跳到主要內容

臺灣博碩士論文加值系統

(44.221.73.157) 您好!臺灣時間:2024/06/17 20:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張純菁
研究生(外文):CHANG, CHUN-CHING
論文名稱:具全數位FSK解調之細胞電擊晶片系統
論文名稱(外文):Cell electroporation system with all digital FSK demodulation
指導教授:邱弘緯邱弘緯引用關係
指導教授(外文):CHIU, HUNG-WEI
口試委員:黃育賢陳筱青林宥佐邱弘緯
口試委員(外文):HWANG, YUH-SHYANCHEN, HSIAO-CHINLIN, YOU-ZUOCHIU, HUNG-WEI
口試日期:2021-07-23
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:80
中文關鍵詞:無線傳電細胞電擊FSK解調變任意波型產生
外文關鍵詞:wireless power transmissioncell electroporationFSK demodulationarbitrary waveform generation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:193
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
目的為研究介電泳對於細胞電穿孔的影響,而設計了用於電擊細胞的電路,並觀察電壓、頻率及波型對細胞所產生的影響。本論文提出一種以外部無線供電的方式所運作的細胞電擊系統,電源部分以無線耦合電容的方式傳入,交流訊號經由整流器做整流及濾波後轉為直流,並利用低壓降線性穩壓器及帶差參考電路形成一穩壓,供給電擊電路使用。而電穿孔部分,目的為產生任意波型對細胞做電擊實驗,設計一混訊電路,利用全數位鎖相迴路將輸入的調變訊號以 FSK的方式解調變,解調後的數位訊號控制電流式數位類比轉換器的開關,以產生波型,為觀察電流性與電壓性對細 胞所造成的電穿孔程度,透過轉阻放大器將電流轉為電壓,最後將此電壓利用多工器分配到電擊片上以電擊細胞。
In order to study the effect of dielectrophoresis on cell electroporation, we designed a circuit for shocking cells, and observed the effects of voltage, frequency and wave pattern on cells. This paper proposes a cell shock system operated by external wireless power supply. The power part is passed in by means of wireless coupling capacitors. The AC is converted to DC through the rectifier for rectification and filtering. And use a low-dropout linear regulator and a bandgap reference circuit to form a stable voltage, which is used by the electroporation circuit. In order to generate arbitrary waveforms for electric shock experiments on cells, a mixed signal circuit is designed for the electroporation part. Use all digital phase-locked loop to demodulate the input modulation signal in FSK mode. The demodulated digital signal controls the switching of the current-type DAC to generate the waveform. In order to observe the electroporation caused by current and voltage on cells, the current is converted into voltage through a transimpedance amplifier. Finally, this voltage is distributed to the shock slices using a multiplexer to shock the cells.
摘要i
ABSTRACT ii
致謝iii
目錄iv
表目錄viii
圖目錄ix
第一章 緒論 1
1.1 前言 1
1.2 研究動機 2
1.3 論文架構 2
第二章 具全數位FSK解調之細胞電擊晶片 3
2.1晶片系統架構介紹 3
2.2電源管理電路 4
2.2.1橋式全波整流電路 4
2.2.2能隙參考電壓電路 9
2.2.3低壓降線性穩壓器 16
第三章 全數位 FSK解調之細胞電擊系統 26
3.1 全數位鎖相迴路 26
3.1.1 數位調變 27
3.1.2 全數位鎖相迴路設計 28
3.1.3 全數位鎖相迴路模擬 30
3.2 電流式數位類比轉換器 32
3.2.1解析度 (Resolution) 33
3.2.2偏移誤差 (Offset) 33
3.2.3增益誤差 (Gain error) 34
3.2.4微分非線性 (Differential Nonlinearity) 34
3.2.5積分非線性 (Integral Nonlinearity) 35
3.2.6穩定時間 (settling time) 36
3.2.7轉換率 (Conversion rate ) 36
3.2.8單調增加特性 ( Monotonicity ) 36
3.2.9數位類比轉換器基本架構 37
3.2.10電流式數位類比轉換器 設計 41
3.2.11電流式數位類比轉換器模擬 42
3.3轉阻放大器 43
3.3.1軌對軌全差動輸入級 44
3.3.2折疊式疊接放大器 與 AB類放大器輸出極 45
3.3.3轉阻放大器模擬 47
3.4取樣保持電路 48
3.5多工器 50
3.5.1多工器模擬 50
3.6血球釋藥電擊片 51
3.7細胞電擊電路模擬 52
3.8系統晶片整合量測 52
3.9晶片規格表 55
第四章 細胞電擊晶片系統量測 57
4.1細胞電擊晶片佈局 57
4.2整流器量測 59
4.3能隙參考電壓電路量測 61
4.4低壓線性穩壓器量測 63
4.5電流式數位類比轉換器量測 65
4.6轉阻放大器量測 66
4.7多工器量測 67
4.8細胞電擊片量測 68
4.9系統晶片整合量測 73
4.10文獻比較 74
第五章 結論與未來展望 76
5.1結論 76
5.2未來展望 77
參考文獻 78
[1] Giladi M, Schneiderman RS, Voloshin T, et al. Mitotic Spindle Disruption by Alternating Electric Fields Leads to Improper Chromosome Segregation and Mitotic Catastrophe in Cancer Cells. Sci Rep. 2015;5:18046.
[2] M. L. Lin et al., "Two Transcutaneous Stimulation Techniques in Shoulder Pain: Transcutaneous Pulsed Radiofrequency (TPRF) versus Transcutaneous Electrical Nerve Stimulation (TENS): A Comparative Pilot Study," Pain Res Manag, vol. 2019, Feb 4 2019.
[3] Tech Web。整流二極體的特徴比較。 2020年 7月 9日,取自http://micro.rohm.com/tw/techweb/knowledge/si/s-si/02-s-si/4165
[4] 羅姆半導體集團。蕭特基二極體。取自http://www.rohm.com.tw/web/taiwan/di_what5
[5] B. Razavi, Design of Analog CMOS Integrated Circuits, McGraw Hill, 2001.
[6] D. Hilbiber, "A new semiconductor voltage standard," IEEE International Solid-State Circuits Conference Digest of Technical Papers, vol. 7, 1964, pp. 32-33.
[7] Wenguan Li, Ruohe Yao, and Lifang Guo, “A low power CMOS bandgap voltage reference with enhanced power supply rejection,” in Proc. IEEE 8th International Conference on ASIC, ASICON 2009, pp. 300-304
[8] J. C. Teel, "Understanding power supply ripple rejection in linear regulators," Analog Applications Journal, SLYT202, Texas Instruments Inc., 2005.
[9] B. S. Lee, "Technical review of low dropout voltage regulator operation and performance," Application Report, SLVA072, Texas Instruments Inc., 1999.
[10] Gisselquist Technology’s ZipCPU website 取自http://zipcpu.com/dsp/2017/12/14/logic-pll.html
[11] L.E.Jr. Boylston, K. Brown,and R. Geiger, “ Enhancing performance in interpolating resistor string IEEE 2002 45th Midwest Symposium on Circuits and Systems, vol.2, Aug.2002,pp.II-541–II-544.
[12] P.Ju,K.Suyama,P.Jr.Ferguson,LeeW., “A highly linear switchedcapacitor DAC for multi-bit sigma-delta D/A IEEE Transactions on Circuits and Systems,vol.1, May 1995,pp.9–12.
[13] Un-Ku Moon,J. Silva, J. Steensgaard, and G.C.Temes,“A switchedcapacitor DAC with analog mismatch The 2000 IEEE International Symposium on Circuits and Systems, pp.421–424, May 2000
[14] Renzhi Liu, d Larry Pileggi, “Low-Overhead Self-Healing Methodology for Current Matching in Current-Steering DAC,” IEEE Transactions on Circuits and Systems II: Express Briefs, July 2015.
[15] 許彧斌,適用於生醫應用之低雜訊類比前端電路設計,碩士論文,國立台灣大學電子工程學研究所,臺北, 2007。
[16] Chun-Cheng Liu, Soon-Jyh Chang, Guan-Ying Huang, Ying-Zu Lin, “A 10-bit 50-MS/s SAR ADC With a Monotonic Capacitor Switching Procedure,” IEEE Journal of Solid-State Circuits, vol. 45, NO. 4, April 2010.
[17] D'Amico L, Ajami NJ, Adachi JA, Gascoyne PR, Petrosino JF. Isolation and concentration of bacteria from blood using microfluidic membraneless dialysis and dielectrophoresis. Lab Chip. 2017;17(7):1340-1348. doi:10.1039/c6lc01277a
[18] C. Lee et al., "A High-Precision Bandgap Reference With a V-Curve Correction Circuit," IEEE Access, vol. 8, pp. 62632-62638, 2020.
[19] Shiquan Fan, Haiqi Li, Zhuoqi Guo, Li Geng, “A 5.2 μA Quiescent Current LDO Regulator With High Stability and Wide Load Range for CZT Detectors,” IEEE Transactions on Nuclear Science, vol. 64, NO. 4, April 2017.
[20] Weidong Li, S. Huang, Quanzhen Duan, “An Ultra-Low Quiescent Current Output Capacitor-Less Low-Dropout Regulator with Dynamic Bias Circuit,” IEEE 4th International Conference on Integrated Circuits and Microsystems, Oct 2019.
[21] Jiaping Hu, Yong-Bin Kim and Joseph Ayers, “A low power 100MOhm CMOS front-end transimpedance amplifier for biosensing applications,” IEEE International Midwest Symposium on, Aug 2010.
[22] Changchun Zhang, Zhizhen Li, Chaoqun LV, Jiang Zhao, Debo Wang, Yue Xu, and Yufeng Guo, “ A 10-bit 100 MS/s CMOS Current-Steering DAC,” IEEE International Conference on Ubiquitous Wireless Broadband,2016.
[23] 陳永順,以 90 奈米 CMOS 製程設計一應用於前瞻串列式連結收發機之超高速資料轉換器對,碩士論文,國立交通大學電機與控制工程學系,臺北, 2008。
[24] 朱陳糧,應用於 IEEE 802.11a 之 10位元 100MS/s 數位類比轉換器實現,碩士論文,國立交通大學電機與控制學程,臺北,2005。
[25] 李佩芝,應用於ITO基底做細胞培養之無線供電溫度感測器,碩士論文,國立臺北科技大學電子工程系,臺北,2017。
[26] 李柏穎,嵌入無線溫度感測器之貼片應用在高壓射頻脈衝電刺激器,碩士論文,國立臺北科技大學電子工程系,臺北,2018。
電子全文 電子全文(網際網路公開日期:20260802)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top