跳到主要內容

臺灣博碩士論文加值系統

(100.28.227.63) 您好!臺灣時間:2024/06/14 23:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:許育誠
研究生(外文):HSU, YU-CHENG
論文名稱:雙輪動平衡機器人 -J4.beta 機動性改進
論文名稱(外文):Mobility Improvement on the Two-Wheeled Dynamically Balanced Robot – J4.beta
指導教授:李志鴻李志鴻引用關係
指導教授(外文):LI, CHIH-HUNG
口試委員:李志鴻李仕宇任復華
口試委員(外文):LI, CHIH-HUNGLI,SHIH-YUJEN,FU-HUA
口試日期:2021-07-22
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:製造科技研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:79
中文關鍵詞:自主移動機器人雙輪平衡車PID控制器速度控制
外文關鍵詞:Autonomous mobile robotsTwo-wheeled balanced robotPID controlSpeed control
相關次數:
  • 被引用被引用:1
  • 點閱點閱:99
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:1
本研究以本實驗室已開發出的J4.系列機器人的第二代J4.beta為升級對象。J4.beta是以小米九號平衡車為基礎,小米平衡車是藉由人在騎乘的過程,身體重心向前或向後,平衡車內建的陀螺儀會偵測到平衡車傾斜,平衡車為了要達到平衡,雙輪會有相反的力量向前或向後,使平衡車達到平衡。J4.beta以平衡車的雙輪當作移動方式,上方設置有動態質量,透過步進馬達帶動滾珠螺桿,使動態質量可以做到前後移動,動態質量移動後,可以改變J4.beta的重心,模擬人騎在平衡車上面的過程。
人在操控動態質量時,沒有辦法以目視的方始精準地控制速度,為了使J4.beta的速度保持在穩定的狀態下,透過閉迴路速度控制的方式去實現移動的過程。先透過讀取輪轂的霍爾感測器當作編碼器使用,讀取到即時速度,再將目標速度跟即時速度做相減,得到誤差值,透過PID控制器去計算動態質量要移動到的目標位置,再將動態質量從當前位置移動的目標位置,形成一個閉迴路的伺服速度控制系統。
本研究亦包含升級部分J4.beta的硬體,包含電動支撐腳,從只有一隻電動支撐腳有一個光遮斷器,升級到四隻電動支撐腳都有兩個光遮斷器,提升電動支撐腳的移動精度;讀取小米九號平衡車的開機訊號,程式可以知道小米平衡車現在是處在開關機的狀況。
本研究完成了兩大創新部分。第一,我們透過PID控制器和閉迴路控制來達到精準的速度控制。第二,我們透過改良硬體,使J4.beta可以立即停在任何平坦的地面上。

This research illustrates the upgrade of Junior 4 beta (J4.beta) in J4 series developed in the Industry 4.0 laboratory of the National Taipei University of Technology. J4.beta is based on the Segway Ninebot two-wheeled balanced car which can maintain the equilibrium at all times although the center gravity of the J4.beta alters over time. By manipulating the ball screw driven by the stepper motor, the dynamic mass can move back and forth which changes the center of gravity of J4.beta. This alternation drives the J4.beta to advance.
Because it is hard to restrain the movement of the dynamic mass in the certain region, there is no way to precisely control the speed of J4.beta without a series of techniques. To accurately control the speed of J4.beta, the location of the dynamic mass is controlled by the closed-loop speed control formed by two processes in a loop. Firstly, the hall sensor of the wheel hub is utilized as an encoder. The real-time velocity detected by the hall sensor is subtracted from the target velocity to obtain the error value which is used in the calculation of the PID controller to decide the next target position of the dynamic mass. Secondly, the dynamic mass is moved from the current position to the target position. With this method, J4.beta can move constantly.
This research also includes an upgrade of the hardware of J4.beta. Motorized parking stand is upgraded from only one Motorized parking stand with a photo interrupter to four Motorized parking stands with two photo interrupters. This improvement can enhance the movement accuracy of the Motorized parking stand. The other upgrade is by installing an extra signal cable so that the program can check whether the balanced car is on or off by reading the power-on signal.
This research purposes two major innovations. With a PID controller and a closed loop control, J4.beta can be controlled to move constantly. After upgrading the hardware, the J4.beta can park in any flat land immediately.

中文摘要 i
ABSTRACT ii
誌謝 iv
目錄 v
表目錄 vii
圖目錄 viii
第一章 緒論 1
1.1 前言 1
1.2 研究動機 2
1.3 研究目標 3
1.4 本文貢獻 4
1.5 論文架構 5
第二章 文獻探討 6
2.1 雙輪平衡車原理 7
2.2 J4.alpha與J4.beya 8
2.3 編碼器 11
2.4 PID控制器 12
第三章 軟硬體的改良 13
3.1 J4.beta整體設計 13
3.2 速度讀取 15
3.3 電動支撐腳精準度控制 16
3.4 中央處理器的配電與配線 17
3.5 開機程序的改良 18
第四章 伺服速度控制 19
4.1 動態系統 19
4.2閉迴路速度控制 21
4.2.1 PID控制系統 22
第五章 性能測試 23
5.1 速度控制與自平衡試驗 23
5.2 開關機步驟的試驗 24
5.3 速度控制實驗結果 27
5.3.1 動態質量速度響應 28
5.3.2 加速度特性 29
5.3.3定速控制 30
5.4 煞車實驗 51
5.5 自平衡實驗 54
5.6 上下坡實驗 55
第六章 結論與未來展望 60
6.1 綜合成果 60
6.2 運動精準度 61
6.3 未來發展與規劃 63
參考文獻 64
附錄 68

1.趙昱華,以市售平衡車為載具開發之服務機器人,碩士論文,國立臺北科技大學機電整合碩士班,臺北,2020。
2.許博凱,自平衡二輪服務機器人- J4.beta之設計與開發,碩士論文,國立臺北科技大學製造科技研究所碩士班,臺北,2020。
3.H.-W. Lee, S.-W. Ryu, J.-M. Lee, Optimal posture of mobile inverted pendulum using a single gyroscope and tilt sensor, 2009 ICCAS-SICE, IEEE, Fukuoka, Japan, 2009, pp. 865-870.
4.G. Chinnadurai and H. Ranganathan, ''Balancing and Control of Dual Wheel Swarm Robots by Using Sensors and Port forwarding Router'', 3rd International Conference on Advances in Electrical, Electronics, Information, Communication and Bio-Informatics, Chennai India, 27-28 February 2017.
5.K. Peng and X. Ruan, ''Dynamic Model and Balancing Control for Two-Wheeled Self-Balancing Mobile Robot on the Slopes'', 10th World Congress on Intelligent Control and Automatic, Beijing China, 6-8 July 2012.
6.N. Dini and V. J. Majd, ''Model Predictive Control of a Wheeled Inverted Pendulum Robot'', 3rd Robotics Society of Iran International Conference on Robotics and Mechatronics, Tehran Iran, 7-9 October 2015.
7.N. M. A. Ghani, N. I. M. Yatim and N. A. Azmi, "Comparative assessment for two wheels inverted pendulum mobile robot using robust control,'', International Conference on Control, Automation and System, Gyeonggi-do South Korea, 27-30 October 2010.
8.Castro, A., “Modeling and Dynamic Analysis of a Two-Wheeled Inverted-Pendulum,” Master’s Thesis, Georgia Institute of Technology, Atlanta, GA. , 2012.
9.C. -H. G. Li, L. -P. Zhou and Y. -H. Chao, "Self-Balancing Two-Wheeled Robot Featuring Intelligent End-to-End Deep Visual-Steering," in IEEE/ASME Transactions on Mechatronics, November 2020.
10.N. S. Nise, Control Systems Engineering, 2nd edition, Addison-Wesley Publishing Company, 1997.
11.M. Li, Z. Jiang, P. Wang, L. Sun, S.-S. Ge, Control of a quadruped robot with bionic springy legs in trotting gait, Journal of Bionic Engineering, 2014, pp. 188-198.
12.B. He, Z. Wang, M. Li, K. Wang, R. Shen and S. Hu, "Wet Adhesion Inspired Bionic Climbing Robot," in IEEE/ASME Transactions on Mechatronics, vol. 19, no. 1, pp. 312-320, Feb. 2014.
13.D. Zhang, D. Hu, L. Shen, H. Xie, "Design of an artificial bionic neural network to control fish-robot's locomotion, " Neurocomputing, 2008, pp. 648-654.
14.K. Graichen and S. Hentzelt, "A bi-level nonlinear predictive control scheme for hopping robots with hip and tail actuation," 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2015, pp. 4480-4485.
15.J. Wu and Z. Liu, "The Control Strategy of Swarm Tracked Robots for Intelligent Transportation Based on Parallel Formation," 2012 Third Global Congress on Intelligent Systems, 2012, pp. 348-351.
16.T. B. Lauwers and G. A. Kantor, ''A Dynamically Stable Single-Wheeled Mobile Robot with Inverse Mouse-Ball Drive'', International Conference on Robotic and Automation, Orlando Florida United States of America, 15-19 May 2006.
17.Y. Yunong and H. Ha, ''Balancing and Driving Control of a Ball Robot using Fuzzy Control'', 12th International Conference on Ubiquitous Robots and Ambient Intelligence, Goyang South Korea, 28-30 October 2015.
18.M. S Ha and S. Jung, ''Neural Network Control for Balancing Performance of a Single-wheel Transportation Vehicle'', International Joint Conference on Neural Networks, July 2015.
19.B. Browning and P. E. Rybski, ''Development of a Soccer-Playing Dynamically-Balancing Mobile Robot'', International Conference on Robot and Automation, April 2004, p1752-1757.
20.Veen, J. A. V.. “Stabilization and Trajectory Tracking of a Segway.” 2018.
21.M. U. Draz, M. S. Ali, M. Majeed, U. Ejaz and U. Izhar, "Segway electric vehicle," 2012 International Conference of Robotics and Artificial Intelligence, 2012, pp. 34-39.
22.M. H. Khan, M. Chaudhry, T. Tariq, Q. Fatima and U. Izhar, "Fabrication and modelling of segway," 2014 IEEE International Conference on Mechatronics and Automation, 2014, pp. 280-285.
23.黃羿豪,深度學習光影強固之嵌入式物件精密實時定位操控技術,碩士論文,國立臺北科技大學製造科技研究所,2020。
24.洪翊峰,卷積神經網路之移動機器人實時位置辨識技術,碩士論文,國立臺北科技大學製造科技研究所,2019。
25.周隴平,基於RGB-D影像與深度學習的自平衡移動機器人端到端巡航訓練,碩士論文,國立臺北科技大學機械工程系機電整合碩士班,2020。
26.陳奎文,執行深度學習視覺偵測之嵌入式運算平台架構設計與比較,碩士論文,國立臺北科技大學機械工程系機電整合碩士班,2020。
27.J. Wang and X. Cui, "Rotary Encoder Based Self-Positioning Method for Mobile Robot," 2018 5th International Conference on Information Science and Control Engineering (ICISCE), 2018, pp. 500-504.
28.J. Choi, C. Lee and Y. Bang, "Initial positioning of a smart actuator using dual absolute encoders," 2013 13th International Conference on Control, Automation and Systems (ICCAS 2013), 2013, pp. 1588-1592.
29.N. Johnson, K. J. Mohan, K. E. Janson and J. Jose, "Optimization of incremental optical encoder pulse processing," 2013 International Mutli-Conference on Automation, Computing, Communication, Control and Compressed Sensing (iMac4s), 2013, pp. 769-773.
30.D. Rapos, C. Mechefske and M. Timusk, "Dynamic sensor calibration: A comparative study of a Hall effect sensor and an incremental encoder for measuring shaft rotational position," 2016 IEEE International Conference on Prognostics and Health Management (ICPHM), 2016, pp. 1-5.
31.Y. Li, K. H. Ang, and G. C. Y. Chong, “PID control system analysis and design,” IEEE Control Syst. Magazine, vol. 26, no. 1, pp. 32−41, 2006.
32.Y. Man, W. Shen, X. Chen, Z. Long, J.-P. Corriou, “Dissolved oxygen control strategies for the industrial sequencing batch reactor of the wastewater treatment process in the papermaking industry,” Environ. Sci.: Water Res. Technol., vol. 4, pp. 654−662, 2018.
33.T. Samad, "A Survey on Industry Impact and Challenges Thereof [Technical Activities]," in IEEE Control Systems Magazine, vol. 37, no. 1, pp. 17-18, Feb. 2017.
34.E. Flores-Morán, W. Yánez-Pazmiño and J. Barzola-Monteses, "Genetic algorithm and fuzzy self-tuning PID for DC motor position controllers," 2018 19th International Carpathian Control Conference (ICCC), 2018, pp. 162-168.
35.G. P. Liu, S. Daley, “Optimal-tuning PID control for industrial systems,” Control Engineering Practice, vol. 9, no. 11, pp. 1185–1194, 2001.
36.P. Gawthrop, “Self-tuning PID controllers: Algorithms and implementation,” IEEE Transactions on Automatic Control, vol. 31, no. 3, pp. 201–209, 1986.
37.H. O. Bansal, R. Sharma, P. R. Shreeraman, “PID controller tuning techniques: a review,” Journal of Control Engineering and Technology., vol. 2, no. 4, pp. 168–176, 2012.
38.Using BLDC Hall Sensors as Position Encoders, https://www.digikey.tw/en/blog/using-bldc-hall-sensors-as-position-encoders-part-1, 2019
39.蔡瑞昌、陳維、林忠火,自動控制,新北,臺灣全華圖書股份有限公司 2017

電子全文 電子全文(網際網路公開日期:20260831)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊