跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.88) 您好!臺灣時間:2024/12/04 14:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:曾怡萱
研究生(外文):TSENG, YI-HSUAN
論文名稱:探討虛擬實境結合腦電波作為隱含性和明確性互動之設計
論文名稱(外文):A Study of Implicit and Explicit Interaction in Virtual Reality via Electroencephalography
指導教授:韓秉軒
指導教授(外文):HAN, PING-HSUAN
口試委員:俞齊山周建興韓秉軒
口試委員(外文):YU, CHI-SHANCHOU, CHIEN-HSINGHAN, PING-HSUAN
口試日期:2020-12-21
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:互動設計系
學門:設計學門
學類:視覺傳達設計學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:67
中文關鍵詞:虛擬實境腦電波隱含性互動明確性互動互動設計
外文關鍵詞:Virtual RealityEEGImplicit InteractionExplicit InteractionInteraction Design
相關次數:
  • 被引用被引用:0
  • 點閱點閱:413
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來隨著虛擬實境(Virtual Reality,VR)的重心從硬體蔓延到數位內容製作與經營,而VR頭戴式顯示器結合腦電波技術,讓開發者有機會在沉浸式體驗中提供不同的互動方式。因此本研究主旨在探討虛擬實境結合腦電波作為隱含性和明確性互動之設計,其中分兩部分討論。第一部分探討沉浸式劇情敘事結合消費級腦電波裝置作為隱含性的互動技巧,透過偵測腦電波訊號、情緒三種構面PAD問卷和臨場感體驗問卷(Igroup Presence Questionnaire, IPQ),探討在各種情境中使用者的情緒和臨場感受;第二部分設計一套以腦波作為明確性的互動機制,實驗過程偵測使用者的腦電波訊號,讓使用者嘗試完成簡單、普通、困難三種閥值設定的任務,並在體驗後填寫操作問卷和遊戲經驗問卷(Game Experience Questionnaire, GEQ) ,藉此評估三種設定的體驗感受和滿意度。
隱含性互動之實驗結果顯示進行沉浸式敘事時可利用視線範圍外的角色或聲音來提升使用者的專注度和好奇心。且可利用視線範圍內的角色與使用者進行互動產生正面情緒。在明確性互動之實驗結果顯示簡單設定之閥值可以讓使用者快速了解如何以腦電波作為遊戲的機制;而本研究認為普通設定是三者難度中最適當作為互動機制的參考閥值。最後本研究針對虛擬實境結合腦電波之數位內容提出設計建議,供開發者創造更沉浸之互動內容。

In recent years, Virtual Reality (VR) has extended focus from hardware development to digital content production and management. The combination of VR headset and electroencephalography (EEG) feature allows developers to create different interaction with users. The purpose of this study is to research using EEG for explicit and implicit interaction within the VR environment. The study will be broken down into two parts. First part focusing on the implicit interaction with immersive narrative and consumer EEG headsets. The research incorporates brainwaves monitoring, PDA emotional state questionnaire and Igroup Presence Questionnaire (IPQ). The research aims to understand a user’s emotions and immersion under various scenarios. Second part will concentrate on the explicit interaction design based on brainwaves. The research will monitor participants’ brainwaves as they complete experiences on three difficulty levels: easy, normal and hard. The participants would later fill out operation questionnaire and Game Experience Questionnaire (GEQ) to evaluate the gaming experiences and satisfaction levels of the three difficulty settings.
Results of the implicit interaction study indicate that when commencing immersive storytelling, incorporating non-diegetic character or sound is an effective way of elevate users’ concentration and curiosity. Moreover, featuring diegetic character within user’s sight evokes positive emotions. Results of the explicit interaction study show that with easy gaming difficulty, users can quickly familiarize themselves with games based on brainwaves. The research indicates that easy difficulty is the most suitable setting for inveracities design. Lastly, the research provides suggestions to elevate the impressiveness of VR contents that features electroencephalograph.
摘要i
ABSTRACTiii
誌謝v
目錄vi
表目錄viii
圖目錄ix
第一章緒論1
1.1研究背景與動機1
1.2研究目的2
1.3研究範圍與限制3
1.4論文架構4
第二章文獻探討7
2.1沉浸式體驗與互動方式7
2.1.1明確性互動9
2.1.2隱含性互動13
2.2腦電波16
2.2.1腦電波概述16
2.2.2消費級腦電波19
2.3小結21
第三章研究方法22
3.1沉浸式劇情敘事結合消費級腦波裝置作為隱含性的互動技巧之使用者研究22
3.1.1實驗設計23
3.1.2實驗器材與場地25
3.1.3實驗流程27
3.1.4實驗測量與資料分析31
3.2腦電波作為明確性互動遊戲機制之使用者研究34
3.2.1實驗設計34
3.2.2實驗器材與場地36
3.2.3實驗流程36
3.2.4實驗測量與資料分析38
第四章結果與討論41
4.1沉浸式劇情敘事結合消費級腦波裝置作為隱含性的互動技巧之使用者研究41
4.1.1受測者基本資料41
4.1.2腦電波分析42
4.1.3PAD和IPQ分析43
4.1.4訪談結果分析45
4.1.5小結46
4.2腦電波作為明確性互動遊戲機制之使用者研究47
4.2.1受測者基本資料47
4.2.2操作問卷分析48
4.2.3遊戲經驗量表分析54
4.2.4小結58
第五章結論與建議60
5.1研究結論60
5.2未來研究方向與建議62
參考文獻64

周文忠(2005)。虛擬實境之意義與應用。資訊科學應用期刊,1, 121-127
Badre, D., & Wagner, A. D. (2004). Selection, integration, and conflict monitoring: assessing the nature and generality of prefrontal cognitive control mechanisms. Neuron, 41(3), 473-487.
Benko, H., Holz, C., Sinclair, M., & Ofek, E. (2016). Normaltouch and texturetouch: High-fidelity 3d haptic shape rendering on handheld virtual reality controllers. In Proceedings of the 29th Annual Symposium on User Interface Software and Technology (pp. 717-728).
Bersak, D., McDarby, G., Augenblick, N., McDarby, P., McDonnell, D., McDonald, B., & Karkun, R. (2001). Intelligent biofeedback using an immersive competitive environment. In Paper at the designing ubiquitous computing games workshop at UbiComp (pp. 1-6).
Bischof, W. F., & Boulanger, P. (2003). Spatial navigation in virtual reality environments: an EEG analysis. CyberPsychology & Behavior, 6(5), 487-495.
Burdea, G. C., & Coiffet, P. (2003). Virtual reality technology. John Wiley & Sons.
Cahn, B. R., & Polich, J. (2006). Meditation states and traits: EEG, ERP, and neuroimaging studies. Psychological bulletin, 132(2), 180.
Chen, W., Plancoulaine, A., Férey, N., Touraine, D., Nelson, J., & Bourdot, P. (2013). 6DoF navigation in virtual worlds: comparison of joystick-based and head-controlled paradigms. In Proceedings of the 19th ACM Symposium on Virtual Reality Software and Technology (pp. 111-114).
Costello, P. J. (1997). Health and safety issues associated with virtual reality: a review of current literature (pp. 1-23).
Dang, N. T., Perrot, V., & Mestre, D. (2011, March). Effects of sensory feedback while interacting with graphical menus in virtual environments. In 2011 IEEE Virtual Reality Conference (pp. 199-200).
Fink, A., & Benedek, M. (2014). EEG alpha power and creative ideation. Neuroscience & Biobehavioral Reviews, 44, 111-123.
Gilleade, K., Dix, A., & Allanson, J. (2005). Affective videogames and modes of affective gaming: assist me, challenge me, emote me. DiGRA 2005: Changing Views–Worlds in Play.
Gola, M., Magnuski, M., Szumska, I., & Wróbel, A. (2013). EEG beta band activity is related to attention and attentional deficits in the visual performance of elderly subjects. International Journal of Psychophysiology, 89(3), 334-341.
Gorisse, G., Christmann, O., Amato, E. A., & Richir, S. (2017). First-and Third-Person Perspectives in immersive Virtual environments: Presence and Performance analysis of embodied Users. Frontiers in Robotics and AI, 4, 33.
Hall, T., Strangman, N., & Meyer, A. (2003). Differentiated instruction and implications for UDL implementation. Wakefield, MA: National Center on Accessing the General Curriculum. Retrieved July, 29, 2010.
Horie, R., Wada, M., & Watanabe, E. (2017). Participation in a virtual reality concert via brainwave and heartbeat. In International Conference on Applied Human Factors and Ergonomics (pp. 276-284).
IJsselsteijn, W., Van Den Hoogen, W., Klimmt, C., De Kort, Y., Lindley, C., Mathiak, K., Poels, K., Ravaja, N., Turpeinen,M., & Vorderer, P. (2008). Measuring the experience of digital game enjoyment. In Proceedings of measuring behavior (pp. 88-89).
Inazawa, M., Hu, X., & Ban, Y. (2019). Biofeedback Interactive VR System Using Biological Information Measurement HMD. In SIGGRAPH Asia 2019 Emerging Technolo-gies (pp. 5-6).
Kaiser, E., Olwal, A., McGee, D., Benko, H., Corradini, A., Li, X., Cohen, P., & Feiner, S. (2003). Mutual disambiguation of 3D multimodal interaction in augmented and virtual reality. In Proceedings of the 5th international conference on Multimodal interfaces (pp. 12-19).
Li, W. H., Liu, B., Kosasih, P. B., & Zhang, X. Z. (2007). A 2-DOF MR actuator joystick for virtual reality applications. Sensors and Actuators A: Physical, 137(2), 308-320.
Malmivuo, J., & Plonsey, R. (1995). Bioelectromagnetism: principles and applications of bioelectric and biomagnetic fields. Oxford University Press, USA.
Martindale, C., & Hasenfus, N. (1978). EEG differences as a function of creativity, stage of the creative process, and effort to be original. Biological psychology, 6(3), 157-167.
Marwecki, S., Wilson, A. D., Ofek, E., Gonzalez Franco, M., & Holz, C. (2019). Mise-unseen: Using eye tracking to hide virtual reality scene changes in plain sight. In Proceedings of the 32nd Annual ACM Symposium on User Interface Software and Technology (pp. 777-789).
McCurley, V. (2016). Storyboarding in Virtual Reality. Medium post. Retrieved August, 9, 2017.
Mehrabian, A., & Russell, J. A. (1974). An Approach to Environmental Psychology [By] Albert Mehrabian and James A. Russell. MIT Press.
Nielsen, J. (1993). Noncommand user interfaces. Communications of the ACM, 36(4), 83-99.
Pavone, E. F., Tieri, G., Rizza, G., Tidoni, E., Grisoni, L., & Aglioti, S. M. (2016). Embodying others in immersive virtual reality: electro-cortical signatures of monitoring the errors in the actions of an avatar seen from a first-person perspective. Journal of Neuroscience, 36(2), 268-279.
Probst, E., Suttner, V., Dietrich, M., & Buehler, T. (2018). Rapture of the deep. In SIGGRAPH Asia 2018 Virtual & Augmented Reality (pp. 1-2).
Rothe, S., Hußmann, H., & Allary, M. (2017). Diegetic cues for guiding the viewer in cinematic virtual reality. In Proceedings of the 23rd ACM Symposium on Virtual Reality Software and Technology (pp. 1-2).
Schmidt, A. (2000). Implicit human computer interaction through context. Personal technologies, 4(2), 191-199.
Seibert, J., & Shafer, D. M. (2018). Control mapping in virtual reality: effects on spatial presence and controller naturalness. Virtual Reality, 22(1), 79-88.
Semertzidis, N., Scary, M., Andres, J., Dwivedi, B., Kulwe, Y. C., Zambetta, F., & Mueller, F. F. (2020). Neo-Noumena: Augmenting Emotion Communication. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems (pp. 1-13).
Serim, B., & Jacucci, G. (2019). Explicating" Implicit Interaction" An Examination of the Concept and Challenges for Research. In Proceedings of the 2019 CHI Conference on Hu-man Factors in Computing Systems (pp. 1-16).
Thomas, P., & Macredie, R. D. (2002).Introduction to the new usability. ACM Transactions
on Computer-Human Interaction (TOCHI), 9(2), 69-73
Tromp, J., Peeters, D., Meyer, A. S., & Hagoort, P. (2018). The combined use of virtual reality and EEG to study language processing in naturalistic environments. Behavior Research Methods, 50(2), 862-869.
Witmer, B. G., Jerome, C. J., & Singer, M. J. (2005). The factor structure of the presence ques-tionnaire. Presence: Teleoperators & Virtual Environments, 14(3), 298-312.
Yem, V., Vu, K., Kon, Y., & Kajimoto, H. (2018). Softness-hardness and stickiness feedback using electrical stimulation while touching a virtual object. In 2018 IEEE Conference on Virtual Reality and 3D User Interfaces (VR) (pp. 787-788).
Zander, T. O., Kothe, C., Welke, S., & Rötting, M. (2009). Utilizing secondary input from passive brain-computer interfaces for enhancing human-machine interaction. In International Conference on Foundations of Augmented Cognition (pp. 759-771).

電子全文 電子全文(網際網路公開日期:20260106)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊