|
[1]S. M. J. B. Reddy, D. V. Rajesh, P. Gopakumar, and D. K. Mohanta, “Smart fault location for smart grid operation using RTUs and computational intelligence techniques,” IEEE Syst. J., vol. 8, no. 4, pp. 1260-1271, Dec. 2014. [2]A. Saber, A. Emam, and H. Elghazaly, “Wide-area backup protection scheme for transmission lines considering cross-country and evolving faults,” IEEE Syst. J, vol. 13, no. 1, pp. 813-822, Mar. 2019. [3]I. Petrović, S. Nikolovski, H. R. Baghaee, and H. Glavaš, “Determining impact of lightning strike location on failures in transmission network elements using fuzzy decision-making,” IEEE Syst. J., vol. 14, no. 2, pp. 2665-2675, Jun. 2020. [4]F. Zhang and L. Mu “A fault detection method of microgrids with grid-connected inverter interfaced distributed generators based on the PQ control strategy,” IEEE Trans. Smart Grid, vol. 10, no. 5, pp. 4816-4826, 2019. [5]Z. Jiao and R. Wu “A new method to improve fault location accuracy in transmission line based on fuzzy multi-sensor data fusion,” IEEE Trans. Smart Grid, vol. 10, no. 4, pp. 4211-4220, 2018. [6]J. Izykowski, M. M. Saha, and E. Rosolowski, Fault Location on Power Networks. London, U.K.: Springer-Verlag London, 2009. [7]S. S. Gururajapathy, H. Mokhlis, and H. A. Illias, “Fault location and detection techniques in power distribution systems with distributed generation: A review,” Renewable Sustain. Energy Rev., vol. 74, pp. 949-958, Mar. 2017. [8]J. Ding, X. Wang, Y. Zheng, and L. Li, “Distributed traveling-wave-based fault-location algorithm embedded in multiterminal transmission lines,” IEEE Trans. Power Del., vol. 33 ,no. 6, pp.3045-3054, Dec. 2018. [9]M. A. Aftab, S. M. S. Hussain, I. Ali, and T. S. Ustunb, “Dynamic protection of power systems with high penetration of renewables: A review of the traveling wave based fault location techniques,” International Journal of Electrical Power & Energy Systems, vol. 114, Jan. 2020, Art. no. 105410. [10]T. Takagi, Y. Yamakoshi, M. Yamaura, and R. Kondow, “Development of a new type fault locator using the one-terminal voltage and current data,” IEEE Trans. Power App. Syst., vol. PAS-101, no. 8, pp. 2892-2898, Aug. 1982. [11]C. Zhang, G. Song, L. Yang and Z. Sun, "Time-domain single-ended fault location method that does not need remote-end system information," IET Generation, Transmission & Distribution, vol. 14, no. 2, pp. 284-293, Jan. 2020. [12]A. Ghorbani and H. Mehrjerdi, “Accurate fault location algorithm for shunt-compensated double circuit transmission lines using single end data,” International Journal of Electrical Power & Energy Systems, vol. 116, Mar. 2020, Art. no. 105515. [13]M. Kezunovic and B. Perunicic, “Automated transmission line fault analysis using synchronized sampling at two ends,” IEEE Trans. Power Syst., vol. 11, no. 1, pp. 441-447, 1996. [14]C. L. Chuang, J. A. Jiang, Y. C. Wang, C. P. Chen, and Y. T. Hsiao, “An adaptive PMU-based fault location estimation system with a fault-tolerance and load-balancing communication network,” in Proc. IEEE Power Engineering Society—Power Tech 2007 , Lausanne, Switzerland, 1-5 Jul., 2007. [15]Y. Zhou, H. Wu, W. Wei, Y. Song, and H. Deng, “Optimal allocation of dynamic var sources for reducing the probability of commutation failure occurrence in the receiving-end systems,” IEEE Trans. Power Del., vol. 34, no. 1, pp. 324-333, Feb. 2019. [16]H. Liao, J. V. Milanovi, M. Rodrigues, and A. Shenfield, “Voltage sag estimation in sparsely monitored power systems based on deep learning and system area mapping,” IEEE Trans. Power Del., vol. 33, no. 6, pp. 3162-3172, Aug. 2018. [17]M. A. Elsadd and A. Y. Abdelaziz, “Unsynchronized fault-location technique for two- and three-terminal transmission lines,” Electr. Power Syst. Res., vol. 158, pp. 228-239, 2018. [18]T. Hinge and S. Dambhare, “Synchronised/unsynchronised measurements based novel fault location algorithm for transmission line,” IET Gener. Transm. Distrib., vol. 12, no. 7, pp. 1493-1500, Apr. 2018. [19]N. I. Elkalashy, T. A. Kawady, W. M. Khater, and A. M. I. Taalab, “Unsynchronized fault-location technique for double-circuit transmission systems independent of line parameters,” IEEE Trans. Power Deli., vol. 31, no. 4, pp. 1591-1600, 2016. [20]J. Izykowski, E. Rosolowski, P. Balcerek, M. Fulczyk, and M. M. Saha, “Accurate noniterative fault location algorithm utilizing two-end unsynchronized measurements,” IEEE Trans. Power Del., vol. 25, no. 1, pp. 72-80, Jan. 2010. [21]H. Saadat, Power System Analysis. New York: McGraw-Hill, 1999. [22]Y. H. Lin, C. W. Liu, and C. S. Chen, “A new PMU-based fault detection/location technique for transmission lines with consideration of arcing fault discrimination — Part I: Theory and Algorithms,” IEEE Trans. Power Del., vol. 19, no. 4, pp. 1587-1593, Oct. 2004. [23]C. W. Liu, T. C. Lin, C. S. Yu, and J. Z. Yang, “A fault location technique for two-terminal multisection compound transmission lines using synchronized phasor measurements,” IEEE Trans. Smart Grid, vol. 3, no. 1, pp. 113-121, Mar. 2012. [24]C. W. Liu, K. P. Lien, C. S. Chen, and J. A. Jiang,“A universal fault location technique for N-terminal (N≧3) transmission lines,”IEEE Trans. Power Del., vol. 23, no. 3, pp. 1366-1373, Jul. 2008. [25]A. T. Johns and S. Jamali, “Accurate fault location for power transmission lines,” IEE Proceedings on GT&D, 137 (6) pp. 395-402, 1990. [26]S. Das, S. Santoso, A. Gaikwad, and M. Patel, “Impedance-based fault location in transmission networks: theory and application,” IEEE Access, vol. 2, pp. 537-557, May 2014. [27]T. C. Lin, P. Y. Lin, and C. W. Liu, “An algorithm for locating faults in three-terminal multisection nonhomogeneous transmission lines using synchrophasor measurements,” IEEE Trans. Smart Grid, vol. 5, no. 1, pp. 38-50, 2014. [28]N. I. Elkalashy, M. Lehtonen, H. A. Darwish, M. A. Izzularab, and A. M. I. Taalab, “Modeling and experimental verification of high impedance arcing fault in medium voltage networks,” IEEE Trans. Dielectrics and Electrical Insulation, vol. 14, no. 2, pp. 375-383, Apr. 2007. [29]S. Hanninen and M. Lehtonen, “Method for detection and location of very high resistive earth faults”, Europ. Trans. Electr. Power, ETEP, vol. 9, pp. 285-291, 1999. [30]J. Z. Yang and C. W. Liu, “A precise calculation of power system frequency and phasor,” IEEE Trans. Power Del., vol. 15, no. 2, pp. 494-499, Apr. 2000. [31]MathWorks, “Current Transformer Saturation.” [Online]. Available: https://www.mathworks.com/help/physmod/sps/examples/current-transformer-saturation.html, Accessed on: Mar. 8, 2020. [32]M. Stanbury and Z. Djekic, “The impact of current-transformer saturation on transformer differential protection,” IEEE Trans. Power Del., vol. 30, no. 3, pp. 1278-1287, Jun. 2015. [33]V. Mohan, S. Poornima, and C. P. Sugumaran, “Mitigation of ferroresonance in capacitive voltage transformer using memelements,” 2019 International Conference on High Voltage Engineering and Technology (ICHVET), Hyderabad, India, 2019, pp. 1-5. [34]B. Mahamedi and J. G. Zhu, “Unsynchronized fault location based on the negative-sequence voltage magnitude for double-circuit transmission lines,” IEEE Trans. Power Del., vol. 29, no. 4, pp. 1901-1908, Aug. 2014. [35]A. Ghorbani and H. Mehrjerdi, “Negative-Sequence Network Based Fault Location Scheme for Double-Circuit Multi-Terminal Transmission Lines,” IEEE Trans. Power Del., vol. 34, no.3, pp.1109-1117, Mar. 2019. [36]C. S. Chen, C. W. Liu, and J. A. Jiang, “A new adaptive PMU based protection scheme for transposed/untransposed parallel transmission lines,” IEEE Trans. Power Del., vol. 17, no. 4, pp. 395-404, Oct. 2002. [37]M. Gholami, A. Abbaspour, M. Moeini-Aghtaie, M. Fotuhi-Firuzabad, and M. Lehtonen, “Detecting the location of short-circuit faults in active distribution network using PMU-based state estimation,” IEEE Trans. Smart Grid, vol. 11, no. 2, pp. 1396-1406, Mar. 2020.
|