional Fe3O4@ Ag nanocomposites. ACS Applied Bio Materials 2018, 1, (2), 367-373.
136.Yang, J.; Ye, H.; Zhao, F.; Zeng, B., A novel Cu x O nanoparticles@ ZIF-8 composite derived from core–shell metal–organic frameworks for highly selective electrochemical sensing of hydrogen peroxide. ACS Applied Materials & Interfaces 2016, 8, (31), 20407-20414.
137.Han, L.; Tang, L.; Deng, D.; He, H.; Zhou, M.; Luo, L., A novel hydrogen peroxide sensor based on electrodeposited copper/cuprous oxide nanocomposites. Analyst 2019, 144, (2), 685-690.
138.Rui, Q.; Komori, K.; Tian, Y.; Liu, H.; Luo, Y.; Sakai, Y., Electrochemical biosensor for the detection of H2O2 from living cancer cells based on ZnO nanosheets. Analytica Chimica Acta 2010, 670, (1-2), 57-62.
139.Dong, S.; Xi, J.; Wu, Y.; Liu, H.; Fu, C.; Liu, H.; Xiao, F., High loading MnO2 nanowires on graphene paper: facile electrochemical synthesis and use as flexible electrode for tracking hydrogen peroxide secretion in live cells. Analytica chimica acta 2015, 853, 200-206.
140.Li, Y.; Tang, L.; Deng, D.; Ye, J.; Wu, Z.; Wang, J.; Luo, L., A novel non-enzymatic H2O2 sensor using ZnMn2O4 microspheres modified glassy carbon electrode. Colloids and Surfaces B: Biointerfaces 2019, 179, 293-298.
141.Liu, M.; Liu, R.; Chen, W., Graphene wrapped Cu2O nanocubes: non-enzymatic electrochemical sensors for the detection of glucose and hydrogen peroxide with enhanced stability. Biosensors and Bioelectronics 2013, 45, 206-212.
142.Ju, J.; Chen, W., In situ growth of surfactant-free gold nanoparticles on nitrogen-doped graphene quantum dots for electrochemical detection of hydrogen peroxide in biological environments. Analytical chemistry 2015, 87, (3), 1903-1910.
143.Bai, Z.; Dong, W.; Ren, Y.; Zhang, C.; Chen, Q., Preparation of nano Au and Pt alloy microspheres decorated with reduced graphene oxide for nonenzymatic hydrogen peroxide sensing. Langmuir 2018, 34, (6), 2235-2244.
144.Shu, Y.; Chen, J.; Xu, Q.; Wei, Z.; Liu, F.; Lu, R.; Xu, S.; Hu, X., MoS 2 nanosheet–Au nanorod hybrids for highly sensitive amperometric detection of H 2 O 2 in living cells. Journal of Materials Chemistry B 2017, 5, (7), 1446-1453.
145.Cheng, C.; Huang, Y.; Wang, N.; Jiang, T.; Hu, S.; Zheng, B.; Yuan, H.; Xiao, D., Facile fabrication of Mn2O3 nanoparticle-assembled hierarchical hollow spheres and their sensing for hydrogen peroxide. ACS Applied Materials & Interfaces 2015, 7, (18), 9526-9533.
146.Li, R.; Liu, X.; Qiu, W.; Zhang, M., In vivo monitoring of H2O2 with polydopamine and prussian blue-coated microelectrode. Analytical chemistry 2016, 88, (15), 7769-7776.
147.Balamurugan, T.; Mani, V.; Hsieh, C.-C.; Huang, S.-T.; Peng, T.-K.; Lin, H.-Y., Real-time tracking and quantification of endogenous hydrogen peroxide production in living cells using graphenated carbon nanotubes supported Prussian blue cubes. Sensors and Actuators B: Chemical 2018, 257, 220-227.
148.Qiu, W.; Zhu, Q.; Gao, F.; Gao, F.; Huang, J.; Pan, Y.; Wang, Q., Graphene oxide directed in-situ synthesis of Prussian blue for non-enzymatic sensing of hydrogen peroxide released from macrophages. Materials Science and Engineering: C 2017, 72, 692-700.
149.Chang, K.; Chen, W., L-cysteine-assisted synthesis of layered MoS2/graphene composites with excellent electrochemical performances for lithium ion batteries. ACS nano 2011, 5, (6), 4720-4728.
150.Lakouraj, M. M.; Zare, E. N.; Moghadam, P. N., Synthesis of novel conductive poly (p‐phenylenediamine)/Fe3O4 nanocomposite via emulsion polymerization and investigation of antioxidant activity. Advances in Polymer Technology 2014, 33, (1).
151.Tortello, M.; Colonna, S.; Bernal, M.; Gomez, J.; Pavese, M.; Novara, C.; Giorgis, F.; Maggio, M.; Guerra, G.; Saracco, G., Effect of thermal annealing on the heat transfer properties of reduced graphite oxide flakes: A nanoscale characterization via scanning thermal microscopy. Carbon 2016, 109, 390-401.
152.Badawi, H. M.; Förner, W.; Ali, S. A., A comparative study of the infrared and Raman spectra of aniline and o-, m-, p-phenylenediamine isomers. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2013, 112, 388-396.
153.Lawrence, N. S.; Deo, R. P.; Wang, J., Electrochemical determination of hydrogen sulfide at carbon nanotube modified electrodes. Analytica Chimica Acta 2004, 517, (1-2), 131-137.
154.Savizi, I. S. P.; Kariminia, H.-R.; Ghadiri, M.; Roosta-Azad, R., Amperometric sulfide detection using Coprinus cinereus peroxidase immobilized on screen printed electrode in an enzyme inhibition based biosensor. Biosensors and Bioelectronics 2012, 35, (1), 297-301.
155.Zhao, Y.; Yang, Y.; Cui, L.; Zheng, F.; Song, Q., Electroactive Au@ Ag nanoparticles driven electrochemical sensor for endogenous H2S detection. Biosensors and Bioelectronics 2018, 117, 53-59.
156.Olson, K. R.; DeLeon, E. R.; Liu, F., Controversies and conundrums in hydrogen sulfide biology. Nitric oxide 2014, 41, 11-26.
157.Brown, M. D.; Schoenfisch, M. H., Nitric oxide permselectivity in electropolymerized films for sensing applications. ACS sensors 2016, 1, (12), 1453-1461.
158.Lee, Z. W.; Zhou, J.; Chen, C.-S.; Zhao, Y.; Tan, C.-H.; Li, L.; Moore, P. K.; Deng, L.-W., The slow-releasing hydrogen sulfide donor, GYY4137, exhibits novel anti-cancer effects in vitro and in vivo. PloS one 2011, 6, (6), e21077.
159.Asif, M.; Aziz, A.; Ashraf, G.; Wang, Z.; Wang, J.; Azeem, M.; Chen, X.; Xiao, F.; Liu, H., Facet-inspired core–shell gold nanoislands on metal oxide octadecahedral heterostructures: high sensing performance toward sulfide in biotic fluids. ACS applied materials & interfaces 2018, 10, (43), 36675-36685.



QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top