跳到主要內容

臺灣博碩士論文加值系統

(44.200.168.16) 您好!臺灣時間:2023/04/02 00:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:Krishnapandi Alagumalai
研究生(外文):KRISHNAPANDI ALAGUMALAI
論文名稱:貴金屬與稀土金屬複合金屬氧化物材料用於抗生素藥物及有機污染物的電化學連續感測之研究
論文名稱(外文):A series study of silver and rare earth metal doped metal oxides with carbon composites for electrochemical sensing of antibiotic drugs and organic pollutants
指導教授:陳生明
指導教授(外文):CHEN, SHEN-MING
口試委員:黃國林曾添文駱碧秀陳生明呂光烈
口試委員(外文):HUANG, KUO-LINTSENG, TIAN-MUNLOU, BIH-SHOWCHEN, SHEN-MINGLU, KUANG-LIEH
口試日期:2021-07-02
學位類別:博士
校院名稱:國立臺北科技大學
系所名稱:能源與光電材料外國學生專班(EOMP)
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:英文
論文頁數:262
中文關鍵詞:貴金屬與稀土金屬属支撑之金屬氧化物碳複合材料共沉澱法與超音波法有機污染物電化學感測器環境與生物樣品
外文關鍵詞:Noble and rare earth metal-supported metal oxidesCarbon compositesCo-precipitation and ultrasonic methodsOrganic pollutantsElectrochemical sensorEnvironmental and biological samples
相關次數:
  • 被引用被引用:0
  • 點閱點閱:61
  • 評分評分:
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:0
近年來,抗生素藥物被廣泛的應用於臨床與畜牧業。不僅如此,在現代農藥中也廣泛的使用以提高農業的產能。然而,大量使用抗生素藥物與農藥將會為人類帶來嚴重的環境及水體的品質問題。因此,如何有效應用抗生素藥物或是農藥並監測生物和環境樣品中這些有毒成分的於環境中的含量成為科學界的重要議題。而開發電化學感測器並利用其特性以檢測生物與環境樣品中的有毒或是有機成分顯得十分重要。本邊研究最主要研究:如何利用貴金屬與稀土金屬碳複合金屬氧化物進行電催化用以感測抗生素藥物和有機污染物。將貴金屬和稀土金屬氧化物以共沉澱法及超音合成法與碳製成複合金屬。採用金屬氧化物作為碳載體可提高感測器的催化活性、導電性與物理化學性質。
研究人員投入開發先進以及且具優異電化學性能電催化劑最為有機農藥殘留與抗生素藥物感測。貴金屬和稀土金屬氧化物憑藉其物理化學特性在電化學感測器中引起大家的關注。透過共沉澱法將銀摻入卡羅姆硬幣結構氧化鈷(Ag-Co3O4 NPs),以作為細胞毒性替硝唑(TNZ)的電化學感測。Ag-Co3O4 NPs 修飾電極廢水樣品感測中對TNZ有著低檢測極限、良好的靈敏度、高穩定性以及可觀的回收率。而稀土釤金屬掛載的氧化鈷奈米顆粒(SmCoO3)其特異性與靈敏度以檢測抗精神病藥物:鹽酸異丙嗪(PHY)。由SmCoO3所修飾的電極具有高導電性、寬廣的動態線性範圍、高靈敏度並對PHY有著的良好的檢測極限。即便是在污水中也可獲得良好的回收率。透過超音波法將氧化石墨烯(GO)與錫酸鏑納米片(Dy2Sn2O7)疊合,做為蔬菜樣品中的克百威(CF)電化學檢測材料,從解果中,我們可獲得良好的回收率。接著將感測器應用於奈莫耳級的克百威檢測,並驗證感測器的靈敏度和儲存穩定性。再來將具功能化的碳奈米球 (FCNS)用於製備氧化钆用於環境樣品中的多菌靈 (CBZ) 檢測。以15天做為間格進行實例應用分析,從解果得知所製作的感測器擁有優秀的回收率。將摻入氧化石墨烯 (AgZrO2/GO) 的鋯酸銀奈米薄片利用共沉澱和超音合成進行製備。將修飾電極作為綠原酸(CGA)的特異性和靈敏性感測,經修飾的電極對 CGA有著良好的電催化活性,有著高的靈敏度、寬廣的線性範圍、低檢測極限、高穩定性以及良好的選擇性並在感測生物樣品與水樣品中的CGA時展現出了高回收率。

Recently, antibiotic drugs are widely applicable by many users including clinical and animal husbandry. On the other hand, pesticides are also extensively used in the modern forming to deliver high yield harvest in agriculture. However, the extensive usage of antibiotic drug and pesticide residues could cause severe issues for human beings and affects the quality of environmental and aqueous samples. Thus, the serious impacts of antibiotic drugs and organic pesticides are a prominent topic in the scientific community. Therefore, there is necessary for monitoring the environmental levels of those toxic components in the biological and environmental samples. Instead, the electrochemical sensor is a key method for sensing the toxic/organic components from the biological and environmental samples due to its remarkable properties. This thesis mainly focused on the synthesis and electrocatalytic investigation of various noble and rare earth metal-reinforced metal oxides with carbon composite for electrochemical detection of antibiotic drugs and organic pollutants. The noble and rare earth metal-reinforced metal oxides with carbon composite metal via familiar co-precipitation and ultrasonication methods. The purpose of carbon support in the metal oxides is to boost their catalytic activity, conductivity, and physicochemical properties of the sensor.
Recently, the researcher's are focused on the development of various advanced or newly designed electrocatalyst for the investigation of organic pesticide residues and antibiotic drugs with exceptional electrochemical performance. Specifically, noble and rare earth metal-supported metal oxides were achieved significant interest in the electrochemical sensor due to their remarkable physicochemical characteristics. Therefore, firstly, we designed a silver metal incorporated carrom coin structured cobalt oxide (Ag-Co3O4 NPs) through a simple co-precipitation method and implemented it for the electrochemical detection of cytotoxic Tinidazole (TNZ). The Ag-Co3O4 NPs modified electrode showed a low detection limit, good sensitivity, stability, and appreciable recovery for TNZ in various wastewater samples. Further, the size confined rare earth samarium metal-supported cobalt oxide nanoparticle (SmCoO3) was employed for the specific and sensitive detection of antipsychotic drug promethazine hydrochloride (PHY). The SmCoO3 modified electrode depicts high conducting property, wide dynamic linear range, sensitivity, and good limit of detection toward PHY. Also, given a good recovery result in the presence of various real-time samples. Then, the interlayer effect of graphene oxide (GO) incorporated with dysprosium stannate nanoplatelets (Dy2Sn2O7) was prepared through a facile co-precipitation followed by an ultrasonication method for the electrochemical detection of Carbofuran (CF) in vegetable samples with an acceptable recovery level of CF. In addition, it has given a nanomolar of detection, sensitivity, and excellent storage stability toward the CF. Next, gadolinium oxide (Gd2O3) was prepared with the support of functionalized carbon nanosphere (FCNS) for a portable detection of Carbendazim (CBZ) pesticide in aqueous environmental samples. The real-time application was studied with an in-time interval of 15 days and obtained an acceptable recovery level for the practical applications. Likewise, silver zirconate nanoflakes incorporated with graphene oxide (AgZrO2/GO) was prepared by co-precipitation followed ultrasonication. The modified electrode was employed for the specific and sensitive detection of chlorogenic acid (CGA). The modified electrode improved electrocatalytic activity towards CGA and exhibited higher sensitivity, a wide linear range, a lower limit of detection, appreciable stability, and good selectivity. In addition, the proposed sensor was depicted the appreciable recovery level of CGA in the biological and water samples.

摘要………………………………………………………………………………………………..i
Abstract…………………………………………………………………………………………...iii
CERTIFICATE…………………………………………………………………………………..vi
DECLARATION………………………………………………………………………………..vii
ACKNOWLEDGEMENT………………………………………………………………………viii
Chapter 1 Introduction………………………………………………………………………….....1
1.1 General introduction…………………………………………………………………...1
1.2 Electrochemical sensing……………………………………………………………….3
1.2.1 Conductance and impedance………………………………………………...5
1.2.2 Types of (ECS)………………………………………………………………5
1.2.3 Potentiometry/Voltammetry…………………………………………………8
1.2.4 Choosing of electrodes system……………………………………………….9
1.2.5 Types of voltammetry………………………………………………………..9
1.2.6 Cyclic voltammetry………………………………………………………...10
1.2.7 Differential pulse voltammetry…………………………………………….11
1.2.8 Amperometric sensor………………………………………………………11
1.3 Materials for working electrode………………………………………………………12
1.3.1 Metal and metal oxides……………………………………………………..12
1.3.2 Transition and rare earth metal oxides……………………………………...12
1.4 Binary metal oxides (BMO)…………………………………………………….........14
1.4.1 MOs and BMOs with carbon support……………………….………………14
1.5 Various carbon supports……………………………………………………………...15
1.5.1 Graphene oxide……………………………………………………………..15
1.5.2 Functionalized carbon nanosphere…………………………………………16
1.6 Various analytes……………………………………………………………………...16
1.6.1 Pharmaceuticals…………………………………………………………….17
1.6.1.1 Antibiotic drugs…………………………………………………………..18
1.6.1.2 Antihistamic drug………………………………………………………...19
1.6.2 Pesticides…………………………………………………………………...19
1.6.3 Fungicides………………………………………………………………….20
1.7 Scope of the present work……………………………………………………….........21
1.8 References……………………………………………………………………………23
Chapter 2 Experimental and characterization methods………………………………………….34
2.1Experimental materials and reagents………………………………………………….34
2.2 Synthesis of binary noble and rare earth metal oxide…………………………………34
2.2.1 Synthesis of Carrom coins Ag-Co3O4 NPs………………………………….34
2.2.2 Synthesis of SmCoO3 NPs………………………………………………….36
2.3 Synthesis of binary noble and rare earth metal oxide with carbon composites….........37
2.3.1 Synthesis and fabrication of Dy2Sn2O7/GO composite…………………….37
2.3.2 Preparation and modification of Gd2O3/F-CNS composite…………………39
2.3.3 Synthesis of Ag-ZrO2/GO composite and electrode modification………….40
2.4 Material characterizations……………………………………………………………41
2.4.1 Raman spectroscopy………………………………………………………..41
2.4.2 Fourier transfer infrared spectroscopy……………………………………...42
2.4.3 X-ray diffraction……………………………………………………………43
2.4.4 X-ray photoelectron spectroscopy………………………………………….44
2.4.5 Field emission scanning electron microscopy………………………………44
2.4.6 High resolution transmission electron microscopy…………………………45
2.4.7 Energy-dispersive X-ray spectroscopy……………………………………..46
2.5 Electrochemical characterization………………………………………………….....47
2.6 References…………………………………………………………………………....47
Chapter 3 Novel electrochemical methods for detection of cytotoxic Tinidazole in aqueous media……………………………………………………………………………..…49
3.1 Introduction ……………………………………………………………………..…..50
3.2 Experimental section…………………………………………………………………53
3.2.1 Reagents and materials……………………………………………………..53
3.2.2 Sample collection and storage……………………………………………...53
3.2.3 Synthesis of carrom coins Ag-Co3O4 NPs………………………………….54
3.2.4 Electrode fabrication of Ag-Co3O4 NPs……………………………………55
3.2.5 Characterization of carrom coins structured Ag-Co3O4 NPs........................56
3.3 Result and discussions………………………………………………………………..57
3.3.1 P-XRD, Raman, and FTIR analysis………………………………………...57
3.3.2 XPS analysis………………………………………………………………..58
3.3.3 Morphological studies……………………………………………………... 60
3.3.4 Electrochemical optimization………………………………………………63
3.3.5 Amperometric i-t response of Ag-Co3O4 NPs/GCE towards TNZ………….73
3.3.6 Studies of reproducibility, repeatability, and stability of the sensor………...77
3.3.7 Application…………………………………………………………………78
3.3.7.1 Electrochemical determination of TNZ in water and wastewater samples.78
3.4 Conclusion……………………………………………………………………………82
3.5 References……………………………………………………………………………83
Chapter 4 Designing of perovskite structured samarium cobalt trioxide nanoparticles (SmCoO3 NPs): Regulated as an effective and reliable platform for nanomolar level promethazine hydrochloride………………………………………………………………………….95
4.1 Introduction…………………………………………………………………………..96
4.2 Experimental section ……………………………………………………………99
4.2.1 Materials and reagents …………………………………………………….99
4.2.2 Characterization and electrochemical techniques ……………………….....99
4.2.3 Synthesis of SmCoO3 NPs………………………………………………...101
4.2.4 Fabrication of SmCoO3 NPs modified glassy carbon electrode ………,…101
4.3 Result and discussion………………………………………………………………..102
4.3.1 Characterization of SmCoO3 NPs…………………………………………102
4.3.2. Morphological investigation of SmCoO3 NPs …………………………...104
4.4 Electrochemical analysis…..………………………………………………………..107
4.4.1 Electrochemical behavior of SmCoO3/GCE towards PHY…..……………107
4.4.2 Differential Pulse Voltammetry (DPV) analysis of PHY through SmCoO3/GC………………………………………………………...…………..113
4.4.3 Real-time monitoring……………………………………………………..118
4.5 Conclusion………………………………………………………………………….121
4.6 References……………………………………………………………………..........122
Chapter 5 Rational design and interlayer effect of dysprosium-stannate nanoplatelets incorporated graphene oxide: A versatile and competent electrocatalyst for toxic carbamate pesticide detection in vegetables……..……………………………………………………….131
5.1 Introduction…..……………………………………………………………………..132
5.2 Experimental section…..……………………………………………………………135
5.2.1 Materials and reagents. …………………………………………………...135
5.2.2 Material characterizations..……………………………………………….135
5.2.3 Synthesis of Dy2Sn2O7 nanoplatelets...……………………………………136
5.2.4 Synthesis and fabrication of Dy2Sn2O7/GO composite……………………137
5.3 Results and discussions.……………………………………………………….........138
5.3.1 Structural analysis………………………………………………………...138
5.4 Electro-chemical performance, redox property, and catalytic activity of CF………..144
5.5 Kinetic effects of scan rate and pH……………………………………………..........150
5.6 Determination of CF, interference, and stability analysis…………………………...152
5.7 Real-time analysis of CF…………………………………………………………….157
5.8 Conclusion……………………………………………………………………..........159
5.8 References…………………………………………………………………………..160
Chapter 6 Influence of gadolinium oxide with functionalized carbon nanosphere: A portable advanced electrocatalyst for carbendazim pesticide detection in Aqueous environmental samples……………………………………………………………...170
6.1 Introduction………………………………………………………………………....171
6.2 Experimental section ………………………………………………………………..174
6.2.1 Materials ………………………………………………………………….174
6.2.2 Preparation of Gd2O3 and functionalized carbon nanospheres …………...174
6.2.3 Preparation and modification of Gd2O3/F-CNS composite..……………...175
6.2.4 Characterization …………………………………………………………..176
6.2.5 Electrochemical experiments ……………………………………………..177
6.3 Results and discussion………………………………………………………………177
6.3.1 Structural analysis ………………………………………………………...177
6.3.2 Electrocatalytic analysis …………………………………………………..183
6.3.3 Electrochemical investigation of CBZ ……………………………………186
6.3.4 Optimizations ……………………………………………………………..189
6.3.5 DPV determination of CBZ ………………………………………………193
6.3.6 Reproducibility, repeatability, and stability ………………………………196
6.3.7 Practical application ………………………………………………………198
6.4 Conclusion …………………………………………………………………………206
6.5 References ………………………………………………………………………….206
Chapter 7 A portable advanced electrocatalyst for chlorogenic acid evaluation in real-time samples……………………………………………………………………………...214
7.1 Introduction ………………………………………………………………………...215
7.2 Experimental section………………………………………………………………..218
7.2.1 Materials………………………………………………………………......218
7.2.2 Synthesis of Ag-ZrO2 and GO…………………………………………....219
7.2.3 Synthesis of graphene oxide……………………………………………....220
7.2.4 Synthesis of Ag-ZrO2/GO composite and electrode modification………. 220
7.2.5 Modification of Ag-ZrO2/GO composite………………………………... 221
7.2.6 Characterization………………………………………………………….. 221
7.2.7 Electrochemical experiments…………………………………………….. 222
7.3 Results and discussions…………………………………………………………….. 222
7.3.1 Structural characterizations of Ag-ZrO2/GO nanocomposite……………. 222
7.3.2 Electrocatalytic analysis………………………………………………….. 229
7.3.3 Electrochemical investigation of CGA…………………………………... 231
7.3.4 Optimizations…………………………………………………………….. 231
7.3.5 DPV determination of CGA……………………………………………… 237
7.3.6 Reproducibility, repeatability, and stability……………………………… 239
7.3.7 Practical application……………………………………………………… 241
7.4 Conclusion………………………………………………………………………… 244
7.5 References…………………………………………………………………………..244
Chapter 8 Summary and conclusion……………………………………………………….…...255
List of publications………………………………………………………………....260
Chapter-1
(1) John; Seitz, L. Global Issues : An Introduction. World 2002, 1–28.
(2) Wilkinson, J. L.; Boxall, A. B. A.; Kolpin, D. W. A Novel Method to Characterise Levels of Pharmaceutical Pollution in Large-Scale Aquatic Monitoring Campaigns. Appl. Sci. 2019, 9 (7). https://doi.org/10.3390/app9071368.
(3) Klimaszyk, P.; Rzymski, P. Water and Aquatic Fauna on Drugs: What Are the Impacts of Pharmaceutical Pollution? 2018, 255–278. https://doi.org/10.1007/978-3-319-79014-5_12.
(4) Larsson, D. G. J. Pollution from Drug Manufacturing: Review and Perspectives. Philos. Trans. R. Soc. B Biol. Sci. 2014, 369 (1656). https://doi.org/10.1098/rstb.2013.0571.
(5) Thompson, L. A.; Darwish, W. S. Environmental Chemical Contaminants in Food: Review of a Global Problem. J. Toxicol. 2019, 2019. https://doi.org/10.1155/2019/2345283.
(6) Lee, C. Y.; Chen, Y. P. P. Prediction of Drug Adverse Events Using Deep Learning in Pharmaceutical Discovery. Brief. Bioinform. 2021, 22 (2), 1884–1901. https://doi.org/10.1093/bib/bbaa040.
(7) Lee, G. H.; Choi, K. C. Adverse Effects of Pesticides on the Functions of Immune System. Comp. Biochem. Physiol. Part - C Toxicol. Pharmacol. 2020, 235 (April), 108789. https://doi.org/10.1016/j.cbpc.2020.108789.
(8) Abinaya, M.; Muthuraj, V. Bi-Functional Catalytic Performance of Silver Manganite/Polypyrrole Nanocomposite for Electrocatalytic Sensing and Photocatalytic Degradation. Colloids Surfaces A Physicochem. Eng. Asp. 2020, 604 (March), 125321. https://doi.org/10.1016/j.colsurfa.2020.125321.
(9) Noviana, E.; Carrão, D. B.; Pratiwi, R.; Henry, C. S. Emerging Applications of Paper-Based Analytical Devices for Drug Analysis: A Review. Anal. Chim. Acta 2020, 1116, 70–90. https://doi.org/10.1016/j.aca.2020.03.013.
(10) Klimuntowski, M.; Alam, M. M.; Singh, G.; Howlader, M. M. R. Electrochemical Sensing of Cannabinoids in Biofluids: A Noninvasive Tool for Drug Detection. ACS Sensors 2020, 5 (3), 620–636. https://doi.org/10.1021/acssensors.9b02390.
(11) Kimmel, D. W.; Leblanc, G.; Meschievitz, M. E.; Cliffel, D. E. Electrochemical Sensors and Biosensors. Anal. Chem. 2012, 84 (2), 685–707. https://doi.org/10.1021/ac202878q.
(12) Hernández-Rodríguez, J. F.; Rojas, D.; Escarpa, A. Electrochemical Sensing Directions for Next-Generation Healthcare: Trends, Challenges, and Frontiers. Anal. Chem. 2021, 93 (1), 167–183. https://doi.org/10.1021/acs.analchem.0c04378.
(13) Rahman, M. M.; Asiri, A. M. Development of Ionic-Sensor Based on Sono-Chemically Prepared Low-Dimensional β-Fe2O3 Nanoparticles onto Flat-Gold Electrodes by an Electrochemical Approach. Sens. Bio-Sensing Res. 2015, 4, 109–117. https://doi.org/10.1016/j.sbsr.2015.05.001.
(14) Vijaya, J. J.; Kennedy, L. J.; Sekaran, G.; Jeyaraj, B.; Nagaraja, K. S. Utilization of Strontium Added NiAl2O4 Composites for the Detection of Methanol Vapors. J. Hazard. Mater. 2008, 153 (1–2), 767–774. https://doi.org/10.1016/j.jhazmat.2007.09.022.
(15) Sahay, P. P.; Nath, R. K. Al-Doped ZnO Thin Films as Methanol Sensors. Sensors Actuators, B Chem. 2008, 134 (2), 654–659. https://doi.org/10.1016/j.snb.2008.06.006.
(16) Acharyya, D.; Huang, K. Y.; Chattopadhyay, P. P.; Ho, M. S.; Fecht, H. J.; Bhattacharyya, P. Hybrid 3D Structures of ZnO Nanoflowers and PdO Nanoparticles as a Highly Selective Methanol Sensor. Analyst 2016, 141 (10), 2977–2989. https://doi.org/10.1039/c6an00326e.
(17) Wang, F.; Hu, S. Electrochemical Sensors Based on Metal and Semiconductor Nanoparticles. Microchim. Acta 2009, 165 (1–2), 1–22. https://doi.org/10.1007/s00604-009-0136-4.
(18) Zhang, L.; Zhou, Q.; Liu, Z.; Hou, X.; Li, Y.; Lv, Y. Novel Mn3O4 Micro-Octahedra: Promising Cataluminescence Sensing Material for Acetone. Chem. Mater. 2009, 21 (21), 5066–5071. https://doi.org/10.1021/cm901369u.
(19) Rahman, M. M.; Alam, M. M.; Asiri, A. M. Fabrication of an Acetone Sensor Based on Facile Ternary MnO2/Gd2O3/SnO2 Nanosheets for Environmental Safety. New J. Chem. 2017, 41 (18), 9938–9946. https://doi.org/10.1039/c7nj01372h.
(20) Radtke, B. D. B.; Davis, J. V; Wilde, F. D. CONDUCTANCE. 1–22.
(21) Callegaro, L. Electrical Impedance: Principles, Measurement, and Applications; CRC Press, 2012.
(22) Simões, F. R.; Xavier, M. G. Electrochemical Sensors; Elsevier Inc., 2017. https://doi.org/10.1016/B978-0-323-49780-0.00006-5.
(23) Evans, R. J. Encyclopedia of Biophysics; 2013. https://doi.org/10.1007/978-3-642-16712-6.
(24) Skoog, D. A.; Holler, F. J.; Crouch, S. R. Principles of Instrumental Analysis; Cengage learning, 2017.
(25) Elgrishi, N.; Rountree, K. J.; McCarthy, B. D.; Rountree, E. S.; Eisenhart, T. T.; Dempsey, J. L. A Practical Beginner’s Guide to Cyclic Voltammetry. J. Chem. Educ. 2018, 95 (2), 197–206. https://doi.org/10.1021/acs.jchemed.7b00361.
(26) Mandler, D. Fritz Scholz (Ed.): Electroanalytical Methods. Guide to Experiments and Applications, 2nd Ed. Anal. Bioanal. Chem. 2010, 398 (7–8), 2771–2772. https://doi.org/10.1007/s00216-010-4195-5.
(27) Florescu, M.; Baicu, A.; Capan, I.; Coman, G. Selective Determination of Dopamine Using Modified Electrodes By Differential Pulse Voltammetry †. Rom. J. Biophys 2015, 25 (2), 101–116.
(28) George, J. M.; Antony, A.; Mathew, B. Metal Oxide Nanoparticles in Electrochemical Sensing and Biosensing: A Review. Microchim. Acta 2018, 185 (7). https://doi.org/10.1007/s00604-018-2894-3.
(29) Bukkitgar, S. D.; Kumar, S.; Pratibha; Singh, S.; Singh, V.; Raghava Reddy, K.; Sadhu, V.; Bagihalli, G. B.; Shetti, N. P.; Venkata Reddy, C.; Ravindranadh, K.; Naveen, S. Functional Nanostructured Metal Oxides and Its Hybrid Electrodes – Recent Advancements in Electrochemical Biosensing Applications. Microchem. J. 2020, 159 (April), 105522. https://doi.org/10.1016/j.microc.2020.105522.
(30) Agnihotri, A. S.; Varghese, A.; M, N. Transition Metal Oxides in Electrochemical and Bio Sensing: A State-of-Art Review. Appl. Surf. Sci. Adv. 2021, 4 (February), 100072. https://doi.org/10.1016/j.apsadv.2021.100072.
(31) Yáñez-Sedeño, P.; Pingarrón, J. M.; Riu, J.; Rius, F. X. Electrochemical Sensing Based on Carbon Nanotubes. TrAC - Trends Anal. Chem. 2010, 29 (9), 939–953. https://doi.org/10.1016/j.trac.2010.06.006.
(32) Huang, H.; Zhu, J. J. The Electrochemical Applications of Rare Earth-Based Nanomaterials. Analyst 2019, 144 (23), 6789–6811. https://doi.org/10.1039/c9an01562k.
(33) Zhou, Y.; Li, Y.; Han, P.; Dang, Y.; Zhu, M.; Li, Q.; Fu, Y. A Novel Low-Dimensional Heteroatom Doped Nd2O3 Nanostructure for Enhanced Electrochemical Sensing of Carbendazim. New J. Chem. 2019, 43 (35), 14009–14019. https://doi.org/10.1039/c9nj02778e.
(34) Hu, B.; Sun, Q.; Zuo, C.; Pei, Y.; Yang, S.; Zheng, H.; Liu, F. A Highly Efficient Porous Rod-like Ce-Doped ZnO Photocatalyst for the Degradation of Dye Contaminants in Water. Beilstein J. Nanotechnol. 2019, 10, 1157–1165. https://doi.org/10.3762/BJNANO.10.115.
(35) Dhanalakshmi, N.; Priya, T.; Thinakaran, N. Highly Electroactive Ce-ZnO/RGO Nanocomposite: Ultra-Sensitive Electrochemical Sensing Platform for Carbamazepine Determination. J. Electroanal. Chem. 2018, 826 (August), 150–156. https://doi.org/10.1016/j.jelechem.2018.08.036.
(36) Abinaya, M.; Rajakumaran, R.; Chen, S. M.; Karthik, R.; Muthuraj, V. In Situ Synthesis, Characterization, and Catalytic Performance of Polypyrrole Polymer-Incorporated Ag2MoO4 Nanocomposite for Detection and Degradation of Environmental Pollutants and Pharmaceutical Drugs. ACS Appl. Mater. Interfaces 2019, 11 (41), 38321–38335. https://doi.org/10.1021/acsami.9b13682.
(37) Sumathi, C.; Muthukumaran, P.; Radhakrishnan, S.; Wilson, J.; Umar, A. Controlled Growth of Single-Crystalline Nanostructured Dendrites of α-Fe2O3 Blended with MWCNT: A Systematic Investigation of Highly Selective Determination of l-Dopa. RSC Adv. 2014, 4 (44), 23050–23057. https://doi.org/10.1039/c4ra01451k.
(38) Asadian, E.; Ghalkhani, M.; Shahrokhian, S. Electrochemical Sensing Based on Carbon Nanoparticles: A Review. Sensors Actuators, B Chem. 2019, 293 (April), 183–209. https://doi.org/10.1016/j.snb.2019.04.075.
(39) Xu, J.; Wang, Y.; Hu, S. Nanocomposites of Graphene and Graphene Oxides: Synthesis, Molecular Functionalization and Application in Electrochemical Sensors and Biosensors. A Review. Microchim. Acta 2017, 184 (1), 1–44. https://doi.org/10.1007/s00604-016-2007-0.
(40) Du, D.; Zou, Z.; Shin, Y.; Wang, J.; Wu, H.; Engelhard, M. H.; Liu, J.; Aksay, L. A.; Lin, Y. Sensitive Immunosensor for Cancer Biomarker Based on Dual Signal Amplification Strategy of Graphene Sheets and Multienzyme Functionalized Carbon Nanospheres. Anal. Chem. 2010, 82 (7), 2989–2995. https://doi.org/10.1021/ac100036p.
(41) Khan, M. A. H.; Rao, M. V.; Li, Q. Recent Advances in Electrochemical Sensors for Detecting Toxic Gases: NO2, SO2 and H2S. Sensors (Switzerland) 2019, 19 (4). https://doi.org/10.3390/s19040905.
(42) Laurila, T.; Sainio, S.; Caro, M. Hybrid Carbon Based Nanomaterials for Electrochemical Detection of Biomolecules. Prog. Mater. Sci. 2017, 88, 499–594. https://doi.org/10.1016/j.pmatsci.2017.04.012.
(43) Shaw, L.; Dennany, L. Applications of Electrochemical Sensors: Forensic Drug Analysis. Curr. Opin. Electrochem. 2017, 3 (1), 23–28. https://doi.org/10.1016/j.coelec.2017.05.001.
(44) Wang, J. Amperometric Biosensors for Clinical and Therapeutic Drug Monitoring: A Review. J. Pharm. Biomed. Anal. 1999, 19 (1–2), 47–53. https://doi.org/10.1016/S0731-7085(98)00056-9.
(45) Özbek, O.; Berkel, C.; Isildak, Ö. Applications of Potentiometric Sensors for the Determination of Drug Molecules in Biological Samples. Crit. Rev. Anal. Chem. 2020, 0 (0), 1–12. https://doi.org/10.1080/10408347.2020.1825065.
(46) Truta, F.; Florea, A.; Cernat, A.; Tertis, M.; Hosu, O.; de Wael, K.; Cristea, C. Tackling the Problem of Sensing Commonly Abused Drugs Through Nanomaterials and (Bio)Recognition Approaches. Front. Chem. 2020, 8 (November). https://doi.org/10.3389/fchem.2020.561638.
(47) Velo-Gala, I.; Pirán-Montaño, J. A.; Rivera-Utrilla, J.; Sánchez-Polo, M.; Mota, A. J. Advanced Oxidation Processes Based on the Use of UVC and Simulated Solar Radiation to Remove the Antibiotic Tinidazole from Water. Chem. Eng. J. 2017, 323, 605–617. https://doi.org/10.1016/j.cej.2017.04.102.
(48) Jain, R.; Karolia, P.; Sinha, A.; Farooq. Highly Sensitive and Selective Polyaniline Nanofiber–Based Voltammetric Sensor for the Quantification of Tinidazole. Adv. Polym. Technol. 2018, 37 (2), 547–553. https://doi.org/10.1002/adv.21694.
(49) Naguib, I. A.; Abdelaleem, E. A.; Hassan, E. S.; Ali, N. W. HPTLC Method for Simultaneous Determination of Norfloxacin and Tinidazole in Presence of Tinidazole Impurity. J. Chromatogr. Sci. 2019, 57 (1), 81–86. https://doi.org/10.1093/chromsci/bmy085.
(50) Hemdan Abou-Taleb, N.; Mahmoud El-Enany, N.; Tawfik El-Sherbiny, D.; Ibrahim El-Subbagh, H. Digitally Enhanced Thin Layer Chromatography for Simultaneous Determination of Norfloxacin and Tinidazole with the Aid of Taguchi Orthogonal Array and Desirability Function Approach: Greenness Assessment by Analytical Eco-Scale. J. Sep. Sci. 2020, 43 (6), 1195–1202. https://doi.org/10.1002/jssc.201900997.
(51) Ali, M. R.; Bacchu, M. S.; Daizy, M.; Tarafder, C.; Hossain, M. S.; Rahman, M. M.; Khan, M. Z. H. A Highly Sensitive Poly-Arginine Based MIP as an Electrochemical Sensor for Selective Detection of Dimetridazole. Anal. Chim. Acta 2020, 1121, 11–16. https://doi.org/10.1016/j.aca.2020.05.004.
(52) Liu, Y.; Cao, L.; Zan, M.; Peng, J.; Wang, P.; Pang, X.; Zhang, Y.; Li, L.; Dong, W.-F.; Mei, Q. Cyan-Emitting Silicon Quantum Dots as a Fluorescent Probe Directly Used for Highly Sensitive and Selective Detection of Chlorogenic Acid. Talanta 2021, 233 (April), 122465. https://doi.org/10.1016/j.talanta.2021.122465.
(53) Liu, Q.; Dong, Z.; Hao, A.; Guo, X.; Dong, W. Synthesis of Highly Fluorescent Carbon Dots as a Dual-Excitation Rationmetric Fluorescent Probe for the Fast Detection of Chlorogenic Acid. Talanta 2021, 221 (June 2020), 121372. https://doi.org/10.1016/j.talanta.2020.121372.
(54) Huang, Z.; Zhang, Y.; Sun, J.; Chen, S.; Chen, Y.; Fang, Y. Nanomolar Detection of Chlorogenic Acid at the Cross-Section Surface of the Pencil Lead Electrode. Sensors Actuators, B Chem. 2020, 321 (June), 128550. https://doi.org/10.1016/j.snb.2020.128550.
(55) Salamanca-Neto, C. A. R.; Marcheafave, G. G.; Scremin, J.; Barbosa, E. C. M.; Camargo, P. H. C.; Dekker, R. F. H.; Scarminio, I. S.; Barbosa-Dekker, A. M.; Sartori, E. R. Chemometric-Assisted Construction of a Biosensing Device to Measure Chlorogenic Acid Content in Brewed Coffee Beverages to Discriminate Quality. Food Chem. 2020, 315 (September 2019), 126306. https://doi.org/10.1016/j.foodchem.2020.126306.
(56) Teker, T.; Aslanoglu, M. A Novel Voltammetric Sensing Platform Based on Carbon Nanotubes-Niobium Nanoparticles for the Determination of Chlorogenic Acid. Arab. J. Chem. 2020, 13 (5), 5517–5525. https://doi.org/10.1016/j.arabjc.2020.03.029.
(57) Takahashi, S.; Wada, R.; Muguruma, H.; Osakabe, N. Analysis of Chlorogenic Acids in Coffee with a Multi-Walled Carbon Nanotube Electrode. Food Anal. Methods 2020, 13 (4), 923–932. https://doi.org/10.1007/s12161-020-01714-6.
(58) Lopes, L. C.; Lima, D.; Mendes Hacke, A. C.; Schveigert, B. S.; Calaça, G. N.; Simas, F. F.; Pereira, R. P.; Iacomini, M.; Viana, A. G.; Pessôa, C. A. Gold Nanoparticles Capped with Polysaccharides Extracted from Pineapple Gum: Evaluation of Their Hemocompatibility and Electrochemical Sensing Properties. Talanta 2021, 223 (June 2020). https://doi.org/10.1016/j.talanta.2020.121634.
(59) Akhoundian, M.; Alizadeh, T. In Situ Voltammetric Determination of Promethazine on Carbon Paste Electrode Modified with Nano-Sized Molecularly Imprinted Polymer. Anal. Bioanal. Electrochem. 2020, 12 (7), 1014–1024.
(60) Lantam, A.; Limbut, W.; Thiagchanya, A.; Phonchai, A. A Portable Optical Colorimetric Sensor for the Determination of Promethazine in Lean Cocktail and Pharmaceutical Doses. Microchem. J. 2020, 159 (September), 105519. https://doi.org/10.1016/j.microc.2020.105519.
(61) de Oliveira, R. C.; Sousa, C. P.; Morais, S.; de Lima-Neto, P.; Correia, A. N. Polyethylenimine-Multi-Walled Carbon Nanotubes/Glassy Carbon Electrode as an Efficient Sensing Platform for Promethazine. J. Electrochem. Soc. 2020, 167 (10), 107506. https://doi.org/10.1149/1945-7111/ab995f.
(62) Mishra, S.; Zhang, W.; Lin, Z.; Pang, S.; Huang, Y.; Bhatt, P.; Chen, S. Carbofuran Toxicity and Its Microbial Degradation in Contaminated Environments. Chemosphere 2020, 259, 127419. https://doi.org/10.1016/j.chemosphere.2020.127419.
(63) Sun, S.; Sidhu, V.; Rong, Y.; Zheng, Y. Pesticide Pollution in Agricultural Soils and Sustainable Remediation Methods: A Review. Curr. Pollut. Reports 2018, 4 (3), 240–250. https://doi.org/10.1007/s40726-018-0092-x.
(64) Jirasirichote, A.; Punrat, E.; Suea-Ngam, A.; Chailapakul, O.; Chuanuwatanakul, S. Voltammetric Detection of Carbofuran Determination Using Screen-Printed Carbon Electrodes Modified with Gold Nanoparticles and Graphene Oxide. Talanta 2017, 175 (July), 331–337. https://doi.org/10.1016/j.talanta.2017.07.050.
(65) Dias, E.; Garcia e Costa, F.; Morais, S.; de Lourdes Pereira, M. A Review on the Assessment of the Potential Adverse Health Impacts of Carbamate Pesticides. Top. Public Heal. 2015. https://doi.org/10.5772/59613.
(66) Amatatongchai, M.; Sroysee, W.; Jarujamrus, P.; Nacapricha, D.; Lieberzeit, P. A. Selective Amperometric Flow-Injection Analysis of Carbofuran Using a Molecularly-Imprinted Polymer and Gold-Coated-Magnetite Modified Carbon Nanotube-Paste Electrode. Talanta 2018, 179 (December 2017), 700–709. https://doi.org/10.1016/j.talanta.2017.11.064.
(67) Rao, T. N.; Loo, B. H.; Sarada, B. V.; Terashima, C.; Fujishima, A. Electrochemical Detection of Carbamate Pesticides at Conductive Diamond Electrodes. Anal. Chem. 2002, 74 (7), 1578–1583. https://doi.org/10.1021/ac010935d.
(68) Monireh Khadem; Faridbod, F.; Norouzi, P.; Foroushani, A. R.; Ganjali, M. R.; Yarahmadi, R.; Shahtaheri, S. J. Voltammetric Determination of Carbofuran Pesticide in Biological and Environmental Samples Using a Molecularly Imprinted Polymer Sensor, a Multivariate Optimization. J. Anal. Chem. 2020, 75 (5), 669–678. https://doi.org/10.1134/S1061934820050068.
(69) Van Den Brink, P. J.; Hattink, J.; Bransen, F.; Van Donk, E.; Brock, T. C. M. Impact of the Fungicide Carbendazim in Freshwater Microcosms. II. Zooplankton, Primary Producers and Final Conclusions. Aquat. Toxicol. 2000, 48 (2–3), 251–264. https://doi.org/10.1016/S0166-445X(99)00037-5.
(70) Serov, A.; Artyushkova, K.; Atanassov, P. Fe-N-C Oxygen Reduction Fuel Cell Catalyst Derived from Carbendazim: Synthesis, Structure, and Reactivity. Adv. Energy Mater. 2014, 4 (10), 1–7. https://doi.org/10.1002/aenm.201301735.
(71) Panadés, R.; Ibarz, A.; Esplugas, S. Photodecomposition of Carbendazim in Aqueous Solutions. Water Res. 2000, 34 (11), 2951–2954. https://doi.org/10.1016/S0043-1354(00)00058-0.



Chpter-2
(1) Baer, D. R.; Thevuthasan, S. Characterization of Thin Films and Coatings, Third Edition.; Elsevier Ltd., 2010. https://doi.org/10.1016/B978-0-8155-2031-3.00016-8.
(2) FTIR2.Pdf.
(3) Wu, J.; Leinenweber, K.; Spence, J. C. H.; O’Keeffe, M. Ab Initio Phasing of X-Ray Powder Diffraction Patterns by Charge Flipping. Nat. Mater. 2006, 5 (8), 647–652. https://doi.org/10.1038/nmat1687.
(4) Cushman, C. V; Chatterjee, S.; Major, G. H.; Smith, N. J.; Roberts, A.; Linford, M. R. Trends in Advanced XPS Instrumentation. Vac-uum Technol. Coat. Novermber 2016.
(5) Scanning Electron Microscopy 1928 – 1965. 1995, 17, 175–185.
(6) Bernabei, M.; Allegrucci, L.; Amura, M. Fatigue Failures of Aeronautical Items: Trainer Aircraft Canopy Lever Reverse, Rescue Helicopter Main Rotor Blade and Fighter-Bomber Aircraft Ground-Attack Main Wheel. Handb. Mater. Fail. Anal. with Case Stud. from Aerosp. Automot. Ind. 2016, 87–116. https://doi.org/10.1016/B978-0-12-800950-5.00005-3.
(7) Fultz, B.; Howe, J. M. Transmission Electron Microscopy and Diffractometry of Materials; Springer Science & Business Media, 2012.
(8) Russ, J. C. Fundamentals of Energy Dispersive X-Ray Analysis: Butterworths Monographs in Materials; Butterworth-Heinemann, 2013.

Chapter-3
(1) Rahmani, H.; Gholami, M.; Mahvi, A. H.; Alimohammadi, M.; Azarian, G.; Esrafili, A.; Rahmani, K.; Farzadkia, M. Tinidazole Removal from Aqueous Solution by Sonolysis in the Presence of Hydrogen Peroxide. Bull. Environ. Contam. Toxicol. 2014, 92 (3), 341–346. https://doi.org/10.1007/s00128-013-1193-2.
(2) Rivera-Utrilla, J.; Sánchez-Polo, M.; Ferro-García, M. Á.; Prados-Joya, G.; Ocampo-Pérez, R. Pharmaceuticals as Emerging Contaminants and Their Removal from Water. A Review. Chemosphere 2013, 93 (7), 1268–1287. https://doi.org/10.1016/j.chemosphere.2013.07.059.
(3) Ortiz de García, S.; Pinto Pinto, G.; García Encina, P.; Irusta Mata, R. Consumption and Occurrence of Pharmaceutical and Personal Care Products in the Aquatic Environment in Spain. Sci. Total Environ. 2013, 444, 451–465. https://doi.org/10.1016/j.scitotenv.2012.11.057.
(4) Velo-Gala, I.; Pirán-Montaño, J. A.; Rivera-Utrilla, J.; Sánchez-Polo, M.; Mota, A. J. Advanced Oxidation Processes Based on the Use of UVC and Simulated Solar Radiation to Remove the Antibiotic Tinidazole from Water. Chem. Eng. J. 2017, 323, 605–617. https://doi.org/10.1016/j.cej.2017.04.102.
(5) Rivera-Utrilla, J.; Sánchez-Polo, M.; Prados-Joya, G.; Ferro-García, M. A.; Bautista-Toledo, I. Removal of Tinidazole from Waters by Using Ozone and Activated Carbon in Dynamic Regime. J. Hazard. Mater. 2010, 174 (1–3), 880–886. https://doi.org/10.1016/j.jhazmat.2009.09.059.
(6) Shahrokhian, S.; Rastgar, S. Electrochemical Deposition of Gold Nanoparticles on Carbon Nanotube Coated Glassy Carbon Electrode for the Improved Sensing of Tinidazole. Electrochim. Acta 2012, 78, 422–429. https://doi.org/10.1016/j.electacta.2012.06.035.
(7) Jain, R.; Karolia, P.; Sinha, A.; Farooq. Highly Sensitive and Selective Polyaniline Nanofiber–Based Voltammetric Sensor for the Quantification of Tinidazole. Adv. Polym. Technol. 2018, 37 (2), 547–553. https://doi.org/10.1002/adv.21694.
(8) Naguib, I. A.; Abdelaleem, E. A.; Hassan, E. S.; Ali, N. W.; Gamal, M. Partial Least Squares and Linear Support Vector Regression Chemometric Models for Analysis of Norfloxacin and Tinidazole with Tinidazole Impurity. Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 2020, 239, 118513. https://doi.org/10.1016/j.saa.2020.118513.
(9) Hemdan Abou-Taleb, N.; Mahmoud El-Enany, N.; Tawfik El-Sherbiny, D.; Ibrahim El-Subbagh, H. Digitally Enhanced Thin Layer Chromatography for Simultaneous Determination of Norfloxacin and Tinidazole with the Aid of Taguchi Orthogonal Array and Desirability Function Approach: Greenness Assessment by Analytical Eco-Scale. J. Sep. Sci. 2020, 43 (6), 1195–1202. https://doi.org/10.1002/jssc.201900997.
(10) Baraka, M. M.; Elsadek, M. E.; Abdelaziz, L. M.; Elbermawi, S. S. RP-HPLC Method for the Simultaneous Determination of Omeprazole, Tinidazole and Doxycycline Mixture in the Presence of Omeprazole and Tinidazole Degradation Products. Int. J. Curr. Pharm. Res. 2014, 6 (3), 48–53.
(11) H.B., F.; T.-L., D. Tinidazole: A Nitroimidazole Antiprotozoal Agent. Clin. Ther. 2005, 27 (12), 1859–1884.
(12) Fandiño, O. E.; Reviglio, L.; Linck, Y. G.; Monti, G. A.; Marcos Valdez, M. M.; Faudone, S. N.; Caira, M. R.; Sperandeo, N. R. Novel Cocrystals and Eutectics of the Antiprotozoal Tinidazole: Mechanochemical Synthesis, Cocrystallization, and Characterization. Cryst. Growth Des. 2020, 20 (5), 2930–2942. https://doi.org/10.1021/acs.cgd.9b01435.
(13) Jos, T.; Jose, A. R.; Sivasankaran, U.; Kumar, K. G. Electrochemical Sensing of Tinidazole on Modified Glassy Carbon Electrodes. J. Electrochem. Soc. 2015, 162 (4), B94–B100. https://doi.org/10.1149/2.0841504jes.
(14) Ali, M. R.; Bacchu, M. S.; Daizy, M.; Tarafder, C.; Hossain, M. S.; Rahman, M. M.; Khan, M. Z. H. A Highly Sensitive Poly-Arginine Based MIP as an Electrochemical Sensor for Selective Detection of Dimetridazole. Anal. Chim. Acta 2020, 1121, 11–16. https://doi.org/10.1016/j.aca.2020.05.004.
(15) Lin, Y.; Su, Y.; Liao, X.; Yang, N.; Yang, X.; Choi, M. M. F. Determination of Five Nitroimidazole Residues in Artificial Porcine Muscle Tissue Samples by Capillary Electrophoresis. Talanta 2012, 88, 646–652. https://doi.org/10.1016/j.talanta.2011.11.053.
(16) Qin, Q.; Qin, H.; Li, K.; Tan, R.; Liu, X.; Li, L. The Adsorption Characteristics and Degradation Mechanism of Tinidazole on an Anatase TiO2 Surface: A DFT Study. RSC Adv. 2020, 10 (4), 2104–2112. https://doi.org/10.1039/c9ra06665a.
(17) Acosta-Rangel, A.; Sánchez-Polo, M.; Polo, A. M. S.; Rivera-Utrilla, J.; Berber-Mendoza, M. S. Tinidazole Degradation Assisted by Solar Radiation and Iron-Doped Silica Xerogels. Chem. Eng. J. 2018, 344 (March), 21–33. https://doi.org/10.1016/j.cej.2018.03.051.
(18) Essam, H. M.; Saad, M. N.; Elzanfaly, E. S.; Amer, S. M. Optimization and Validation of Eco-Friendly RP-HPLC and Univariate Spectrophotometric Methods for the Simultaneous Determination of Fluorometholone and Tetrahydrozoline Hydrochloride. Acta Chromatogr. 2020. https://doi.org/10.1556/1326.2020.00783.
(19) Kamal, A. H.; El-Malla, S. F. Mixed Micellar Liquid Chromatographic Method for Simultaneous Determination of Norfloxacin and Tinidazole in Pharmaceutical Tablets. Microchem. J. 2019, 150 (July), 104151. https://doi.org/10.1016/j.microc.2019.104151.
(20) Alnajjar, A.; AbuSeada, H. H.; Idris, A. M. Capillary Electrophoresis for the Determination of Norfloxacin and Tinidazole in Pharmaceuticals with Multi-Response Optimization. Talanta 2007, 72 (2), 842–846. https://doi.org/10.1016/j.talanta.2006.11.025.
(21) Naguib, I. A.; Abdelaleem, E. A.; Hassan, E. S.; Ali, N. W. HPTLC Method for Simultaneous Determination of Norfloxacin and Tinidazole in Presence of Tinidazole Impurity. J. Chromatogr. Sci. 2019, 57 (1), 81–86. https://doi.org/10.1093/chromsci/bmy085.
(22) Sebaiy, M. M.; Hassan, W. S.; Elhennawy, M. E. Developing a High-Performance Liquid Chromatography (HPLC) Method for Simultaneous Determination of Oxytetracycline, Tinidazole and Esomeprazole in Human Plasma. J. Chromatogr. Sci. 2019, 57 (8), 724–729. https://doi.org/10.1093/chromsci/bmz046.
(23) Zhao, H.; Hou, S.; Zhao, X.; Liu, D. Adsorption and PH-Responsive Release of Tinidazole on Metal-Organic Framework CAU-1. J. Chem. Eng. Data 2019, 64 (4), 1851–1858. https://doi.org/10.1021/acs.jced.9b00106.
(24) Al-Abachi, M. Q.; Abed, S. S.; Alaloosh Alamr, M. H. Charge Transfer Spectrophotometric Determination of Metronidazole in Pharmaceutical Formulations by Normal and Reverse Flow Injection Analysis Coupled with Solid-Phase Reactor Containing Immobilized FePO4. Iraqi J. Sci. 2020, 61 (7), 1541–1554. https://doi.org/10.24996/ijs.2020.61.7.1.
(25) Wang, H.; Feng, X.; Bo, X.; Zhou, M.; Guo, L. Nickel-Based Metal-Organic Framework/Crosslinked Tubular Poly(3,4-Ethylenedioxythiophene) Composite as an Electrocatalyst for the Detection of Gallic Acid and Tinidazole. ChemElectroChem 2020, 7 (19), 4031–4037. https://doi.org/10.1002/celc.202000991.
(26) Kokulnathan, T.; Chen, S. M. Design and Construction of the Gadolinium Oxide Nanorod-Embedded Graphene Aerogel: A Potential Application for Electrochemical Detection of Postharvest Fungicide. ACS Appl. Mater. Interfaces 2020, 12 (14), 16216–16226. https://doi.org/10.1021/acsami.9b20224.
(27) Thirumalraj, B.; Rajkumar, C.; Chen, S. M.; Veerakumar, P.; Perumal, P.; Liu, S. Bin. Carbon Aerogel Supported Palladium-Ruthenium Nanoparticles for Electrochemical Sensing and Catalytic Reduction of Food Dye. Sensors Actuators, B Chem. 2018, 257, 48–59. https://doi.org/10.1016/j.snb.2017.10.112.
(28) Thirumalraj, B.; Dhenadhayalan, N.; Chen, S. M.; Liu, Y. J.; Chen, T. W.; Liang, P. H.; Lin, K. C. Highly Sensitive Fluorogenic Sensing of L-Cysteine in Live Cells Using Gelatin-Stabilized Gold Nanoparticles Decorated Graphene Nanosheets. Sensors Actuators, B Chem. 2018, 259, 339–346. https://doi.org/10.1016/j.snb.2017.12.028.
(29) Thirumalraj, B.; Rajkumar, C.; Chen, S. M.; Lin, K. Y. Determination of 4-Nitrophenol in Water by Use of a Screen-Printed Carbon Electrode Modified with Chitosan-Crafted ZnO Nanoneedles. J. Colloid Interface Sci. 2017, 499, 83–92. https://doi.org/10.1016/j.jcis.2017.03.088.
(30) Kokulnathan, T.; Wang, T.-J. Vanadium Carbide-Entrapped Graphitic Carbon Nitride Nanocomposites: Synthesis and Electrochemical Platforms for Accurate Detection of Furazolidone. ACS Appl. Nano Mater. 2020, 3 (3), 2554–2561. https://doi.org/10.1021/acsanm.9b02618.
(31) Yan, J.; Li, S.; Lan, B.; Wu, Y.; Lee, P. S. Rational Design of Nanostructured Electrode Materials toward Multifunctional Supercapacitors. Adv. Funct. Mater. 2020, 30 (2), 1–35. https://doi.org/10.1002/adfm.201902564.
(32) Qi, S.; Wu, D.; Dong, Y.; Liao, J.; Foster, C. W.; O’Dwyer, C.; Feng, Y.; Liu, C.; Ma, J. Cobalt-Based Electrode Materials for Sodium-Ion Batteries. Chem. Eng. J. 2019, 370 (March), 185–207. https://doi.org/10.1016/j.cej.2019.03.166.
(33) Kar, K. K. Springer Series in Materials Science 300 Handbook of Nanocomposite Supercapacitor Materials I; 2020.
(34) Chen, M.; Ge, Q.; Qi, M.; Liang, X.; Wang, F.; Chen, Q. Cobalt Oxides Nanorods Arrays as Advanced Electrode for High Performance Supercapacitor. Surf. Coatings Technol. 2019, 360 (August 2018), 73–77. https://doi.org/10.1016/j.surfcoat.2018.12.128.
(35) Wang, K.; Wan, J.; Xiang, Y.; Zhu, J.; Leng, Q.; Wang, M.; Xu, L.; Yang, Y. Recent Advances and Historical Developments of High Voltage Lithium Cobalt Oxide Materials for Rechargeable Li-Ion Batteries. J. Power Sources 2020, 460 (January), 228062. https://doi.org/10.1016/j.jpowsour.2020.228062.
(36) Ashok, A.; Kumar, A.; Bhosale, R. R.; Almomani, F.; Saleh Saad, M. A. H.; Suslov, S.; Tarlochan, F. Influence of Fuel Ratio on the Performance of Combustion Synthesized Bifunctional Cobalt Oxide Catalysts for Fuel Cell Application. Int. J. Hydrogen Energy 2019, 44 (1), 436–445. https://doi.org/10.1016/j.ijhydene.2018.02.111.
(37) Asiri, A. M.; Akhtar, K.; Khan, S. B. Cobalt Oxide Nanocomposites and Their Electrocatalytic Behavior for Oxygen Evolution Reaction. Ceram. Int. 2019, 45 (10), 13340–13346. https://doi.org/10.1016/j.ceramint.2019.04.028.
(38) Foroughi, M. M.; Jahani, S.; Rajaei, M. Facile Fabrication of 3D Dandelion-Like Cobalt Oxide Nanoflowers and Its Functionalization in the First Electrochemical Sensing of Oxymorphone: Evaluation of Kinetic Parameters at the Surface Electrode. J. Electrochem. Soc. 2019, 166 (14), B1300–B1311. https://doi.org/10.1149/2.0511914jes.
(39) Moridon, S. N. F.; Salehmin, M. I.; Mohamed, M. A.; Arifin, K.; Minggu, L. J.; Kassim, M. B. Cobalt Oxide as Photocatalyst for Water Splitting: Temperature-Dependent Phase Structures. Int. J. Hydrogen Energy 2019, 44 (47), 25495–25504. https://doi.org/10.1016/j.ijhydene.2019.08.075.
(40) El Aakib, H.; Rochdi, N.; Pierson, J. F.; Outzourhit, A. Reactively Sputtered Cobalt Oxide Coatings for Solar Selective Absorber Applications. Mater. Today Proc. 2020, No. xxxx, 1–6. https://doi.org/10.1016/j.matpr.2020.07.562.
(41) Zhu, X.; Wang, J.; Nguyen, D.; Thomas, J.; Norwood, R. A.; Peyghambarian, N. Linear and Nonlinear Optical Properties of Co3O4 Nanoparticle-Doped Polyvinyl-Alcohol Thin Films. Opt. Mater. Express 2012, 2 (1), 103. https://doi.org/10.1364/ome.2.000103.
(42) Roger, I.; Shipman, M. A.; Symes, M. D. Earth-Abundant Catalysts for Electrochemical and Photoelectrochemical Water Splitting. Nat. Rev. Chem. 2017, 1. https://doi.org/10.1038/s41570-016-0003.
(43) El Aakib, H.; Pierson, J. F.; Chaik, M.; Samba Vall, C.; Ait Dads, H.; Narjis, A.; Outzourhit, A. Evolution of the Structural, Morphological, Optical and Electrical Properties of Reactively RF-Sputtered Cobalt Oxide Thin Films with Oxygen Pressure. Vacuum 2019, 159 (October 2018), 346–352. https://doi.org/10.1016/j.vacuum.2018.10.065.
(44) Espinosa, J. C.; Manickam-Periyaraman, P.; Bernat-Quesada, F.; Sivanesan, S.; Álvaro, M.; García, H.; Navalón, S. Engineering of Activated Carbon Surface to Enhance the Catalytic Activity of Supported Cobalt Oxide Nanoparticles in Peroxymonosulfate Activation. Appl. Catal. B Environ. 2019, 249 (October 2018), 42–53. https://doi.org/10.1016/j.apcatb.2019.02.043.
(45) Shetti, N. P.; Malode, S. J.; Nayak, D. S.; Aminabhavi, T. M.; Reddy, K. R. Nanostructured Silver Doped TiO2/CNTs Hybrid as an Efficient Electrochemical Sensor for Detection of Anti-Inflammatory Drug, Cetirizine. Microchem. J. 2019, 150 (July), 104124. https://doi.org/10.1016/j.microc.2019.104124.
(46) Deepi, A.; Srikesh, G.; Nesaraj, A. S. One Pot Reflux Synthesis of Reduced Graphene Oxide Decorated with Silver/Cobalt Oxide: A Novel Nano Composite Material for High Capacitance Applications. Ceram. Int. 2018, 44 (16), 20524–20530. https://doi.org/10.1016/j.ceramint.2018.08.049.
(47) Iqbal, J.; Numan, A.; Ansari, M. O.; Jagadish, P. R.; Jafer, R.; Bashir, S.; Mohamad, S.; Ramesh, K.; Ramesh, S. Facile Synthesis of Ternary Nanocomposite of Polypyrrole Incorporated with Cobalt Oxide and Silver Nanoparticles for High Performance Supercapattery. Electrochim. Acta 2020, 348, 136313. https://doi.org/10.1016/j.electacta.2020.136313.
(48) Liu, Z.; Ma, C.; Cai, Q.; Hong, T.; Guo, K.; Yan, L. Promising Cobalt Oxide and Cobalt Oxide/Silver Photocathodes for Photoelectrochemical Water Splitting. Sol. Energy Mater. Sol. Cells 2017, 161 (November 2016), 46–51. https://doi.org/10.1016/j.solmat.2016.11.026.
(49) Ji, X.; Chen, Y.; Paul, B.; Vadivel, S. Photocatalytic Oxidation of Aromatic Alcohols over Silver Supported on Cobalt Oxide Nanostructured Catalyst. J. Alloys Compd. 2019, 783, 583–592. https://doi.org/10.1016/j.jallcom.2018.12.307.
(50) Yu, M.; Moon, G. hee; Castillo, R. G.; DeBeer, S.; Weidenthaler, C.; Tüysüz, H. Dual Role of Silver Moieties Coupled with Ordered Mesoporous Cobalt Oxide towards Electrocatalytic Oxygen Evolution Reaction. Angew. Chemie - Int. Ed. 2020, 59 (38), 16544–16552. https://doi.org/10.1002/anie.202003801.
(51) Corsino, D. C.; Balela, M. D. L. Room Temperature Sintering of Printer Silver Nanoparticle Conductive Ink. IOP Conf. Ser. Mater. Sci. Eng. 2017, 264 (1). https://doi.org/10.1088/1757-899X/264/1/012020.
(52) Van der Horst, C.; Silwana, B.; Iwuoha, E.; Somerset, V. Synthesis and Characterization of Bismuth-Silver Nanoparticles for Electrochemical Sensor Applications. Anal. Lett. 2015, 48 (8), 1311–1332. https://doi.org/10.1080/00032719.2014.979357.
(53) Ji, X.; Chen, Y.; Paul, B.; Vadivel, S. Photocatalytic Oxidation of Aromatic Alcohols over Silver Supported on Cobalt Oxide Nanostructured Catalyst. J. Alloys Compd. 2019, 783, 583–592. https://doi.org/10.1016/j.jallcom.2018.12.307.
(54) Kuang, M.; Li, T. T.; Chen, H.; Zhang, S. M.; Zhang, L. L.; Zhang, Y. X. Hierarchical Cu2O/CuO/Co3O4 Core-Shell Nanowires: Synthesis and Electrochemical Properties. Nanotechnology 2015, 26 (30), 304002. https://doi.org/10.1088/0957-4484/26/30/304002.
(55) Mukhiya, T.; Dahal, B.; Ojha, G. P.; Chhetri, K.; Lee, M.; Kim, T.; Chae, S. H.; Tiwari, A. P.; Muthurasu, A.; Kim, H. Y. Silver Nanoparticles Entrapped Cobalt Oxide Nanohairs/Electrospun Carbon Nanofibers Nanocomposite in Apt Architecture for High Performance Supercapacitors. Compos. Part B Eng. 2019, 178 (August). https://doi.org/10.1016/j.compositesb.2019.107482.
(56) Muthukutty, B.; Krishnapandi, A.; Chen, S. M.; Abinaya, M.; Elangovan, A. Innovation of Novel Stone-Like Perovskite Structured Calcium Stannate (CaSnO3): Synthesis, Characterization, and Application Headed for Sensing Photographic Developing Agent Metol. ACS Sustain. Chem. Eng. 2020, 8 (11), 4419–4430. https://doi.org/10.1021/acssuschemeng.9b07011.
(57) Nikodimos, Y.; Hagos, B. Electrochemical Behaviour of Tinidazole at 1,4-Benzoquinone Modified Carbon Paste Electrode and Its Direct Determination in Pharmaceutical Tablets and Urine by Differential Pulse Voltammetry. J. Anal. Methods Chem. 2017, 2017. https://doi.org/10.1155/2017/8518707.
(58) Wang, C.; Wang, F.; Li, C.; Xu, X.; Li, T.; Wang, C. Voltammetric Sensor for Tinidazole Based on Poly(Carmine) Film Modified Electrode and Its Application. Dye. Pigment. 2007, 75 (1), 213–217. https://doi.org/10.1016/j.dyepig.2006.05.030.
(59) Xin, X.; Xu, G.; Gong, H.; Bai, Y.; Tan, Y. Colloid and Surf. A Physico-chem Eng. Asp. 2008, 326, 1–9.
(60) Shahrokhian, S.; Navabi, M.; Mohammadi, R. Simultaneous Electrodeposition of Reduced Graphene Oxide/Ag Nanoparticles as a Sensitive Layer for Voltammetric Determination of Tinidazole. Nano 2017, 12 (6), 1–12. https://doi.org/10.1142/S1793292017500679.
(61) Yang, C. Voltammetric Determination of Tinidazole Using a Glassy Carbon Electrode Modified with Single-Wall Carbon Nanotubes. Anal. Sci. 2004, 20 (5), 821–824. https://doi.org/10.2116/analsci.20.821.

Chapter-4
(1) Lopes, L. C.; Lima, D.; Mendes Hacke, A. C.; Schveigert, B. S.; Calaça, G. N.; Simas, F. F.; Pereira, R. P.; Iacomini, M.; Viana, A. G.; Pessôa, C. A. Gold Nanoparticles Capped with Polysaccharides Extracted from Pineapple Gum: Evaluation of Their Hemocompatibility and Electrochemical Sensing Properties. Talanta 2021, 223 (June 2020). https://doi.org/10.1016/j.talanta.2020.121634.
(2) Martínez-Gómez, M. A.; Sagrado, S.; Villanueva-Camañas, R. M.; Medina-Hernández, M. J. Enantioseparation of Phenotiazines by Affinity Electrokinetic Chromatography Using Human Serum Albumin as Chiral Selector. Application to Enantiomeric Quality Control in Pharmaceutical Formulations. Anal. Chim. Acta 2007, 582 (2), 223–228. https://doi.org/10.1016/j.aca.2006.09.036.
(3) Alizadeh, T.; Akhoundian, M. Promethazine Determination in Plasma Samples by Using Carbon Paste Electrode Modified with Molecularly Imprinted Polymer (MIP): Coupling of Extraction, Preconcentration and Electrochemical Determination. Electrochim. Acta 2010, 55 (20), 5867–5873. https://doi.org/10.1016/j.electacta.2010.05.037.
(4) de Oliveira, R. C.; Sousa, C. P.; Morais, S.; de Lima-Neto, P.; Correia, A. N. Polyethylenimine-Multi-Walled Carbon Nanotubes/Glassy Carbon Electrode as an Efficient Sensing Platform for Promethazine. J. Electrochem. Soc. 2020, 167 (10), 107506. https://doi.org/10.1149/1945-7111/ab995f.
(5) Cantisani, C.; Ricci, S.; Grieco, T.; Paolino, G.; Faina, V.; Silvestri, E.; Calvieri, S. Topical Promethazine Side Effects: Our Experience and Review of the Literature. Biomed Res. Int. 2013, 2013. https://doi.org/10.1155/2013/151509.
(6) Hernández-Rodríguez, J. F.; Rojas, D.; Escarpa, A. Electrochemical Sensing Directions for Next-Generation Healthcare: Trends, Challenges, and Frontiers. Anal. Chem. 2021, 93 (1), 167–183. https://doi.org/10.1021/acs.analchem.0c04378.
(7) Daniel, D.; Gutz, I. G. R. Flow Injection Spectroelectroanalytical Method for the Determination of Promethazine Hydrochloride in Pharmaceutical Preparations. Anal. Chim. Acta 2003, 494 (1–2), 215–224. https://doi.org/10.1016/S0003-2670(03)00903-6.
(8) Liu, D.; Niu, F.; Zhang, X.; Meng, Y.; Yang, Y. Fabrication of SmCo5 Alloy via Cobalt-Induced Calciothermic Reduction and Magnetic Properties of Its Ribbon. J. Rare Earths 2021, 39 (5), 572–578. https://doi.org/10.1016/j.jre.2020.06.009.
(9) Honarmand, E.; Motaghedifard, M. H.; Hadi, M.; Mostaanzadeh, H. Electro-Oxidation Study of Promethazine Hydrochloride at the Surface of Modified Gold Electrode Using Molecular Self Assembly of a Novel Bis-Thio Schiff Base from Ethanol Media. J. Mol. Liq. 2016, 216, 429–439. https://doi.org/10.1016/j.molliq.2015.12.094.
(10) Hassan, A. K.; Saad, B.; Ghani, S. A.; Adnan, R.; Rahim, A. A.; Ahmad, N.; Mokhtar, M.; Ameen, S. T.; Al-Araji, S. M. Ionophore-Based Potentiometric Sensors for the Flow-Injection Determination of Promethazine Hydrochloride in Pharmaceutical Formulations and Human Urine. Sensors 2011, 11 (1), 1028–1042. https://doi.org/10.3390/s110101028.
(11) Tang, H.; Chen, J.; Cui, K.; Nie, L.; Kuang, Y.; Yao, S. Immobilization and Electro-Oxidation of Calf Thymus Deoxyribonucleic Acid at Alkylamine Modified Carbon Nanotube Electrode and Its Interaction with Promethazine Hydrochloride. J. Electroanal. Chem. 2006, 587 (2), 269–275. https://doi.org/10.1016/j.jelechem.2005.11.020.
(12) Isacfranklin, M.; Yuvakkumar, R.; Ravi, G.; Hong, S. I.; Velauthapillai, D.; Thambidurai, M.; Dang, C.; Algarni, T. S.; Al-Mohaimeed, A. M. Heterostructured SmCoO3/RGO Composite for High-Energy Hybrid Supercapacitors. Carbon N. Y. 2021, 172, 613–623. https://doi.org/10.1016/j.carbon.2020.10.081.
(13) Manjum, M.; Serizawa, N.; Ispas, A.; Bund, A.; Katayama, Y. Electrochemical Preparation of Cobalt-Samarium Nanoparticles in an Aprotic Ionic Liquid. J. Electrochem. Soc. 2020, 167 (4), 042505. https://doi.org/10.1149/1945-7111/ab79a8.
(14) Siebels, M.; Mai, L.; Schmolke, L.; Schütte, K.; Barthel, J.; Yue, J.; Thomas, J.; Smarsly, B. M.; Devi, A.; Fischer, R. A.; Janiak, C. Synthesis of Rare-Earth Metal and Rare-Earth Metal-Fluoride Nanoparticles in Ionic Liquids and Propylene Carbonate. Beilstein J. Nanotechnol. 2018, 9 (1), 1881–1894. https://doi.org/10.3762/bjnano.9.180.
(15) Sobekova Foltova, S.; Vander Hoogerstraete, T.; Banerjee, D.; Binnemans, K. Samarium/Cobalt Separation by Solvent Extraction with Undiluted Quaternary Ammonium Ionic Liquids. Sep. Purif. Technol. 2019, 210 (July 2018), 209–218. https://doi.org/10.1016/j.seppur.2018.07.069.
(16) Sinha, M. K.; Pramanik, S.; Kumari, A.; Sahu, S. K.; Prasad, L. B.; Jha, M. K.; Yoo, K.; Pandey, B. D. Recovery of Value Added Products of Sm and Co from Waste SmCo Magnet by Hydrometallurgical Route. Sep. Purif. Technol. 2017, 179, 1–12. https://doi.org/10.1016/j.seppur.2017.01.056.
(17) Lee, J.; Hwang, T. Y.; Kang, M. K.; Cho, H. B.; Kim, J.; Myung, N. V.; Choa, Y. H. Synthesis of Samarium-Cobalt Sub-Micron Fibers and Their Excellent Hard Magnetic Properties. Front. Chem. 2018, 6 (February), 1–7. https://doi.org/10.3389/fchem.2018.00018.
(18) H.B., F.; T.-L., D. Tinidazole: A Nitroimidazole Antiprotozoal Agent. Clin. Ther. 2005, 27 (12), 1859–1884.
(19) 20 Polyaniline‐Acetylene.Pdf.
(20) Khalafallah, D.; Ouyang, C.; Zhi, M.; Hong, Z. Carbon Anchored Epitaxially Grown Nickel Cobalt-Based Carbonate Hydroxide for Urea Electrooxidation Reaction with a High Activity and Durability. ChemCatChem 2020, 12 (8), 2283–2294. https://doi.org/10.1002/cctc.201902304.
(21) Fotukian, S. M.; Barati, A.; Soleymani, M.; Alizadeh, A. M. Solvothermal Synthesis of CuFe2O4 and Fe3O4 Nanoparticles with High Heating Efficiency for Magnetic Hyperthermia Application. J. Alloys Compd. 2020, 816, 152548. https://doi.org/10.1016/j.jallcom.2019.152548.
(22) Zhu, X.; Tang, J.; Huang, H.; Lin, T.; Luo, B.; Wang, L. Hollow Structured Cathode Materials for Rechargeable Batteries. Sci. Bull. 2020, 65 (6), 496–512. https://doi.org/10.1016/j.scib.2019.12.008.
(23) Osazuwa, O. U.; Khan, M. R.; Lam, S. S.; Assabumrungrat, S.; Cheng, C. K. An Assessment of the Longevity of Samarium Cobalt Trioxide Perovskite Catalyst during the Conversion of Greenhouse Gases into Syngas. J. Clean. Prod. 2018, 185, 576–587. https://doi.org/10.1016/j.jclepro.2018.03.060.
(24) Humelnicu, A. C.; Cojocaru, C.; Pascariu Dorneanu, P.; Samoila, P.; Harabagiu, V. Novel Chitosan-Functionalized Samarium-Doped Cobalt Ferrite for Adsorptive Removal of Anionic Dye from Aqueous Solutions. Comptes Rendus Chim. 2017, 20 (11–12), 1026–1036. https://doi.org/10.1016/j.crci.2017.10.003.
(25) Muthulakshmi, V.; Balaji, M.; Sundrarajan, M. Biomedical Applications of Ionic Liquid Mediated Samarium Oxide Nanoparticles by Andrographis Paniculata Leaves Extract. Mater. Chem. Phys. 2020, 242 (November 2019), 122483. https://doi.org/10.1016/j.matchemphys.2019.122483.
(26) Kanakkillam, S. S.; Krishnan, B.; Avellaneda, D. A.; Shaji, S. Surfactant Free Stable Cobalt Oxide Nanocolloid in Water by Pulsed Laser Fragmentation and Its Thin Films for Visible Light Photocatalysis. Colloids Surfaces A Physicochem. Eng. Asp. 2020, 594 (November 2019), 124657. https://doi.org/10.1016/j.colsurfa.2020.124657.
(27) Gu, L. F.; Chen, J. J.; Zhou, T.; Lu, X. F.; Li, G. R. Engineering Cobalt Oxide by Interfaces and Pore Architectures for Enhanced Electrocatalytic Performance for Overall Water Splitting. Nanoscale 2020, 12 (20), 11201–11208. https://doi.org/10.1039/d0nr02030c.
(28) Wu, G.; Chen, B.; Bai, Z.; Zhao, Q.; Wang, Z.; Song, C.; Guo, X.; Shi, C. Cobalt Oxide with Flake-like Morphology as Efficient Passive NOx Adsorber. Catal. Commun. 2021, 149 (June 2020), 106203. https://doi.org/10.1016/j.catcom.2020.106203.
(29) Muthukutty, B.; Vivekanandan, A. K.; Chen, S. M.; Sivakumar, M.; Chen, S. H. Designing Hybrid Barium Tungstate on Functionalized Carbon Black as Electrode Modifier for Low Potential Detection of Antihistamine Drug Promethazine Hydrochloride. Compos. Part B Eng. 2021, 215 (December 2020), 108789. https://doi.org/10.1016/j.compositesb.2021.108789.
(30) Berkhout, J. H.; Aswatha Ram, H. N. Recent Advancements in Spectrophotometric Pka Determinations: A Review. Indian J. Pharm. Educ. Res. 2019, 53 (4), S475–S480. https://doi.org/10.5530/ijper.53.4s.141.
(31) Primo, E. N.; Oviedo, M. B.; Sánchez, C. G.; Rubianes, M. D.; Rivas, G. A. Bioelectrochemical Sensing of Promethazine with Bamboo-Type Multiwalled Carbon Nanotubes Dispersed in Calf-Thymus Double Stranded DNA. Bioelectrochemistry 2014, 99, 8–16. https://doi.org/10.1016/j.bioelechem.2014.05.002.
(32) Pereira, P. F.; Marra, M. C.; Cunha, R. R.; Da Silva, W. P.; Munoz, R. A. A.; Richter, E. M. Two Simple and Fast Electrochemical Methods for Simultaneous Determination of Promethazine and Codeine. J. Electroanal. Chem. 2014, 713, 32–38. https://doi.org/10.1016/j.jelechem.2013.11.031.
(33) Xiao, P.; Wu, W.; Yu, J.; Zhao, F. Voltammetric Sensing of Promethazine on a Multi-Walled Carbon Nanotubes Coated Gold Electrode. Int. J. Electrochem. Sci. 2007, 2 (2), 149–157.
(34) Marco, J. P.; Borges, K. B.; Tarley, C. R. T.; Ribeiro, E. S.; Pereira, A. C. Development of a Simple, Rapid and Validated Square Wave Voltametric Method for Determination of Promethazine in Raw Material and Pharmaceutical Formulation Using DNA Modified Multiwall Carbon Nanotube Paste Electrode. Sensors Actuators, B Chem. 2013, 177, 251–259. https://doi.org/10.1016/j.snb.2012.11.005.
(35) Xi, X.; Ming, L.; Liu, J. Voltammetric Determination of Promethazine Hydrochloride at a Multi-Wall Carbon Nanotube Modified Glassy Carbon Electrode. Drug Test. Anal. 2011, 3 (3), 182–186. https://doi.org/10.1002/dta.205.

Chapter-5
(1) Mishra, S.; Zhang, W.; Lin, Z.; Pang, S.; Huang, Y.; Bhatt, P.; Chen, S. Carbofuran Toxicity and Its Microbial Degradation in Contaminated Environments. Chemosphere 2020, 259, 127419. doi.org/10.1016/j.chemosphere.2020.127419.
(2) Sun, S.; Sidhu, V.; Rong, Y.; Zheng, Y. Pesticide Pollution in Agricultural Soils and Sustainable Remediation Methods: A Review. Curr. Pollut. Reports 2018, 4 (3), 240–250. doi.org/10.1007/s40726-018-0092-x.
(3) Jirasirichote, A.; Punrat, E.; Suea-Ngam, A.; Chailapakul, O.; Chuanuwatanakul, S. Voltammetric Detection of Carbofuran Determination Using Screen-Printed Carbon Electrodes Modified with Gold Nanoparticles and Graphene Oxide. Talanta 2017, 175 (July), 331–337. doi.org/10.1016/j.talanta.2017.07.050.
(4) Dias, E.; Garcia e Costa, F.; Morais, S.; de Lourdes Pereira, M. A Review on the Assessment of the Potential Adverse Health Impacts of Carbamate Pesticides. Top. Public Heal. 2015. doi.org/10.5772/59613.
(5) Amatatongchai, M.; Sroysee, W.; Jarujamrus, P.; Nacapricha, D.; Lieberzeit, P. A. Selective Amperometric Flow-Injection Analysis of Carbofuran Using a Molecularly-Imprinted Polymer and Gold-Coated-Magnetite Modified Carbon Nanotube-Paste Electrode. Talanta 2018, 179 (December 2017), 700–709. doi.org/10.1016/j.talanta.2017.11.064.
(6) Rao, T. N.; Loo, B. H.; Sarada, B. V.; Terashima, C.; Fujishima, A. Electrochemical Detection of Carbamate Pesticides at Conductive Diamond Electrodes. Anal. Chem. 2002, 74 (7), 1578–1583. doi.org/10.1021/ac010935d.
(7) Monireh Khadem; Faridbod, F.; Norouzi, P.; Foroushani, A. R.; Ganjali, M. R.; Yarahmadi, R.; Shahtaheri, S. J. Voltammetric Determination of Carbofuran Pesticide in Biological and Environmental Samples Using a Molecularly Imprinted Polymer Sensor, a Multivariate Optimization. J. Anal. Chem. 2020, 75 (5), 669–678. doi.org/10.1134/S1061934820050068.
(8) Gupta, J.; Rathour, R.; Singh, R.; Thakur, I. S. Production and Characterization of Extracellular Polymeric Substances (EPS) Generated by a Carbofuran Degrading Strain Cupriavidus Sp. ISTL7. Bioresour. Technol. 2019, 282 (January), 417–424. doi.org/10.1016/j.biortech.2019.03.054.
(9) Li, Z.; Wang, X.; Ni, Z.; Bao, J.; Zhang, H. In-Situ Remediation of Carbofuran-Contaminated Soil by Immobilized White-Rot Fungi. Polish J. Environ. Stud. 2020, 29 (2), 1237–1243. doi.org/10.15244/pjoes/102671.
(10) Nair, R. V; Thankam, R.; Mohamed, A. P.; Pillai, S. Fluorescent Turn-off Sensor Based on Sulphur-Doped Graphene Quantum Dots in Colloidal and Film Forms for the Ultrasensitive Detection of Carbamate Pesticides. Microchem. J. 2020, 157 (January), 104971. doi.org/10.1016/j.microc.2020.104971.
(11) Soltani-Shahrivar, M.; Karimian, N.; Fakhri, H.; Hajian, A.; Afkhami, A.; Bagheri, H. Design and Application of a Non-Enzymatic Sensor Based on Metal-Organic Frameworks for the Simultaneous Determination of Carbofuran and Carbaryl in Fruits and Vegetables. Electroanalysis 2019, 31 (12), 2455–2465. doi.org/10.1002/elan.201900363.
(12) Toledo-Jaldin, H. P.; Sánchez-Mendieta, V.; Blanco-Flores, A.; López-Téllez, G.; Vilchis-Nestor, A. R.; Martín-Hernández, O. Low-Cost Sugarcane Bagasse and Peanut Shell Magnetic-Composites Applied in the Removal of Carbofuran and Iprodione Pesticides. Environ. Sci. Pollut. Res. 2020, 27 (8), 7872–7885. doi.org/10.1007/s11356-019-07089-4.
(13) Song, X. Y.; Shi, Y. P.; Chen, J. Carbon Nanotubes-Reinforced Hollow Fibre Solid-Phase Microextraction Coupled with High Performance Liquid Chromatography for the Determination of Carbamate Pesticides in Apples. Food Chem. 2013, 139 (1–4), 246–252. doi.org/10.1016/j.foodchem.2013.01.112.
(14) Abdelhaleem, A.; Chu, W. Prediction of Carbofuran Degradation Based on the Hydroxyl Radical’s Generation Using the FeIII Impregnated N Doped-TiO2/H2O2/Visible LED Photo-Fenton-like Process. Chem. Eng. J. 2020, 382 (September 2019), 122930. doi.org/10.1016/j.cej.2019.122930.
(15) Lan, J.; Sun, W.; Chen, L.; Zhou, H.; Fan, Y.; Diao, X.; Wang, B.; Zhao, H. Simultaneous and Rapid Detection of Carbofuran and 3-Hydroxy-Carbofuran in Water Samples and Pesticide Preparations Using Lateral-Flow Immunochromatographic Assay. Food Agric. Immunol. 2020, 31 (1), 165–175. doi.org/10.1080/09540105.2019.1708272.
(16) Li, S.; Liu, Z.; Qu, Z.; Piao, C.; Liu, J.; Xu, D.; Li, X.; Wang, J.; Song, Y. An All-Solid-State Z-Scheme NaNbO3-Au-Sn3O4 Photocatalyst for Effective Degradation of Carbofuran under Sunlight Irradiation. J. Photochem. Photobiol. A Chem. 2020, 389 (September 2019), 112246. doi.org/10.1016/j.jphotochem.2019.112246.
(17) Veglia, A. V. Fluorimetric Determination of Carbamate Pesticides in Host–Guest Complexes. Molecules 2000, 5 (3), 437–438. doi.org/10.3390/50300437.
(18) Sánchez-Barragán, I.; Karim, K.; Costa-Fernández, J. M.; Piletsky, S. A.; Sanz-Medel, A. A Molecularly Imprinted Polymer for Carbaryl Determination in Water. Sensors Actuators, B Chem. 2007, 123 (2), 798–804. doi.org/10.1016/j.snb.2006.10.026.
(19) Zhang, Z.; Liu, J.; Gu, J.; Su, L.; Cheng, L. An Overview of Metal Oxide Materials as Electrocatalysts and Supports for Polymer Electrolyte Fuel Cells. Energy Environ. Sci. 2014, 7 (8), 2535–2558. doi.org/10.1039/c3ee43886d.
(20) Muthukutty, B.; Krishnapandi, A.; Chen, S. M.; Abinaya, M.; Elangovan, A. Innovation of Novel Stone-Like Perovskite Structured Calcium Stannate (CaSnO3): Synthesis, Characterization, and Application Headed for Sensing Photographic Developing Agent Metol. ACS Sustain. Chem. Eng. 2020, 8 (11), 4419–4430. doi.org/10.1021/acssuschemeng.9b07011.
(21) Thirumalraj, B.; Rajkumar, C.; Chen, S. M.; Lin, K. Y. Determination of 4-Nitrophenol in Water by Use of a Screen-Printed Carbon Electrode Modified with Chitosan-Crafted ZnO Nanoneedles. J. Colloid Interface Sci. 2017, 499, 83–92. doi.org/10.1016/j.jcis.2017.03.088.
(22) Rajkumar, C.; Thirumalraj, B.; Chen, S. M.; Veerakumar, P.; Liu, S. Bin. Ruthenium Nanoparticles Decorated Tungsten Oxide as a Bifunctional Catalyst for Electrocatalytic and Catalytic Applications. ACS Appl. Mater. Interfaces 2017, 9 (37), 31794–31805. doi.org/10.1021/acsami.7b07645.
(23) An, X.; Li, S.; Yoshida, A.; Yu, T.; Wang, Z.; Hao, X.; Abudula, A.; Guan, G. Bi-Doped SnO Nanosheets Supported on Cu Foam for Electrochemical Reduction of CO2 to HCOOH. ACS Appl. Mater. Interfaces 2019, 11 (45), 42114–42122. doi.org/10.1021/acsami.9b13270.
(24) Zhang, K.; Tamakloe, W.; Zhou, L.; Park, M.; Zhang, J.; Agyeman, D. A.; Chou, S.; Kang, Y. Multifunctionalities of Graphene for Exploiting a Facile Conversion Reaction Route of Perovskite CoSnO 3 for Highly Reversible Na Ion Storage. . Phys. Chem. Lett. 2020, 11 (19), 7988–7995. doi.org/10.1021/acs.jpclett.0c02093.
(25) Cheng, Y.; Nan, H.; Li, Q.; Luo, Y.; Chu, K. A Rare-Earth Samarium Oxide Catalyst for Electrocatalytic Nitrogen Reduction to Ammonia. ACS Sustain. Chem. Eng. 2020. doi.org/10.1021/acssuschemeng.0c05764.
(26) Reddy, M. V.; Linh, T. T.; Hien, D. T.; Chowdari, B. V. R. SnO2 Based Materials and Their Energy Storage Studies. ACS Sustain. Chem. Eng. 2016, 4 (12), 6268–6276. doi.org/10.1021/acssuschemeng.6b00445.
(27) Xu, Z.; Yue, W.; Lin, R.; Chiang, C. Y.; Zhou, W. Direct Growth of SnO2 Nanocrystallites on Electrochemically Exfoliated Graphene for Lithium Storage. J. Energy Storage 2019, 21 (January), 647–656. doi.org/10.1016/j.est.2019.01.001.
(28) Zinatloo-Ajabshir, S.; Morassaei, M. S.; Salavati-Niasari, M. Facile Fabrication of Dy2Sn2O7-SnO2 Nanocomposites as an Effective Photocatalyst for Degradation and Removal of Organic Contaminants. J. Colloid Interface Sci. 2017, 497, 298–308. doi.org/10.1016/j.jcis.2017.03.031.
(29) Chung, C. K.; Lang, M.; Xu, H.; Navrotsky, A. Thermodynamics of Radiation Induced Amorphization and Thermal Annealing of Dy2Sn2O7 Pyrochlore. Acta Mater. 2018, 155, 386–392. doi.org/10.1016/j.actamat.2018.06.003.
(30) Zinatloo-Ajabshir, S.; Morassaei, M. S.; Salavati-Niasari, M. Simple Approach for the Synthesis of Dy2Sn2O7 Nanostructures as a Hydrogen Storage Material from Banana Juice. J. Clean. Prod. 2019, 222, 103–110. doi.org/10.1016/j.jclepro.2019.03.023.
(31) Sohouli, E.; Khosrowshahi, E. M.; Radi, P.; Naghian, E.; Rahimi-Nasrabadi, M.; Ahmadi, F. Electrochemical Sensor Based on Modified Methylcellulose by Graphene Oxide and Fe3O4 Nanoparticles: Application in the Analysis of Uric Acid Content in Urine. J. Electroanal. Chem. 2020, 877, 114503. doi.org/10.1016/j.jelechem.2020.114503.
(32) Thirumalraj, B.; Palanisamy, S.; Chen, S. M.; Lou, B. S. Preparation of Highly Stable Fullerene C60 Decorated Graphene Oxide Nanocomposite and Its Sensitive Electrochemical Detection of Dopamine in Rat Brain and Pharmaceutical Samples. J. Colloid Interface Sci. 2016, 462, 375–381. doi.org/10.1016/j.jcis.2015.10.009.
(33) Thirumalraj, B.; Rajkumar, C.; Chen, S. M.; Barathi, P. Highly Stable Biomolecule Supported by Gold Nanoparticles/Graphene Nanocomposite as a Sensing Platform for H2O2 Biosensor Application. J. Mater. Chem. B 2016, 4 (38), 6335–6343. doi.org/10.1039/c6tb01576j.
(34) Manavalan, S.; Ganesamurthi, J.; Chen, S. M.; Veerakumar, P.; Murugan, K. A Robust Mn@FeNi-S/Graphene Oxide Nanocomposite as a High-Efficiency Catalyst for the Non-Enzymatic Electrochemical Detection of Hydrogen Peroxide. Nanoscale 2020, 12 (10), 5961–5972. doi.org/10.1039/c9nr09148c.
(35) Yu, K.; Xiong, Y. Microstructural Change of Nano Grain Assemblages with the Annealing Temperature. Phys. Rev. B – Condens. Matter Mater. Phys. 1997, 55 (4), 2666–2671. doi.org/10.1103/PhysRevB.55.2666.
(36) Barreca, D.; Gasparotto, A.; Milanov, A.; Tondello, E.; Devi, A.; Fischer, R. A. Nanostructured Dy2O3 Films: An XPS Investigation . Surf. Sci. Spectra 2007, 14 (1), 52–59. doi.org/10.1116/11.20080702.
(37) Veerasubramani, G. K.; Park, M. S.; Choi, J. Y.; Kim, D. W. Ultrasmall SnS Quantum Dots Anchored onto Nitrogen-Enriched Carbon Nanospheres as an Advanced Anode Material for Sodium-Ion Batteries. ACS Appl. Mater. Interfaces 2020, 12 (6), 7114–7124. doi.org/10.1021/acsami.9b18997.
(38) Yuvaraj, S.; Veerasubramani, G. K.; Park, M. S.; Thangavel, P.; Kim, D. W. Facile Synthesis of FeS2/MoS2 Composite Intertwined on RGO Nanosheets as a High-Performance Anode Material for Sodium-Ion Battery. J. Alloys Compd. 2020, 821, 153222. doi.org/10.1016/j.jallcom.2019.153222.
(39) Kubendhiran, S.; Thirumalraj, B.; Chen, S. M.; Karuppiah, C. Electrochemical Co-Preparation of Cobalt Sulfide/Reduced Graphene Oxide Composite for Electrocatalytic Activity and Determination of H2O2 in Biological Samples. J. Colloid Interface Sci. 2018, 509, 153–162. doi.org/10.1016/j.jcis.2017.08.087.
(40) Chekol, F.; Mehretie, S.; Hailu, F. A.; Tolcha, T.; Megersa, N.; Admassie, S. Roll-to-Roll Printed PEDOT/PSS/GO Plastic Film for Electrochemical Determination of Carbofuran. Electroanalysis 2019, 31 (6), 1104–1111. doi.org/10.1002/elan.201800883.
(41) Veerakumar, P.; Rajkumar, C.; Chen, S. M.; Thirumalraj, B.; Lin, K. C. Ultrathin 2D Graphitic Carbon Nitride Nanosheets Decorated with Silver Nanoparticles for Electrochemical Sensing of Quercetin. J. Electroanal. Chem. 2018, 826 (August), 207–216. doi.org/10.1016/j.jelechem.2018.08.031.
(42) Velmurugan, M.; Thirumalraj, B.; Chen, S. M.; Al-Hemaid, F. M. A.; Ajmal Ali, M.; Elshikh, M. S. Development of Electrochemical Sensor for the Determination of Palladium Ions (Pd2+) Using Flexible Screen Printed Un-Modified Carbon Electrode. J. Colloid Interface Sci. 2017, 485, 123–128. doi.org/10.1016/j.jcis.2016.08.073.
(43)Shulga, O.; Kirchhoff, J. R. An Acetylcholinesterase Enzyme Electrode Stabilized by an Electrodeposited Gold Nanoparticle Layer. Electrochem. commun. 2007, 9 (5), 935–940. https://doi.org/10.1016/j.elecom.2006.11.021.
(44)Yin, H.; Ai, S.; Xu, J.; Shi, W.; Zhu, L. Amperometric Biosensor Based on Immobilized Acetylcholinesterase on Gold Nanoparticles and Silk Fibroin Modified Platinum Electrode for Detection of Methyl Paraoxon, Carbofuran and Phoxim. J. Electroanal. Chem. 2009, 637 (1–2), 21–27. https://doi.org/10.1016/j.jelechem.2009.09.025.
(45)Dounin, V.; Veloso, A. J.; Schulze, H.; Bachmann, T. T.; Kerman, K. Disposable Electrochemical Printed Gold Chips for the Analysis of Acetylcholinesterase Inhibition. Anal. Chim. Acta 2010, 669 (1–2), 63–67. https://doi.org/10.1016/j.aca.2010.04.037.
(46) Qu, Y.; Sun, Q.; Xiao, F.; Shi, G.; Jin, L. Layer-by-Layer Self-Assembled Acetylcholinesterase/PAMAM-Au on CNTs Modified Electrode for Sensing Pesticides. Bioelectrochemistry 2010, 77 (2), 139–144. https://doi.org/10.1016/j.bioelechem.2009.08.001.
(47) Jeyapragasam, T.; Saraswathi, R. Electrochemical Biosensing of Carbofuran Based on Acetylcholinesterase Immobilized onto Iron Oxide-Chitosan Nanocomposite. Sensors Actuators, B Chem. 2014, 191, 681–687. https://doi.org/10.1016/j.snb.2013.10.054.
(48) Della Pelle, F.; Angelini, C.; Sergi, M.; Del Carlo, M.; Pepe, A.; Compagnone, D. Nano Carbon Black-Based Screen Printed Sensor for Carbofuran, Isoprocarb, Carbaryl and Fenobucarb Detection: Application to Grain Samples. Talanta 2018, 186 (March), 389–396. https://doi.org/10.1016/j.talanta.2018.04.082.
(49) Li, Y.; Li, Y.; Yu, X.; Sun, Y. Electrochemical Determination of Carbofuran in Tomatoes by a Concanavalin A (Con A) Polydopamine (PDA)-Reduced Graphene Oxide (RGO)-Gold Nanoparticle (GNP) Glassy Carbon Electrode (GCE) with Immobilized Acetylcholinesterase (AChE). Anal. Lett. 2019, 52 (14), 2283–2299. https://doi.org/10.1080/00032719.2019.1609490.
(50) Wang, M.; Huang, J.; Wang, M.; Zhang, D.; Chen, J. Electrochemical Nonenzymatic Sensor Based on CoO Decorated Reduced Graphene Oxide for the Simultaneous Determination of Carbofuran and Carbaryl in Fruits and Vegetables. Food Chem. 2014, 151, 191–197. https://doi.org/10.1016/j.foodchem.2013.11.046.
(51)Wei, H.; Sun, J. J.; Wang, Y. M.; Li, X.; Chen, G. N. Rapid Hydrolysis and Electrochemical Detection of Trace Carbofuran at a Disposable Heated Screen-Printed Carbon Electrode. Analyst 2008, 133 (11), 1619–1624. https://doi.org/10.1039/b806750c.
(52)Samphao, A.; Suebsanoh, P.; Wongsa, Y.; Pekec, B.; Jitchareon, J.; Kalcher, K. Alkaline Phosphatase Inhibition-Based Amperometric Biosensor for the Detection of Carbofuran. Int. J. Electrochem. Sci. 2013, 8 (3), 3254–3264.

Chapter-6
(1) Sant’Anna, M. V. S.; Carvalho, S. W. M. M.; Gevaerd, A.; Silva, J. O. S.; Santos, E.; Carregosa, I. S. C.; Wisniewski, A.; Marcolino-Junior, L. H.; Bergamini, M. F.; Sussuchi, E. M. Electrochemical Sensor Based on Biochar and Reduced Graphene Oxide Nanocomposite for Carbendazim Determination. Talanta 2020, 220 (June), 1–8. https://doi.org/10.1016/j.talanta.2020.121334.
(2) Noyrod, P.; Chailapakul, O.; Wonsawat, W.; Chuanuwatanakul, S. The Simultaneous Determination of Isoproturon and Carbendazim Pesticides by Single Drop Analysis Using a Graphene-Based Electrochemical Sensor. J. Electroanal. Chem. 2014, 719, 54–59. https://doi.org/10.1016/j.jelechem.2014.02.001.
(3) Gao, X.; Gao, Y.; Bian, C.; Ma, H.; Liu, H. Electroactive Nanoporous Gold Driven Electrochemical Sensor for the Simultaneous Detection of Carbendazim and Methyl Parathion. Electrochim. Acta 2019, 310, 78–85. https://doi.org/10.1016/j.electacta.2019.04.120.
(4) Pham, T. S. H.; Fu, L.; Mahon, P.; Lai, G.; Yu, A. Fabrication of β-Cyclodextrin-Functionalized Reduced Graphene Oxide and Its Application for Electrocatalytic Detection of Carbendazim. Electrocatalysis 2016, 7 (5), 411–419. https://doi.org/10.1007/s12678-016-0320-3.
(5) Özcan, A.; Hamid, F.; Özcan, A. A. Synthesizing of a Nanocomposite Based on the Formation of Silver Nanoparticles on Fumed Silica to Develop an Electrochemical Sensor for Carbendazim Detection. Talanta 2021, 222 (June 2020). https://doi.org/10.1016/j.talanta.2020.121591.
(6) Wang, Z.; Wang, Y.; Gong, F.; Zhang, J.; Hong, Q.; Li, S. Biodegradation of Carbendazim by a Novel Actinobacterium Rhodococcus Jialingiae Djl-6-2. Chemosphere 2010, 81 (5), 639–644. https://doi.org/10.1016/j.chemosphere.2010.08.040.
(7) Guo, Y.; Guo, S.; Li, J.; Wang, E.; Dong, S. Cyclodextrin-Graphene Hybrid Nanosheets as Enhanced Sensing Platform for Ultrasensitive Determination of Carbendazim. Talanta 2011, 84 (1), 60–64. https://doi.org/10.1016/j.talanta.2010.12.007.
(8) Feng, S.; Li, Y.; Zhang, R.; Li, Y. A Novel Electrochemical Sensor Based on Molecularly Imprinted Polymer Modified Hollow N, S-Mo2C/C Spheres for Highly Sensitive and Selective Carbendazim Determination. Biosens. Bioelectron. 2019, 142 (June), 111491. https://doi.org/10.1016/j.bios.2019.111491.
(9) Cui, R.; Xu, D.; Xie, X.; Yi, Y.; Quan, Y.; Zhou, M.; Gong, J.; Han, Z.; Zhang, G. Phosphorus-Doped Helical Carbon Nanofibers as Enhanced Sensing Platform for Electrochemical Detection of Carbendazim. Food Chem. 2017, 221, 457–463. https://doi.org/10.1016/j.foodchem.2016.10.094.
(10) Dong, Y.; Yang, L.; Zhang, L. Simultaneous Electrochemical Detection of Benzimidazole Fungicides Carbendazim and Thiabendazole Using a Novel Nanohybrid Material-Modified Electrode. J. Agric. Food Chem. 2017, 65 (4), 727–736. https://doi.org/10.1021/acs.jafc.6b04675.
(11) Oliveira, A. C. M.; Araújo, D. A. G.; Pradela-Filho, L. A.; Takeuchi, R. M.; Santos, A. L. A Robust and Versatile Micropipette Tip-Based Miniaturized Electrochemical Cell for Determination of Carbendazim. Sensors Actuators, B Chem. 2021, 327 (September 2020). https://doi.org/10.1016/j.snb.2020.128880.
(12) Xie, Y.; Gao, F.; Tu, X.; Ma, X.; Dai, R.; Peng, G.; Yu, Y.; Lu, L. Flake-like Neodymium Molybdate Wrapped with Multi-Walled Carbon Nanotubes as an Effective Electrode Material for Sensitive Electrochemical Detection of Carbendazim. J. Electroanal. Chem. 2019, 855 (September), 113468. https://doi.org/10.1016/j.jelechem.2019.113468.
(13) Periyasamy, S.; Vinoth Kumar, J.; Chen, S. M.; Annamalai, Y.; Karthik, R.; Erumaipatty Rajagounder, N. Structural Insights on 2D Gadolinium Tungstate Nanoflake: A Promising Electrocatalyst for Sensor and Photocatalyst for the Degradation of Postharvest Fungicide (Carbendazim). ACS Appl. Mater. Interfaces 2019, 11 (40), 37172–37183. https://doi.org/10.1021/acsami.9b07336.
(14) da Silva Santos, A.; Simões, F. R.; Codognoto, L.; Valle, E. M. A. Study of the Interaction Cu(II) - Carbendazim in Natural Waters by Electrochemical Techniques. Chemosphere 2020, 255. https://doi.org/10.1016/j.chemosphere.2020.127013.
(15) Razzino, C. A.; Sgobbi, L. F.; Canevari, T. C.; Cancino, J.; Machado, S. A. S. Sensitive Determination of Carbendazim in Orange Juice by Electrode Modified with Hybrid Material. Food Chem. 2015, 170, 360–365. https://doi.org/10.1016/j.foodchem.2014.08.085.
(16) Lingamdinne, L. P.; Lee, S.; Choi, J. S.; Lebaka, V. R.; Durbaka, V. R. P.; Koduru, J. R. Potential of the Magnetic Hollow Sphere Nanocomposite (Graphene Oxide-Gadolinium Oxide) for Arsenic Removal from Real Field Water and Antimicrobial Applications. J. Hazard. Mater. 2021, 402 (August 2020), 123882. https://doi.org/10.1016/j.jhazmat.2020.123882.
(17) Luo, M.; Xu, L.; Xia, J.; Zhao, H.; Du, Y.; Lei, B. Synthesis of Porous Gadolinium Oxide Nanosheets for Cancer Therapy and Magnetic Resonance Imaging. Mater. Lett. 2020, 265, 127375. https://doi.org/10.1016/j.matlet.2020.127375.
(18) Chawda, N. R.; Mahapatra, S. K.; Banerjee, I. Surface-Engineered Gadolinium Oxide Nanorods and Nanocuboids for Bioimaging. Rare Met. 2020. https://doi.org/10.1007/s12598-020-01378-5.
(19) Kaur, G.; Sharma, P.; Priya, R.; Pandey, O. P. Thermal Dehydration Kinetics Involved during the Conversion of Gadolinium Hydroxide to Gadolinium Oxide. J. Alloys Compd. 2020, 822, 153450. https://doi.org/10.1016/j.jallcom.2019.153450.
(20) Burve, R.; Serga, V.; Krumina, A.; Poplausks, R. Preparation and Characterization of Nanocrystalline Gadolinium Oxide Powders and Films. Key Eng. Mater. 2020, 850 KEM (3), 267–272. https://doi.org/10.4028/www.scientific.net/KEM.850.267.
(21) Karimi, A.; Husain, S. W.; Hosseini, M.; Azar, P. A.; Ganjali, M. R. A Sensitive Signal-on Electrochemiluminescence Sensor Based on a Nanocomposite of Polypyrrole-Gd2O3 for the Determination of L-Cysteine in Biological Fluids. Microchim. Acta 2020, 187 (7). https://doi.org/10.1007/s00604-020-04372-x.
(22) Manavalan, S.; Rajaji, U.; Chen, S. M.; Chen, T. W.; Ramalingam, R. J.; Maiyalagan, T.; Sathiyan, A.; Hao, Q.; Lei, W. Microwave-Assisted Synthesis of Gadolinium(III) Oxide Decorated Reduced Graphene Oxide Nanocomposite for Detection of Hydrogen Peroxide in Biological and Clinical Samples. J. Electroanal. Chem. 2019, 837 (January), 167–174. https://doi.org/10.1016/j.jelechem.2019.02.023.
(23) Luo, D.; Wang, X.; Zhang, Z.; Gao, D.; Liu, Z.; Chen, J. Enhancement of Photocatalytic Hydrogen Evolution from Dye–Sensitized Amide–Functionalized Carbon Nanospheres by Superior Adsorption Performance. Int. J. Hydrogen Energy 2020, 45 (55), 30375–30386. https://doi.org/10.1016/j.ijhydene.2020.08.001.
(24) Kumar, J.; Mallampati, R.; Adin, A.; Valiyaveettil, S. Functionalized Carbon Spheres for Extraction of Nanoparticles and Catalyst Support in Water. ACS Sustain. Chem. Eng. 2014, 2 (12), 2675–2682. https://doi.org/10.1021/sc5004242.
(25) Sathe, B. R. Rhodium Nanoparticle-Carbon Nanosphere Hybrid Material as an Electrochemical Hydrogen Sensor. RSC Adv. 2013, 3 (16), 5361–5365. https://doi.org/10.1039/c3ra00105a.
(26) Yan, Y.; Dai, Y.; Wang, S.; Jia, X.; Yu, H.; Yang, Y. Catalytic Applications of Alkali-Functionalized Carbon Nanospheres and Their Supported Pd Nanoparticles. Appl. Catal. B Environ. 2016, 184, 104–118. https://doi.org/10.1016/j.apcatb.2015.11.024.
(27) Mortezazadeh, T.; Gholibegloo, E.; Riyahi, A. N.; Haghgoo, S.; Musa, A. E.; Khoobi, M. Glucosamine Conjugated Gadolinium (III) Oxide Nanoparticles as a Novel Targeted Contrast Agent for Cancer Diagnosis in MRI. J. Biomed. Phys. Eng. 2020, 10 (1), 25–38. https://doi.org/10.31661/jbpe.v0i0.1018.
(28) Kokulnathan, T.; Chen, S. M. Design and Construction of the Gadolinium Oxide Nanorod-Embedded Graphene Aerogel: A Potential Application for Electrochemical Detection of Postharvest Fungicide. ACS Appl. Mater. Interfaces 2020, 12 (14), 16216–16226. https://doi.org/10.1021/acsami.9b20224.
(29) Liu, P.; Liu, J.; Zhang, B.; Zong, W.; Xu, S.; Liu, Y.; Cao, S. Enhanced Electroluminescent Performance by Doping Organic Conjugated Ionic Compound into Graphene Oxide Hole-Injecting Layer. J. Mater. Sci. 2019, 54 (19), 12688–12697. https://doi.org/10.1007/s10853-019-03820-1.
(30) Dolgov, A.; Lopaev, D.; Lee, C. J.; Zoethout, E.; Medvedev, V.; Yakushev, O.; Bijkerk, F. Characterization of Carbon Contamination under Ion and Hot Atom Bombardment in a Tin-Plasma Extreme Ultraviolet Light Source. Appl. Surf. Sci. 2015, 353 (October), 708–713. https://doi.org/10.1016/j.apsusc.2015.06.079.
(31) Amara, U.; Mahmood, K.; Riaz, S.; Nasir, M.; Hayat, A.; Hanif, M.; Yaqub, M.; Han, D.; Niu, L.; Nawaz, M. H. Self-Assembled Perylene-Tetracarboxylic Acid/Multi-Walled Carbon Nanotube Adducts Based Modification of Screen-Printed Interface for Efficient Enzyme Immobilization towards Glucose Biosensing. Microchem. J. 2021, 165 (February), 106109. https://doi.org/10.1016/j.microc.2021.106109.
(32) Mazellier, P.; Leroy, É.; De Laat, J.; Legube, B. Degradation of Carbendazim by UV/H2O2 Investigated by Kinetic Modelling. Environ. Chem. Lett. 2003, 1 (1), 68–72. https://doi.org/10.1007/s10311-002-0010-7.
(33) Muthukutty, B.; Krishnapandi, A.; Chen, S. M.; Abinaya, M.; Elangovan, A. Innovation of Novel Stone-Like Perovskite Structured Calcium Stannate (CaSnO3): Synthesis, Characterization, and Application Headed for Sensing Photographic Developing Agent Metol. ACS Sustain. Chem. Eng. 2020, 8 (11), 4419–4430. https://doi.org/10.1021/acssuschemeng.9b07011.
(34) Tian, C.; Zhang, S.; Wang, H.; Chen, C.; Han, Z.; Chen, M.; Zhu, Y.; Cui, R.; Zhang, G. Three-Dimensional Nanoporous Copper and Reduced Graphene Oxide Composites as Enhanced Sensing Platform for Electrochemical Detection of Carbendazim. J. Electroanal. Chem. 2019, 847, 113243. https://doi.org/10.1016/j.jelechem.2019.113243.
(35) Liao, X.; Huang, Z.; Huang, K.; Qiu, M.; Chen, F.; Zhang, Y.; Wen, Y.; Chen, J. Highly Sensitive Detection of Carbendazim and Its Electrochemical Oxidation Mechanism at a Nanohybrid Sensor. J. Electrochem. Soc. 2019, 166 (6), B322–B327. https://doi.org/10.1149/2.0251906jes.
(36) Santana, P.; Lima, J.; Santana, T.; Santos, L.; Matos, C.; da Costa, L.; Gimenez, I.; Sussuchi, E. Semiconductor Nanocrystals-Reduced Graphene Composites for the Electrochemical Detection of Carbendazim. J. Braz. Chem. Soc. 2019. https://doi.org/10.21577/0103-5053.20190026.

Chapter-7
(1) Hu, M.; Wang, Y.; Xiong, Z.; Bi, D.; Zhang, Y.; Xu, Y. Iodine-Sensitized Degradation of 2,4,6-Trichlorophenol under Visible Light. Environ. Sci. Technol. 2012, 46 (16), 9005–9011. https://doi.org/10.1021/es301577p.
(2) Coelho, C.; Ribeiro, M.; Cruz, A. C. S.; Domingues, M. R. M.; Coimbra, M. A.; Bunzel, M.; Nunes, F. M. Nature of Phenolic Compounds in Coffee Melanoidins. J. Agric. Food Chem. 2014, 62 (31), 7843–7853. https://doi.org/10.1021/jf501510d.
(3) Fernandes, S. C.; Moccelini, S. K.; Scheeren, C. W.; Migowski, P.; Dupont, J.; Heller, M.; Micke, G. A.; Vieira, I. C. Biosensor for Chlorogenic Acid Based on an Ionic Liquid Containing Iridium Nanoparticles and Polyphenol Oxidase. Talanta 2009, 79 (2), 222–228. https://doi.org/10.1016/j.talanta.2009.03.039.
(4) Lepelley, M.; Cheminade, G.; Tremillon, N.; Simkin, A.; Caillet, V.; McCarthy, J. Chlorogenic Acid Synthesis in Coffee: An Analysis of CGA Content and Real-Time RT-PCR Expression of HCT, HQT, C3H1, and CCoAOMT1 Genes during Grain Development in C. Canephora. Plant Sci. 2007, 172 (5), 978–996. https://doi.org/10.1016/j.plantsci.2007.02.004.
(5) Cheng, W.; Huang, J.; Liu, C.; Zeng, Q.; Tong, Y.; Wang, L.; Cheng, F. High Sensitivity Chlorogenic Acid Detection Based on Multiple Layer-by-Layer Self-Assembly Films of Chitosan and Multi-Walled Carbon Nanotubes on a Glassy Carbon Electrode. RSC Adv. 2017, 7 (12), 6950–6956. https://doi.org/10.1039/c6ra26378j.
(6) Agatonovic-Kustrin, S.; Loescher, C. M. Qualitative and Quantitative High Performance Thin Layer Chromatography Analysis of Calendula Officinalis Using High Resolution Plate Imaging and Artificial Neural Network Data Modelling. Anal. Chim. Acta 2013, 798, 103–108. https://doi.org/10.1016/j.aca.2013.08.048.
(7) Rasouli, H.; Farzaei, M. H.; Khodarahmi, R. Polyphenols and Their Benefits: A Review. Int. J. Food Prop. 2017, 20 (2), 1700–1741. https://doi.org/10.1080/10942912.2017.1354017.
(8) Jeon, J. S.; Kim, H. T.; Jeong, I. H.; Hong, S. R.; Oh, M. S.; Yoon, M. H.; Shim, J. H.; Jeong, J. H.; Abd El-Aty, A. M. Contents of Chlorogenic Acids and Caffeine in Various Coffee-Related Products. J. Adv. Res. 2019, 17, 85–94. https://doi.org/10.1016/j.jare.2019.01.002.
(9) Kremr, D.; Bajer, T.; Bajerová, P.; Surmová, S.; Ventura, K. Unremitting Problems with Chlorogenic Acid Nomenclature: A Review. Quim. Nova 2016, 39 (4), 530–533. https://doi.org/10.5935/0100-4042.20160063.
(10) Gökcen, B. B.; Şanlier, N. Coffee Consumption and Disease Correlations. Crit. Rev. Food Sci. Nutr. 2019, 59 (2), 336–348. https://doi.org/10.1080/10408398.2017.1369391.
(11) Manivannan, K.; Sivakumar, M.; Cheng, C. C.; Lu, C. H.; Chen, J. K. An Effective Electrochemical Detection of Chlorogenic Acid in Real Samples: Flower-like ZnO Surface Covered on PEDOT:PSS Composites Modified Glassy Carbon Electrode. Sensors Actuators, B Chem. 2019, 301 (May), 1–8. https://doi.org/10.1016/j.snb.2019.127002.
(12) Yan, Y.; Bo, X.; Guo, L. MOF-818 Metal-Organic Framework-Reduced Graphene Oxide/Multiwalled Carbon Nanotubes Composite for Electrochemical Sensitive Detection of Phenolic Acids. Talanta 2020, 218 (February), 121123. https://doi.org/10.1016/j.talanta.2020.121123.
(13) Khaksar Haghani, S.; Ensafi, A. A.; Kazemifard, N.; Rezaei, B. Development of a Selective and Sensitive Chlorogenic Acid Fluorimetric Sensor Using Molecularly Imprinted Polymer ZnO Quantum Dots. IEEE Sens. J. 2020, 20 (11), 5691–5697. https://doi.org/10.1109/JSEN.2020.2972040.
(14) Angeloni, G.; Guerrini, L.; Masella, P.; Bellumori, M.; Daluiso, S.; Parenti, A.; Innocenti, M. What Kind of Coffee Do You Drink? An Investigation on Effects of Eight Different Extraction Methods. Food Res. Int. 2019, 116 (June 2018), 1327–1335. https://doi.org/10.1016/j.foodres.2018.10.022.
(15) Liu, Y.; Cao, L.; Zan, M.; Peng, J.; Wang, P.; Pang, X.; Zhang, Y.; Li, L.; Dong, W.-F.; Mei, Q. Cyan-Emitting Silicon Quantum Dots as a Fluorescent Probe Directly Used for Highly Sensitive and Selective Detection of Chlorogenic Acid. Talanta 2021, 233 (April), 122465. https://doi.org/10.1016/j.talanta.2021.122465.
(16) Zhang, X.; Wang, H.; Niu, N.; Chen, Z.; Li, S.; Liu, S. X.; Li, J. Fluorescent Poly(Vinyl Alcohol) Films Containing Chlorogenic Acid Carbon Nanodots for Food Monitoring. ACS Appl. Nano Mater. 2020, 3 (8), 7611–7620. https://doi.org/10.1021/acsanm.0c01229.
(17) Huang, Z.; Zhang, Y.; Sun, J.; Chen, S.; Chen, Y.; Fang, Y. Nanomolar Detection of Chlorogenic Acid at the Cross-Section Surface of the Pencil Lead Electrode. Sensors Actuators, B Chem. 2020, 321 (June), 128550. https://doi.org/10.1016/j.snb.2020.128550.
(18) Mohammadi, N.; Najafi, M.; Adeh, N. B. Highly Defective Mesoporous Carbon – Ionic Liquid Paste Electrode as Sensitive Voltammetric Sensor for Determination of Chlorogenic Acid in Herbal Extracts. Sensors Actuators, B Chem. 2017, 243, 838–846. https://doi.org/10.1016/j.snb.2016.12.070.
(19) Muthukutty, B.; Arumugam, B.; Chen, S. M.; Ramaraj, S. K. Low Potential Detection of Antiprotozoal Drug Metronidazole with Aid of Novel Dysprosium Vanadate Incorporated Oxidized Carbon Nanofiber Modified Disposable Screen-Printed Electrode. J. Hazard. Mater. 2021, 407 (August 2020), 124745. https://doi.org/10.1016/j.jhazmat.2020.124745.
(20) Rajakumaran, R.; Sukanya, R.; Chen, S. M.; Karthik, R.; Breslin, C. B.; Shafi, P. M. Synthesis and Characterization of Pyrochlore-Type Praseodymium Stannate Nanoparticles: An Effective Electrocatalyst for Detection of Nitrofurazone Drug in Biological Samples. Inorg. Chem. 2021, 60 (4), 2464–2476. https://doi.org/10.1021/acs.inorgchem.0c03377.
(21) Kokulnathan, T.; Wang, T. J.; Kumar, E. A.; Liu, Z. Y. Zinc Manganate: Synthesis, Characterization, and Electrochemical Application toward Flufenamic Acid Detection. Inorg. Chem. 2021, 60 (7), 4723–4732. https://doi.org/10.1021/acs.inorgchem.0c03672.
(22) Vinoth Kumar, J.; Karthik, R.; Chen, S. M.; Raja, N.; Selvam, V.; Muthuraj, V. Evaluation of a New Electrochemical Sensor for Selective Detection of Non-Enzymatic Hydrogen Peroxide Based on Hierarchical Nanostructures of Zirconium Molybdate. J. Colloid Interface Sci. 2017, 500, 44–53. https://doi.org/10.1016/j.jcis.2017.03.113.
(23) Zhao, Y.; Zhou, X.; Ding, Y.; Huang, J.; Zheng, M.; Ye, W. A Study of Photocatalytic, Chemical, and Electrocatalytic Water Oxidation on ACo2O4 (A = Ni, Cu, Zn) Samples through Doping Different Metal Ions. J. Catal. 2016, 338, 30–37. https://doi.org/10.1016/j.jcat.2016.02.003.
(24) Bai, X.; Ren, T.; Mao, J.; Li, S.; Yin, J.; Zhou, J. A Ag-ZrO2-Graphene Oxide Nanocomposite as a Metal-Leaching-Resistant Catalyst for the Aqueous-Phase Hydrogenation of Levulinic Acid into Gamma-Valerolactone. New J. Chem. 2020, 44 (38), 16526–16536. https://doi.org/10.1039/d0nj03892j.
(25) De Souza, A. O.; Ivashita, F. F.; Biondo, V.; Paesano, A.; Mosca, D. H. Structural and Magnetic Properties of Iron Doped ZrO2. J. Alloys Compd. 2016, 680, 701–710. https://doi.org/10.1016/j.jallcom.2016.04.170.
(26) Le Rouge, A.; Hamzaoui, H. El; Capoen, B.; Bernard, R.; Cristini-Robbe, O.; Martinelli, G.; Cassagne, C.; Boudebs, G.; Bouazaoui, M.; Bigot, L. Synthesis and Nonlinear Optical Properties of Zirconia-Protected Gold Nanoparticles Embedded in Sol-Gel Derived Silica Glass. Mater. Res. Express 2015, 2 (5), 0–10. https://doi.org/10.1088/2053-1591/2/5/055009.
(27) Lu, X.; Deng, L.; Du, J. Effect of ZrO2 on the Structure and Properties of Soda-Lime Silicate Glasses from Molecular Dynamics Simulations. J. Non. Cryst. Solids 2018, 491 (April), 141–150. https://doi.org/10.1016/j.jnoncrysol.2018.04.013.
(28) Ji, P.; Mao, Z.; Wang, Z.; Xue, X.; Zhang, Y.; Lv, J.; Shi, X. Improved Surface-Enhanced Raman Scattering Properties of ZrO2 Nanoparticles by Zn Doping. Nanomaterials 2019, 9 (7), 1–12. https://doi.org/10.3390/nano9070983.
(29) Leib, E. W.; Vainio, U.; Pasquarelli, R. M.; Kus, J.; Czaschke, C.; Walter, N.; Janssen, R.; Müller, M.; Schreyer, A.; Weller, H.; Vossmeyer, T. Synthesis and Thermal Stability of Zirconia and Yttria-Stabilized Zirconia Microspheres. J. Colloid Interface Sci. 2015, 448, 582–592. https://doi.org/10.1016/j.jcis.2015.02.049.
(30) Maham, M.; Nasrollahzadeh, M.; Mohammad Sajadi, S. Facile Synthesis of Ag/ZrO2 Nanocomposite as a Recyclable Catalyst for the Treatment of Environmental Pollutants. Compos. Part B Eng. 2020, 185 (October 2018), 107783. https://doi.org/10.1016/j.compositesb.2020.107783.
(31) Yin, X.; Xie, X.; Song, L.; Zhai, J.; Du, P.; Xiong, J. Enhanced Performance of Flexible Dye-Sensitized Solar Cells Using Flexible Ag@ZrO2/C Nanofiber Film as Low-Cost Counter Electrode. Appl. Surf. Sci. 2018, 440, 992–1000. https://doi.org/10.1016/j.apsusc.2018.01.264.
(32) Dagle, V. L.; Flake, M. D.; Lemmon, T. L.; Lopez, J. S.; Kovarik, L.; Dagle, R. A. Effect of the SiO2 Support on the Catalytic Performance of Ag/ZrO2/SiO2 Catalysts for the Single-Bed Production of Butadiene from Ethanol. Appl. Catal. B Environ. 2018, 236 (August 2017), 576–587. https://doi.org/10.1016/j.apcatb.2018.05.055.
(33) Yan, X.; Qin, C.; Lu, C.; Zhao, J.; Zhao, R.; Ren, D.; Zhou, Z.; Wang, H.; Wang, J.; Zhang, L.; Li, X.; Pei, Y.; Wang, G.; Zhao, Q.; Wang, K.; Xiao, Z.; Li, H. Robust Ag/ZrO2/WS2/Pt Memristor for Neuromorphic Computing. ACS Appl. Mater. Interfaces 2019, 11 (51), 48029–48038. https://doi.org/10.1021/acsami.9b17160.
(34) Li, Y.; Zhang, Y.; Chen, Q. Surface Plasmon Resonance Effect, Nonlinearity and Faraday Rotation Properties of Magneto Optical Glass: Influence of Diamagnetic Ag@ZrO2 Nanoparticles. J. Non. Cryst. Solids 2021, 553 (August 2020), 120498. https://doi.org/10.1016/j.jnoncrysol.2020.120498.
(35) Zhou, L.; Yang, J.; Wang, X.; Song, G.; Lu, F.; You, L.; Li, J. Ag Nanoparticles Decorated Ag@ZrO2 Composite Nanospheres as Highly Active SERS Substrates for Quantitative Detection of Hexavalent Chromium in Waste Water. J. Mol. Liq. 2020, 319, 114158. https://doi.org/10.1016/j.molliq.2020.114158.
(36) Periyasamy, S.; Vinoth Kumar, J.; Chen, S. M.; Annamalai, Y.; Karthik, R.; Erumaipatty Rajagounder, N. Structural Insights on 2D Gadolinium Tungstate Nanoflake: A Promising Electrocatalyst for Sensor and Photocatalyst for the Degradation of Postharvest Fungicide (Carbendazim). ACS Appl. Mater. Interfaces 2019, 11 (40), 37172–37183. https://doi.org/10.1021/acsami.9b07336.
(37) Karthik, R.; Kumar, J. V.; Chen, S. M.; Kokulnathan, T.; Chen, T. W.; Sakthinathan, S.; Chiu, T. W.; Muthuraj, V. Development of Novel 3D Flower-like Praseodymium Molybdate Decorated Reduced Graphene Oxide: An Efficient and Selective Electrocatalyst for the Detection of Acetylcholinesterase Inhibitor Methyl Parathion. Sensors Actuators, B Chem. 2018, 270 (May), 353–361. https://doi.org/10.1016/j.snb.2018.05.054.
(38) Karthik, R.; Vinoth Kumar, J.; Chen, S. M.; Karuppiah, C.; Cheng, Y. H.; Muthuraj, V. A Study of Electrocatalytic and Photocatalytic Activity of Cerium Molybdate Nanocubes Decorated Graphene Oxide for the Sensing and Degradation of Antibiotic Drug Chloramphenicol. ACS Appl. Mater. Interfaces 2017, 9 (7), 6547–6559. https://doi.org/10.1021/acsami.6b14242.
(39) Rahman, M. T.; Kabir, M. F.; Gurung, A.; Reza, K. M.; Pathak, R.; Ghimire, N.; Baride, A.; Wang, Z.; Kumar, M.; Qiao, Q. Graphene Oxide-Silver Nanowire Nanocomposites for Enhanced Sensing of Hg2+. ACS Appl. Nano Mater. 2019, 2 (8), 4842–4851. https://doi.org/10.1021/acsanm.9b00789.
(40) Urbanová, V.; Jayaramulu, K.; Schneemann, A.; Kment, Š.; Fischer, R. A.; Zbořil, R. Hierarchical Porous Fluorinated Graphene Oxide@Metal-Organic Gel Composite: Label-Free Electrochemical Aptasensor for Selective Detection of Thrombin. ACS Appl. Mater. Interfaces 2018, 10 (48), 41089–41097. https://doi.org/10.1021/acsami.8b14344.
(41) Alkhouzaam, A.; Qiblawey, H.; Khraisheh, M.; Atieh, M.; Al-Ghouti, M. Synthesis of Graphene Oxides Particle of High Oxidation Degree Using a Modified Hummers Method. Ceram. Int. 2020, 46 (15), 23997–24007. https://doi.org/10.1016/j.ceramint.2020.06.177.
(42) Alagarsamy, K.; Vishwakarma, V.; Kaliaraj, G. S.; Vasantha, N. C.; Samuel, S. J. R. Biological Adhesion and Electrochemical Behavior of Ag-ZrO2 Bioceramic Coatings for Biomedical Applications. J. Adhes. Sci. Technol. 2020, 34 (4), 349–368. https://doi.org/10.1080/01694243.2019.1666627.
(43) Santamaría-Juárez, G.; Gómez-Barojas, E.; Quiroga-González, E.; Sánchez-Mora, E.; Quintana-Ruiz, M.; Santamaría-Juárez, J. D. Safer Modified Hummers’ Method for the Synthesis of Graphene Oxide with High Quality and High Yield. Mater. Res. Express 2019, 6 (12). https://doi.org/10.1088/2053-1591/ab4cbf.
(44) Rabchinskii, M. K.; Ryzhkov, S. A.; Kirilenko, D. A.; Ulin, N. V.; Baidakova, M. V.; Shnitov, V. V.; Pavlov, S. I.; Chumakov, R. G.; Stolyarova, D. Y.; Besedina, N. A.; Shvidchenko, A. V.; Potorochin, D. V.; Roth, F.; Smirnov, D. A.; Gudkov, M. V.; Brzhezinskaya, M.; Lebedev, O. I.; Melnikov, V. P.; Brunkov, P. N. From Graphene Oxide towards Aminated Graphene: Facile Synthesis, Its Structure and Electronic Properties. Sci. Rep. 2020, 10 (1), 1–12. https://doi.org/10.1038/s41598-020-63935-3.
(45) Meng, A.; Lin, L.; Yuan, X.; Shen, T.; Li, Z.; Li, Q. Ag/ZrO2/MWCNT Nanocomposite as Non-Platinum Electrocatalysts for Enhanced Oxygen Reduction Reaction. ChemCatChem 2019, 11 (12), 2900–2908. https://doi.org/10.1002/cctc.201900317.
(46) Al-Gaashani, R.; Najjar, A.; Zakaria, Y.; Mansour, S.; Atieh, M. A. XPS and Structural Studies of High Quality Graphene Oxide and Reduced Graphene Oxide Prepared by Different Chemical Oxidation Methods. Ceram. Int. 2019, 45 (11), 14439–14448. https://doi.org/10.1016/j.ceramint.2019.04.165.
(47) Vivekanandan, A. K.; Muthukutty, B.; Chen, S. M.; Sivakumar, M.; Chen, S. H. Intermetallic Compound Cu2Sb Nanoparticles for Effective Electrocatalytic Oxidation of an Antibiotic Drug: Sulphadiazine. ACS Sustain. Chem. Eng. 2020, 8 (48), 17718–17726. https://doi.org/10.1021/acssuschemeng.0c05629.
(48) Mazellier, P.; Leroy, É.; De Laat, J.; Legube, B. Degradation of Carbendazim by UV/H2O2 Investigated by Kinetic Modelling. Environ. Chem. Lett. 2003, 1 (1), 68–72. https://doi.org/10.1007/s10311-002-0010-7.
(49) Muthukutty, B.; Krishnapandi, A.; Chen, S. M.; Abinaya, M.; Elangovan, A. Innovation of Novel Stone-Like Perovskite Structured Calcium Stannate (CaSnO3): Synthesis, Characterization, and Application Headed for Sensing Photographic Developing Agent Metol. ACS Sustain. Chem. Eng. 2020, 8 (11), 4419–4430. https://doi.org/10.1021/acssuschemeng.9b07011.
(50) Laviron, E. General Expression of the Linear Potential Sweep Voltammogram in the Case of Diffusionless Electrochemical Systems. J. Electroanal. Chem. 1979, 101 (1), 19–28. https://doi.org/10.1016/S0022-0728(79)80075-3.
(51) Manivannan, K.; Sivakumar, M.; Cheng, C.-C.; Lu, C.-H.; Chen, J.-K. An Effective Electrochemical Detection of Chlorogenic Acid in Real Samples: Flower-like ZnO Surface Covered on PEDOT:PSS Composites Modified Glassy Carbon Electrode. Sensors Actuators B Chem. 2019, 301, 127002. https://doi.org/10.1016/j.snb.2019.127002.
(52) Chen, Y.; Huang, W.; Chen, K.; Zhang, T.; Wang, Y.; Wang, J. A Novel Electrochemical Sensor Based on Core-Shell-Structured Metal-Organic Frameworks: The Outstanding Analytical Performance towards Chlorogenic Acid. Talanta 2019, 196, 85–91. https://doi.org/10.1016/j.talanta.2018.12.033.
(53) Wang, Y.; Chen, H.; Hu, X.; Yu, H. Highly Stable and Ultrasensitive Chlorogenic Acid Sensor Based on Metal–Organic Frameworks/Titanium Dioxide Nanocomposites. Analyst 2016, 141 (15), 4647–4653. https://doi.org/10.1039/C6AN00727A.
(54) Ma, X.; Yang, H.; Xiong, H.; Li, X.; Gao, J.; Gao, Y. Electrochemical Behavior and Determination of Chlorogenic Acid Based on Multi-Walled Carbon Nanotubes Modified Screen-Printed Electrode. Sensors 2016, 16 (11), 1797. https://doi.org/10.3390/s16111797.
(55) Belay, A.; Gholap, a. V. Characterization and Determination of Chlorogenic Acids ( CGA ) in Coffee Beans by UV-Vis Spectroscopy. African J. Pure Appl. Chem. 2009, 3 (11), 234–240.








QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
1. 雙金屬和二元金屬奈米粒子與功能化奈米碳管複合材料於電化學感測應用研究
2. 奈米金屬氧化物修飾電極用於生物化合物及重金屬離子之電化學感測
3. 利用聲化學合成法製備奈米複合材料修飾電極應用於電化學測定硝基苯胺,氟他胺及鹽酸異丙嗪
4. 雙金屬氧化物奈米粒子修飾電極之特性及應用於電化學感測之研究
5. 水熱法合成釩酸鹽奈米粒子及其應用於伏安法檢測抗精神病藥物噻噠嗪
6. 製備奈米複合材料之修飾電極應用於氟他胺檢測之研究
7. 碳基金屬氧化物及雙金屬奈米複合材料修飾電極的製備及特性分析並應用於環境及生物樣品的檢測
8. 雙功能之雙金屬複合材料用以偵測具危害之苯二酚異構物及染料降解
9. 開發一種以鹵氧化鉍為基底的高效能奈米催化表面結構並應用於表面增強拉曼光譜(SERS)和電化學之研究
10. 二元過渡金屬氧化物的電化學感測器用於檢測天然食物樣品中的抗氧化藥物
11. 設置管冪之矩形地下通廊開挖所引致周圍變位之三維分析
12. Using Traditional Guatemalan Textile Patterns and Designs To Inform About Guatemalan Culture With Aid From AR Technology
13. 應用邊緣運算系統於即時情緒識別之研究
14. 稀土金屬摻雜釩酸鉍/碳複合基電催化劑用於環境健康危害物質電化學傳感的探索
15. 金屬氧化物奈米顆粒插層還原氧化石墨烯複合材料應用於藥物的高效電化學感測分析