# 臺灣博碩士論文加值系統

(44.222.64.76) 您好！臺灣時間：2024/06/16 04:36

:::

### 詳目顯示

:

• 被引用:0
• 點閱:133
• 評分:
• 下載:0
• 書目收藏:0
 本論文主要是針對電磁爐產生的溫度進行研究，總共含有實驗及模擬2個部分，實驗部分會在複合材料之鍋具中加入4公升的水，並在橢圓形之線圈輸入1300瓦特的能量加熱鍋底，同時量測線圈、鍋底及水的暫態溫度及加熱曲線。模擬部分是運用有限元素方法計算出橢圓形之線圈對不鏽鋼鍋底之歐姆損耗，得到渦電流的能量總和為1216瓦特，再基於求得到的電磁場模擬結果計算電磁爐整體的溫度場，將鍋底的能量分為560瓦特、140瓦特、265瓦特、140瓦特、30瓦特的能量分布，並將實驗求得到的數值及模擬的數值進行驗證比對，其最大誤差低於20%。最後除了研究電磁爐整體發熱之外，被加熱之鍋具還存在有溫度不均勻的問題，本研究利用調整線圈間距為主要參數，並以鋁鍋進行模擬，分別對2mm、3mm、3.5mm、3.7mm間距的線圈進行電磁熱耦合，最後觀察出線圈間距3.7mm時發出之感應加熱之溫度最均勻，為最均勻之感應加熱間距。
 This thesis is mainly to study the temperature generated by the induction cooker. There are two parts in total: experiment and simulation. The experiment part will add 4 liters of water to the pot made of composite materials, and input 1300 watts of energy into the oval coil to heat the bottom of the pot., Measure the transient temperature and heating curve of the coil, the pot and the water at the same time. The simulation part is to use the finite element method to calculate the ohmic loss of the oval coil to the bottom of the stainless steel pot, and the total energy of the eddy current is 1216 watts, and then calculate the overall temperature field of the induction cooker based on the obtained electromagnetic field simulation results, and divide the energy of the bottom of the pot. For the energy distribution of 560 watts, 140 watts, 265 watts, 140 watts, and 30 watts, and the numerical value obtained from the experiment and the simulated value are verified and compared, the maximum error is less than 20%.Finally, in addition to studying the overall heating of the induction cooker, the heated pot still has the problem of uneven temperature. This research uses adjusting the coil spacing as the main parameter and simulates the aluminum pot, respectively, 2mm, 3mm, 3.5mm, 3.7 The coils of mm pitch are electromagnetic and thermally coupled. Finally, it is observed that when the coil pitch is 3.7mm, the induction heating temperature is the most uniform, which is the most uniform induction heating pitch.
 摘　要 iABSTRACT ii誌 謝 iv目 錄 v表目錄 viii圖目錄 ix第一章緒論 11.1 介紹 11.1.1研究動機與目的 11.2電磁感應加熱原理及應用 41.2.1電磁感應定律 41.2.2渦流 51.2.3趨膚效應 61.3文獻探討 71.4論文架構 17第二章控制方程式與數值方法 182.1有限元素法 182.2有限體積法 182.2.1離散空間格式 182.3電磁場基本理論 212.3.1馬克士威方程組 212.3.2電磁場微分方程式 232.4熱傳遞方式 242.4.1熱傳導 242.4.2熱對流 242.4.3熱輻射 252.5熱分析控制方程式及有限元素法 25第三章模型設定與實驗設置 283.1實驗器材 283.1.1實驗步驟 303.1.2量測位置 343.2模擬計算及邊界條件 373.2.1電磁場模型建立及邊界條件 373.2.2溫度場模擬模型建立及邊界條件 41第四章結果與討論 484.1實驗量測結果 494.2電磁場模擬結果 584.3溫度場模擬結果 644.4消除甜甜圈效應 82第五章結論與未來展望 865.1結論 865.2未來展望 86參考文獻 87
 1.J. Acero, J. Burdio, L. Barragan, D. Navarro, R. Alonso, J. Ramon, F. Monterde,P. Hernandez, S. Llorente, I. Garde, Domestic induction appliances, IEEE Ind. Appl.2.P. Bansal, E. Vineyard, O. Abdelaziz, Advances in household appliances – a review,Appl. Therm. Eng. 31 (2011) 3748–3760.3.Lucia, J. Acero, C. Carretero, J.M. Burdio, Induction heating appliances: towardmore flexible cooking surfaces, IEEE Ind. Electron. Mag. 7 (2013) 35–47, https://.org/10.1109/mie.2013.2247795.4.徐应年． 感应加热电源负载感应器模型与恒频调功研究［Ｄ］ ． 华中科技大学,2009.5.杨璐． 基于感应加热的线圈磁场及钢板温度场优化设计［Ｄ］． 西安理工大学，2013.6.Ahmed, T. J., et al. (2006). "Induction welding of thermoplastic composites—an over-view." Composites Part A: Applied Science and Manufacturing 37(10): 1638-1651.7.Kobayashi, T., Kida, Y., Tanaka, T., Kageyama, N., Kobayashi, H., & Amemiya, Y. (1986). Magnetic induction hyperthermia for brain tumor using ferromagnetic implant with low Curie temperature. Journal of Neuro-Oncology, 4(2), 175–181.8.Cabeza-Gil, I., Calvo, B., Grasa, J., Franco, C., Llorente, S., & Martínez, M. A. (2020). Thermal analysis of a cooking pan with a power control induction system. Applied Thermal Engineering, 180, 115789. doi:10.1016/j.applthermaleng.2020.9.http://w3.cpami.gov.tw/law/law/lawe-2/rule1-12.html10.https://www.mygonews.com/news/detail?news_id=200471&cat_id=1211.https://is.gd/xoadE112.董智东．电磁感应加热系统的多物理场耦合分析与优化设计［Ｄ］．浙江大學，201913.https://web.dcsh.tp.edu.tw/file/download/1636114.Viriya, P., Sittichok, S., & Matsuse, K. (n.d.). Analysis of high-frequency induction cooker with variable frequency power control. Proceedings of the Power Conversion Conference-Osaka 2002 (Cat. No.02TH8579). doi:10.1109/pcc.2002.99819615.Sazak, B. S., & Cetin, S. (2009). Reducing the number of measurements in induction cooker design. 2009 9th International Conference on Electronic Measurement & Instru-ments. doi:10.1109/icemi.2009.527483216.Meng, L. C., Cheng, K. W. E., & Chan, K. W. (2009). Heating performance improvement and field study of the induction cooker. In 2009 3rd International Conference on Power Electronics Systems and Applications, PESA 2009 [5228679]17.Meng, L. C., Eric Cheng, K. W., Chan, K. W., & Lu, Y. (2012). Variable turn pitch coils design for heating performance enhancement of commercial induction cooker. IET Power Electronics, 5(1), 134. doi:10.1049/iet-pel.2010.038818.S. Hannani, E. Hessari, M. Fardadi, M. Jeddi, Mathematical modeling of cooking pots’ thermal efficiency using a combined experimental and neural network method, Energy 31 (2006) 2969–2985, https://doi.org/10.1016/j.energy.2005.11. 006..19.F.J. Cadavid, Y. Cadavid, A.A. Amell, A.E. Arrieta, J.D. Echavarría, Numerical and exper-imental methodology to measure the thermal efficiency of pots on electrical stoves, Energy 73 (2014) 258–263, https://doi.org/10.1016/j.energy.2014.06.017.20.H. Mistry, S. Ganapathi-subbu, P. Dey, J.L. Bishnoi, Castillo, Modeling of transient natural convection heat transfer in electric ovens, Appl. Therm. Eng. 26 (2006) 2448–2456, https://doi.org/10.1016/j.applthermaleng.2006.02.007.21.E. Ramirez-Laboreo, C. Sagues, S. Llorente, Dynamic heat and mass transfer model of an electric oven for energy analysis, Appl. Therm. Eng. 93 (2016) 683–691, https://doi.org/10.1016/j.applthermaleng.2015.10.040.22.M. Lucchi, N. Suzzi, M. Lorenzini, Dynamic model for convective heating of a wet brick during energy characterisation of domestic electric ovens, Appl. Therm. Eng. 161 (2019) 114117, https://doi.org/10.1016/j.applthermaleng.2019.114117.23.F. Sanz-Serrano, C. Sagues, S. Llorente, Inverse modeling of pan heating in domestic24.cookers, Appl. Therm. Eng. 92 (2016) 137–148, https://doi.org/10.1016/j. ap-plthermaleng.2015.09.08425..Cabeza-Gil, I., Calvo, B., Grasa, J., Franco, C., Llorente, S., & Martínez, M. A. (2020). Thermal analysis of a cooking pan with a power control induction system. Applied Thermal Engineering, 180, 115789. doi:10.1016/j.applthermaleng.2020.11578926.https://www.eettaiwan.com/20161222ta31-thermocouples-basic-principles-and-design-essentials/27.Cadavid, F. J., Cadavid, Y., Amell, A. A., Arrieta, A. E., & Echavarría, J. D. (2014). Numerical and experimental methodology to measure the thermal effi-ciency of pots on electrical stoves. Energy, 73, 258–263. doi:10.1016/j.energy.2014.06.01728.Uchida, K., Takahashi, S., Harii, K., Ieda, J., Koshibae, W., Ando, K., … Saitoh, E. (2008). Observation of the spin Seebeck effect. Nature, 455(7214), 778–781. doi:10.1038/nature0732129.Zhou, S.-Q., & Ni, R. (2008). Measurement of the specific heat capacity of water-based Al2O3 nanofluid. Applied Physics Letters, 92(9), 093123. doi:10.1063/1.2890431
 電子全文(網際網路公開日期：20260727)
 國圖紙本論文
 推文當script無法執行時可按︰推文 網路書籤當script無法執行時可按︰網路書籤 推薦當script無法執行時可按︰推薦 評分當script無法執行時可按︰評分 引用網址當script無法執行時可按︰引用網址 轉寄當script無法執行時可按︰轉寄

 1 雷射掃描GeTe光碟材料之實驗及熱傳之有限元素法模擬 2 深度磁場感應加熱線圈設計與分析 3 應用於電磁熱療之新型可撓式線圈設計 4 內藏式永磁同步馬達之多重物理模擬應用於水道散熱分析

 無相關期刊

 1 病毒粒子於室內空氣傳播之數值模擬分析 2 發泡材料氣泡成長過程數值模擬 3 三維數值模擬熱毛細作用於單一氣泡研究 4 接觸角對閉迴路熱管的影響 5 高功率相對論磁控管模擬與研究 6 探討A6共振腔對磁控管輸出特性 7 使用HFSS模擬分析中型無人機電磁屏蔽效值 8 由於熱毛細作用引起的單個氣泡運動的二維數值模擬 9 空調系統對於 Covid-19 病毒在飛機機艙中傳遞之影響分析 10 室內中央空調對氣溶膠顆粒傳播影響之數值模擬分析 11 相對論穿透式磁控管模擬與研究 12 二維熱管中不同接觸角與填充比的熱性能分析 13 應用雷射標示與光學投影輔助產線人機協作 14 基於現實世界無線網路之網路電話系統設計與實作

 簡易查詢 | 進階查詢 | 熱門排行 | 我的研究室