跳到主要內容

臺灣博碩士論文加值系統

(98.82.140.17) 您好!臺灣時間:2024/09/08 01:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:賈宗本
研究生(外文):JIA, ZONG-BEN
論文名稱:使用新型電流感測與相位頻率鎖定技術之適應性導通時間降壓轉換器與新型電流感測技術之電流模式降壓轉換器
論文名稱(外文):An Adaptive On-Time Buck Converter with New Current-Sensing and Phase-Frequency-Locked Techniques and A Current-Mode Buck Converter with New Current-Sensing Techniques
指導教授:陳建中陳建中引用關係黃育賢
指導教授(外文):CHEN, JIANN-JONGHWANG, YUH-SHYAN
口試委員:郭建宏李宗演陳建中黃育賢
口試委員(外文):KUO, CHIEN-HUNGLEE, TRONG-YENCHEN, JIANN-JONGHWANG, YUH-SHYAN
口試日期:2021-07-22
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:80
中文關鍵詞:降壓轉換器適應性導通時間鎖相鎖頻技術積分式電流感測
外文關鍵詞:Buck ConverterAdaptive On-TimePhase-Frequency-LockedIntegral Current-Sensing Circuit
相關次數:
  • 被引用被引用:0
  • 點閱點閱:179
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文提出使用新型電流感測與相位頻率鎖定技術之適應性導通時間降壓轉換器與新型電流感測技術之電流模式降壓式轉換器。第一部分為使用新型電流感測與相位頻率鎖定技術之適應性導通時間降壓式轉換器。透過鎖相鎖頻技術改善了適應性導通時間控制器因非理想效應影響電路導致切換頻率變動的缺點,並使用DCR感測電路感測出仿電感電流的電壓值用於控制迴路。晶片採用TSMC 0.35um 2P4M製程來實現,晶片面積1.44×1.45 mm2,輸入電壓3 V-3.6 V,輸出電壓1 V-2.5 V。當輸出電壓1.8 V,負載電流由50 mA切換至500 mA及500 mA切換至50 mA,暫態響應分別為2 us及2.4 us,效率最高為90.9%。
第二部分為新型電流感測技術之電流模式降壓式轉換器,使用積分式電流感測電路感測電感電流,可以避免開關在切換時產生的雜訊與突波之影響,晶片採用TSMC 0.18 um 1P6M製程來實現,晶片面積1.1×1.12 mm2,輸入電壓3 V-3.6 V,輸出電壓1 V-2.5 V。當輸出電壓1.8 V,負載電流由50 mA切換至500 mA及500 mA切換至50 mA,暫態響應分別為2 us及2 us,效率最高為91.4%。

This thesis proposes an adaptive on-time buck converter with new current-sensing and phase-frequency-locked techniques and a current-mode buck converter with new current-sensing techniques. The first part is adaptive on-time buck converter with new current-sensing and phase-frequency-locked techniques. Through the phase-frequency-locked techniques, the shortcomings of the adaptive on-time controller that the switching frequency changes due to the influence of the non-ideal effect on the circuit are improved, and the DCR current-sensing circuit is used to sense the voltage value of the imitation inductor current for the control loop. The chip has been implemented with TSMC 0.35 um 2P4M process, the chip area is 1.44×1.45 mm2, the input voltage is 3 V-3.6 V, the output voltage is 1 V-2.5 V, when the output voltage is 1.8 V, the load current is switched from 50 mA to 500 mA and 500 mA to 50 mA, the transient response is 2 us and 2.4 us respectively, and the highest efficiency is 90.9%.
The second part is a current-mode buck converter with new current-sensing techniques. The use of integral current-sensing to sense the inductor current can avoid high-frequency noise generated by the switch during switching, so the stability of the circuit can be improved. The chip was implemented with the TSMC 0.18 um 1P6M process, and the chip area is 1.1× 1.12 mm2, the input voltage is 3 V-3.6 V, the output voltage is 1 V-2.5 V, when the output voltage is 1.8 V, the load current is switched from 50 mA to 500 mA and 500 mA to 50 mA, the transient response is 2 us and 2 us respectively, and the highest efficiency is 91.4%.

摘要 i
Abstract ii
誌謝 iv
目錄 v
圖目錄 viii
表目錄 xii
第一章 序論 1
1.1 研究背景與發展近況 1
1.2 研究動機與目的 4
1.3 論文架構 4
第二章 切換式降壓轉換器架構介紹與原理分析 5
2.1 切換式降壓轉換器原理分析 5
2.1.1 連續導通模式 6
2.1.2 邊界導通模式 10
2.1.3 非連續導通模式 11
2.2 切換式轉換器控制模式 13
2.2.1 電壓模式 13
2.2.2 電流模式 15
2.2.3 漣波模式 17
2.3 切換式轉換器特性與定義 19
2.3.1 線性調節率 19
2.3.2 負載調節率 19
2.3.3 暫態響應 19
2.3.4 漣波電壓 21
2.3.5損耗與效率 21
第三章 使用新型電流感測與相位頻率鎖定技術之適應性導通時間降壓轉換器 24
3.1 架構簡介 24
3.1.1電流感測電路 25
3.1.2 適應性導通時間控制器 26
3.1.3 補償器 28
3.1.4 運算放大器 29
3.1.5 磁滯比較器 30
3.1.6 鎖相迴路 31
3.2 電路模擬 34
3.3 整體電路佈局與量測結果 40
3.3.1 晶片佈局 40
3.3.2 晶片腳位與定義 41
3.3.3 量測環境 43
3.3.4 量測結果 44
3.4 規格表與相關文獻比較 49
第四章 新型電流感測技術之電流模式降壓轉換器 51
4.1 架構簡介 51
4.1.1 新型積分式電流感測電路 52
4.1.2 固定時脈產生器 56
4.1.3 非重疊電路與驅動電路 57
4.2 電路模擬 58
4.3 整體電路佈局與量測結果 62
4.3.1 晶片佈局 62
4.3.2 晶片腳位與定義 63
4.3.3 量測環境 65
4.3.4 量測結果 66
4.4 規格表與相關文獻比較 73
第五章 結論與未來展望 75
5.1 結論 75
5.2 未來展望 76
參考文獻 77
[1]R. W. Erickson and D. Maksimovis, Fundamentals of Power Electronics, Norwell, MA Kluwer, 2001 2nd.
[2]F.-N. Lee, Z. A. bin Abdul Aziz and F.-L. Mun, "A low ripple CMOS charge Pump for low-voltage application," in Proc. 2012 4th International Conference on Intelligent and Advanced Systems (ICIAS2012), Kuala Lumpur, June 2012, pp. 784-789.
[3]Mohammad A. -Shyoukh, H. Lee, and R. Perez. "A transient-enhanced low-quiescent current low-dropout regulator with buffer impedance attenuation," IEEE J. Solid-State Circuits, vol. 42, no. 8, pp. 1732-1742, Aug. 2007.
[4]K.-H. Chen, H.-W. Huang, and S.-Y. Kuo, "Fast-transient DC–DC converter with onchip compensated error amplifier," IEEE Transactions on Circuits and Systems. II, vol. 54, no. 12, pp. 1150-1154, Dec. 2007.
[5]梁適安,交換式電源供給器之理論與實務設計(第三版),全華書局,2018。
[6]S. J. Kim, W. S. Choi, R. Pilawa-Podgurski and P. K. Hanumolu, "A 10-MHz 2–800-mA 0.5–1.5-V 90% Peak Efficiency Time-Based Buck Converter With Seamless Transition Between PWM/PFM Modes," IEEE J. Solid-State Circuits, vol. 53, no. 3, pp. 814-824, March 2018.
[7]M. K. Alghamdi and A. A. Hamoui, "A Spurious-Free Switching Buck Converter Achieving Enhanced Light-Load Efficiency by Using a ΔΣ-Modulator Controller With a Scalable Sampling Frequency," IEEE J. Solid-State Circuits, vol. 47, no. 4, pp. 841-851, April 2012.
[8]Amit Kumar Singha, and Santanu Kapat. "A unified framework for analysis and design of a digitally current-mode controlled buck converter," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 63, no. 11, Nov. 2016.
[9]J.-J. Chen, Y.-S. Hwang, B.-H. Hwang, Y.-C. Jhang and Y.-T. Ku, "A dual-mode fast-transient average-current-mode buck converter without slope-compensation," in Proc. 2018 7th International Symposium on Next Generation Electronics (ISNE), Taipei, 2018, pp. 1-4.
[10]R. Redl and J. Sun, "Ripple-based control of switching regulators—an overview," IEEE Trans. Power Electron, vol. 24, no. 12, pp. 2669-2680, Dec. 2009.
[11]J.-J. Chen, M. X. Lu, T.-H. Wu and Y.-S. Hwang, "Sub-1-V Fast-Response Hysteresis-Controlled CMOS Buck Converter Using Adaptive Ramp Techniques," IEEE Transactions on Very Large Scale Integration. (VLSI) Systems, vol. 21, no. 9, pp. 1608-1618, Sept. 2013.
[12]徐貴園,降低寄生元件效應的固定導通時間控制於使用陶瓷電容的降壓電源轉換器,碩士論文,國立交通大學,新竹,2012。
[13]Y.-C. Lin, C.-J. Chen, D. Chen, and B. Wang, "A ripple-based constant on-time control with virtual inductor current and offset cancellation for DC power converters," IEEE Trans. Power Electron., vol. 27, no. 10, pp. 4301–4310, Oct. 2012.
[14]C.-S. Huang, C.-Y. Wang, J.-H. Wang and C.-H. Tsai, "A fast-transient quasi-V2 switching buck regulator using AOT control," in Proc. IEEE Asian Solid-State Circuits Conference. (A-SSCC), Nov. 2011, pp. 53-56.
[15]B. Labbe, B. Allard, X. Lin-Shi and D. Chesneau, "An Integrated Sliding-Mode Buck Converter With Switching Frequency Control for Battery-Powered Applications," IEEE Transactions on Power Electronics, vol. 28, no. 9, pp. 4318-4326, Sept. 2013.
[16]A. T. Mozipo, "Analysis of a current sensing and reporting tolerance in an inductor DCR sense topology," in Proc. 2011 Twenty-Sixth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), Fort Worth, March 2011, pp. 1502-1506.
[17]J.-J. Chen, Y.-S. Hwang, C.-H. Chang, Y.-T. Ku and C. Yu, "A sub-1 μs fast-response buck converter with adaptive and frequency-locked controlled techniques," IEEE Transactions on Industrial Electronics, vol. 66, no. 3, pp. 2198-2203, Mar. 2019.
[18]江修,用於電池電源的 DC-DC 轉換器動態調整研究,碩士論文,國立交通大學,新竹,2008。
[19]張國泰,高速磁滯電壓轉換器之漣波電壓改善,碩士論文,國立交通大學,新竹,2008。
[20]劉深淵、楊清淵 編著,鎖相迴路,滄海書局,2006。
[21]M. Zhou, Z. Sun, Q. W. Low and L. Siek, "Multiloop Control for Fast Transient DC–DC Converter," IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 27, no. 1, pp. 219-228, Jan. 2019.
[22]M. Nashed and A. A. Fayed, "Current-Mode Hysteretic Buck Converter With Spur-Free Control for Variable Switching Noise Mitigation," IEEE Transactions on Power Electronics, vol. 33, no. 1, pp. 650-664, Jan. 2018.
[23]J.-J Chen, Y.-S Hwang, J.-H Chen, Y.-T Ku and C.-C Yu, "A New Fast-Response Current-Mode Buck Converter With Improved I2-Controlled Techniques," IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 26, no. 5, pp. 903-911, May 2018.
[24]W.-H Yang, C.-J Huang, H.-H Huang, W.-T Lin, K.-H Chen, Y.-H Lin, S.-R Lin and T.-Y Tsai, "A Constant-on-Time Control DC–DC Buck Converter With the Pseudowave Tracking Technique for Regulation Accuracy and Load Transient Enhancement," IEEE Transactions on Power Electronics, vol. 33, no. 7, pp. 6187-6198, July 2018.
[25]J.-J Chen, Y.-S Hwang, J.-F Liou, Y.-T Ku and C.-C Yu, "A New Buck Converter With Optimum-Damping and Dynamic-Slope Compensation Techniques," IEEE Transactions on Industrial Electronics, vol. 64, no. 3, pp. 2373-2381, March 2017.
[26]K.-D Wu, M.-H Chiu, C.-S Jheng, J.-J Chen, Y.-S Hwang, Y.-T Ku and C.-C Yu, "A new multiphase buck converter with optimum-damping-control and current-balanced techniques," in Proc. 2017 International Conference on Applied System Innovation (ICASI), Sapporo, May 2017, pp. 1320-1323.
[27]J.-J Chen, F.-C Yang and C.-C Chen, "A New Monolithic Fast-Response Buck Converter Using Spike-Reduction Current-Sensing Circuits," IEEE Transactions on Industrial Electronics, vol. 55, no. 3, pp. 1101-1111, March 2008.
[28]J.-J Chen, Y.-S Hwang, J.-Y Lin and Y.-T Ku, "A Dead-Beat-Controlled Fast-Transient-Response Buck Converter With Active Pseudo-Current-Sensing Techniques," IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 27, no. 8, pp. 1751-1759, Aug. 2019.
[29]Y.-S Hwang, A. Liu, Y.-B Chang and J.-S Chen, "A High-Efficiency Fast-Transient-Response Buck Converter with Analog-Voltage-Dynamic-Estimation Techniques," IEEE Transactions on Power Electronics, vol. 30, no. 7, pp. 3720-3730, July 2015.
[30]D. -H. Jung, K. Kim, S. Joo and S. -O. Jung, "0.293-mm2 fast transient response hysteretic quasi-v 2 dc–dc converter with area-efficient time-domain-based controller in 0.35-um CMOS," IEEE J. Solid-State Circuits, vol. 53, no. 6, pp. 1844-1855, Jun. 2018.
[31]M. Zhou, Z. Sun, Z. Xiao, Q. Low and L. Siek, "A Fast Transient Response DC-DC Converter with an Active Compensation Capacitor Module," in Proc. 2018 IEEE International Symposium on Circuits and Systems (ISCAS), Florence, Italy, 2018, pp. 1-5.
[32]S. H. Pakala, P. R. Surkanti, P. M. Furth, "A spread-spectrum mode enabled ripple-based buck converter using a clockless frequency control", IEEE Trans. Circuits Syst.-II., VOL. 66, NO. 3, pp.382-386, Mar. 2019.
[33]J.-G. Kang, J. Park, M.-G. Jeong and C. Yoo, "A time-domain-controlled current-mode buck converter with wide output voltage range," IEEE J. Solid-State Circuits, vol. 54, no. 3, pp. 865-873, Mar. 2019.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 用於電池電源的DC-DC轉換器動態調整研究
2. 降低寄生元件效應的固定導通時間控制於使用陶瓷電容的降壓電源轉換器
3. 高速磁滯電壓轉換器之漣波電壓改善
4. 適應性導通時間降壓轉換器和磁滯電流控制降壓轉換器與連續時間三角積分升壓轉換器
5. 使用相位頻率鎖定技術之磁滯控制降壓轉換器與使用新式電流感測技術之脈波寬度調變降壓轉換器
6. 使用電流平方與適應性導通時間控制之鎖相鎖頻技術降壓式轉換器與軌對軌電流感測技術之無差拍控制降壓式轉換器
7. 零電流偵測自適應導通時間控制降壓轉換器與新型連續時間三角積分調變升壓轉換器
8. 使用相位頻率鎖定技術之自適應導通時間降壓轉換器與使用臨界電壓偵測之溫度感測器
9. 使用適應性導通時間控制與鎖相鎖頻技術之快速動態電壓調節電流式降壓轉換器
10. 使用新型電流感測與動態斜率補償技術之適應性導通時間控制降壓轉換器與使用仿DCR電流感測電路之二階三角積分調變控制降壓轉換器
11. 使用積分式電流感測技術之無差拍控制降壓式轉換器
12. 使用仿DCR電流感測與相位頻率鎖定技術之適應性導通時間控制降壓轉換器與使用動態斜率補償電路之二階三角積分調變控制降壓轉換器
13. 具電流感測與鎖相鎖頻技術之遲滯電流控制直流-直流降壓與升壓轉換器
14. 使用軌對軌積分式電流感測技術之遲滯控制降壓轉換器
15. DC-DC 轉換器之進階恆定導通時間控制系統
 
無相關期刊
 
1. 使用新型電流感測技術之遲滯電流控制降壓轉換器與新型積分式電流感測電路之電壓平方控制降壓轉換器
2. 使用新型電流感測技術之磁滯電流控制降壓轉換器與使用暫態加速電路及二階三角積分調變控制降壓轉換器
3. 採用新型電流感測電路之磁滯電流控制降壓轉換器與具快速暫態響應之磁滯電壓控制三角積分調變降壓轉換器
4. 使用新型電流感測技術之無差拍控制降壓轉換器與新型積分式電流感測技術之遲滯控制降壓轉換器
5. 使用新型電流感測電路之電壓平方控制降壓轉換器和新型積分式電流感測電路之遲滯電流控制降壓轉換器
6. 使用新型電流感測之磁滯控制降壓轉換器與新型低電磁干擾暫態加速迴路之二階三角積分調變降壓轉換器
7. 使用新型電流感測與鎖頻技術之遲滯降壓轉換器
8. 使用電流感測及無差拍控制技術之降壓轉換器設計
9. 低電磁干擾三角積分調變降壓轉換器與快速暫態響應自適應導通降壓轉換器
10. 使用新型電流感測與動態斜率補償技術之適應性導通時間控制降壓轉換器與使用仿DCR電流感測電路之二階三角積分調變控制降壓轉換器
11. 基於腦波的多尺度熵與頻譜功率特徵之注意力不足過動症亞型分類
12. 應用獨立成分分析於無晶片射頻辨識多標籤偵測
13. 軌對軌低功率五位元快閃式類比數位轉換器晶片設計
14. 具阻抗感測之細胞捕捉晶片系統
15. 減少低溫多晶矽液晶顯示器顯示雜訊之研究探討