跳到主要內容

臺灣博碩士論文加值系統

(44.200.168.16) 您好!臺灣時間:2023/03/21 16:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳弘威
研究生(外文):WU, HONG-WEI
論文名稱:手指辨識基於射頻天線感測器
論文名稱(外文):A Radio Frequency-Based Antenna Sensor for Identifying Fingers
指導教授:蘇春熺
指導教授(外文):SU, CHUN-HSI
口試委員:許東亞莊賀喬程金保蘇春熺
口試委員(外文):SHEU, DONG-YEACHUANG, HO-CHIAOCheng, CHIN-PAOSU, CHUN-HSI
口試日期:2020-12-11
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:機械工程系機電整合碩士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:109
語文別:中文
論文頁數:57
中文關鍵詞:射頻天線感測器機器學習
外文關鍵詞:Radio FrequencyAntenna SensorMachine Learning
相關次數:
  • 被引用被引用:0
  • 點閱點閱:173
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本論文提出新穎的感測系統,主要量測人體手指姿態。透過建立感測數據資料庫與量測得到的感測數據進行感測演算,判讀出感測狀態。天線感測器在傳輸上不倚賴任何傳輸協定;加上天線結構單純、硬體成本相對較低;故可使用於大範圍監控。透過偶極天線作為感測器的基礎,分析其天線輻射場型、天線參數與彎曲角度的關係。天線為主動式天線,將兩種不同的振盪訊號連接混波器產生出多頻訊號,透過接收模組將接收之時域訊號轉為頻域訊號。取得6-8個頻域峰值作為特徵矩陣,並建立出特徵資料庫。辨識方式為將感測矩陣使用最小歐氏距離算出最小距離,可成功判讀出手指姿態與角度。本研發技術可應用於即時監視,把感測器智能化。此技術亦可延伸於距離量測、壓力、濕度與溫度等相關之無線感測。除醫療領域之外,無人駕駛車、無人機、智能工廠、智能居家等領域也將受惠於此新技術。
This paper proposes a novel sensing system, which mainly measures the posture of human fingers. The sensing calculation is performed by establishing a sensing data database and measuring the sensing data to determine the sensing state. The antenna sensor does not rely on any transmission protocol for transmission; in addition, the antenna structure is simple and the hardware cost is relatively low; therefore, it can be used for large-scale monitoring. The dipole antenna is used as the basis of the sensor to analyze the relationship between its antenna radiation pattern, antenna parameters and bending angle. The antenna is an active antenna. Two different oscillation signals are connected to the mixer to generate a multi-frequency signal, and the received time domain signal is converted into a frequency domain signal through the receiving module. Obtain 6-8 frequency domain peaks as the feature matrix, and build a feature database. The recognition method is to use the minimum Euclidean distance to calculate the minimum distance of the sensing matrix, which can successfully determine the finger posture and angle. This research and development technology can be applied to real-time monitoring, making the sensor intelligent. This technology can also be extended to wireless sensing related to distance measurement, pressure, humidity and temperature. In addition to the medical field, fields such as unmanned vehicles, drones, smart factories, and smart homes will also benefit from this new technology.
目錄

中文摘要 i
英文摘要 ii
致謝 iv
目錄 v
表目錄 vii
圖目錄 viii
第一章 序論 1
1.1 前言 1
1.2 研究背景 2
1.3 研究動機 4
1.4 研究大綱 5
第二章 研究原理與理論基礎 6
2.1 彎曲天線感測器 6
2.2 偶極天線 9
2.3 環形天線 12
2.4 阻抗匹配 14
2.5 天線輻射與阻抗 17
2.5.1導體輻射機制 17
2.5.2 天線阻抗 19
第三章 實驗設計與驗證 21
3.1 實驗設計 21
3.1.1 無線感測通訊架構 21
3.1.2 歐式最小距離演算 22
3.2 特徵值建立與感測原理 24
第四章 識別手指姿勢的天線感測器 27
4.1 天線感測器設計 27
4.2 手指關節概述與設置 31
4.3 天線感測器實驗結果與討論 32
4.3.1 天線傳感器性能測試 32
4.3.2 天線感測器架構與感測辨識驗證 38
4.4 天線感測器用於手指對實驗結果與討論 45
第五章 結論 52
5.1 結論 52
5.2 未來展望 53
參考文獻 54


參考文獻

1.X. Wang, Z. Liu, and T. Zhang, “Flexible sensing electronics for wearable/attachable health monitoring,” Small, vol. 13, no. 25, 2017, pp. 1602790.
2.X. Wang, Y. Gu, Z. Xiong, Z. Cui, and T. Zhang, “Silk‐molded flexible, ultrasensitive, and highly stable electronic skin for monitoring human physiological signals,” Advanced materials, vol. 26, no. 9, 2014, pp. 1336-1342.
3.J. M. Nassar, K. Mishra, K. Lau, A. A. Aguirre‐Pablo, and M. M. Hussain, “Recyclable nonfunctionalized paper‐based ultralow‐cost wearable health monitoring system,” Advanced Materials Technologies, vol. 2, no. 4, 2017, pp. 1600228.
4.M. Su, F. Li, S. Chen, Z. Huang, M. Qin, W. Li, X. Zhang, and Y. Song, “Nanoparticle based curve arrays for multirecognition flexible electronics,” Advanced materials, vol. 28, no. 7, 2016, pp. 1369-1374.
5.L.-Q. Tao, H. Tian, Y. Liu, Z.-Y. Ju, Y. Pang, Y.-Q. Chen, D.-Y. Wang, X.-G. Tian, J.-C. Yan, and N.-Q. Deng, “An intelligent artificial throat with sound-sensing ability based on laser induced graphene,” Nature communications, vol. 8, no. 1, 2017, pp. 1-8.
6.J. Choi, Y. Xue, W. Xia, T. R. Ray, J. T. Reeder, A. J. Bandodkar, D. Kang, S. Xu, Y. Huang, and J. A. Rogers, “Soft, skin-mounted microfluidic systems for measuring secretory fluidic pressures generated at the surface of the skin by eccrine sweat glands,” Lab on a Chip, vol. 17, no. 15, 2017, pp. 2572-2580.
7.K. Altun, and B. Barshan, "Human activity recognition using inertial/magnetic sensor units.", Internetional workshop on human behavior understanding, Springer, 2010, pp. 38-51.
8.R. Poppe, “Vision-based human motion analysis: An overview,” Computer vision and image understanding, vol. 108, no. 1-2, 2007, pp. 4-18.
9.A. Ghose, "Analysis of analog signal from PIR-sensors for human analytics in an IOTized environment.", 2018 3rd Internetional conference on Internet of Things: Smart Innovation and Usages, 2018, pp. 1-6.
10.L. Song, A. C. Myers, J. J. Adams, and Y. Zhu, “Stretchable and reversibly deformable radio frequency antennas based on silver nanowires,” ACS applied materials & interfaces, vol. 6, no. 6, 2014, pp. 4248-4253.
11.C.-P. Lin, C.-H. Chang, Y.-T. Cheng, and C. F. Jou, “Development of a flexible SU-8/PDMS-based antenna,” IEEE Antennas and wireless propagation letters, vol. 10, 2011, pp. 1108-1111.
12.D. Tang, Q. Wang, Z. Wang, Q. Liu, B. Zhang, D. He, Z. Wu, and S. Mu, “Highly sensitive wearable sensor based on a flexible multi-layer graphene film antenna,” Science Bulletin, vol. 63, no. 9, 2018, pp. 574-579.
13.M. Roudjane, M. Khalil, A. Miled, and Y. Messaddeq, "New generation wearable antenna based on multimaterial fiber for wireless communication and real-time breath detection.", Photonics, vol. 5, no. 4: Multidisciplinary Digital Publishing Institute, 2018, pp. 33.
14.L. Cui, Z. Zhang, N. Gao, Z. Meng, and Z. Li, “Radio frequency identification and sensing techniques and their applications—A review of the state-of-the-art,” Sensors, vol. 19, no. 18, 2019, pp. 4012.
15.S. Wang, and G. Zhou, “A review on radio based activity recognition,” Digital Communications and Networks, vol. 1, no. 1, 2015, pp. 20-29.
16.W.-J. Deng, L.-F. Wang, L. Dong, and Q.-A. Huang, “LC wireless sensitive pressure sensors with microstructured PDMS dielectric layers for wound monitoring,” IEEE Sensors Journal, vol. 18, no. 12, 2018, pp. 4886-4892.
17.C. Cho, X. Yi, D. Li, Y. Wang, and M. M. Tentzeris, “Passive wireless frequency doubling antenna sensor for strain and crack sensing,” IEEE Sensors Journal, vol. 16, no. 14, 2016, pp. 5725-5733.
18.W. Shi, J. Du, X. Cao, Y. Yu, Y. Cao, S. Yan, and C. Ni, “IKULDAS: An Improved kNN-Based UHF RFID Indoor Localization Algorithm for Directional Radiation Scenario,” Sensors, vol. 19, no. 4, 2019, pp. 968.
19.S. Neethu, S. Sreelakshmi, and D. Sankar, “Enhancement of Fingerprint using FFT×| FFT| n Filter,” Procedia Computer Science, vol. 46, 2015, pp. 1561-1568.
20.M. Z. Uddin, M. M. Hassan, A. Alsanad, and C. Savaglio, “A body sensor data fusion and deep recurrent neural network-based behavior recognition approach for robust healthcare,” Information Fusion, vol. 55, 2020, pp. 105-115.
21.L. Bowden, “The story of IFF (identification friend or foe),” IEE Proceedings A (Physical Science, Measurement and Instrumentation, Management and Education, Reviews), vol. 132, no. 6, 1985, pp. 435-437.
22.T. Li, J. Li, A. Zhong, F. Han, R. Sun, C.-P. Wong, F. Niu, G. Zhang, and Y. Jin, “A Flexible Strain Sensor Based on CNTs/PDMS Microspheres for Human Motion Detection,” Sensors and Actuators A: Physical, 2020, pp. 111959.
23.S. Kanaparthi, V. R. Sekhar, and S. Badhulika, “Flexible, eco-friendly and highly sensitive paper antenna based electromechanical sensor for wireless human motion detection and structural health monitoring,” Extreme Mechanics Letters, vol. 9, 2016, pp. 324-330.
24.R. C. Johnson, and H. Jasik, “Antenna engineering handbook,” mgh, 1984.
25.C. A. Balanis, Antenna theory: analysis and design: John wiley & sons, 2016.
26.D. K. Cheng, Field and wave electromagnetics: Pearson Education India, 1989.
27.D. M. Pozar, Microwave engineering: John wiley & sons, 2009.
28.C. Bowick, RF circuit design: Elsevier, 2011.
29.M. Schwartz, W. R. Bennett, and S. Stein, Communication systems and techniques: John Wiley & Sons, 1995.
30.C. H. Su, and H. W. Wu, “A radio frequency‐based antenna sensor as a protractor,” Microwave and Optical Technology Letters, vol. 61, no. 5, 2019, pp. 1301-1306.
31.S. Mulla, and S. Deshpande, "Miniaturization of micro strip antenna: a review.", 2015 International Conference on Information Processing (ICIP), 2015, pp. 372-377.
32.M. U. Khan, M. S. Sharawi, and R. Mittra, “Microstrip patch antenna miniaturisation techniques: a review,” IET Microwaves, Antennas & Propagation, vol. 9, no. 9, 2015, pp. 913-922.
33.M. Fallahpour, and R. Zoughi, “Antenna miniaturization techniques: A review of topology-and material-based methods,” IEEE Antennas and Propagation Magazine, vol. 60, no. 1, 2017, pp. 38-50.
24.W. L. Stutzman, and G. A. Thiele, Antenna theory and design: John Wiley & Sons, 2012.
35.M. Takiguchi, and Y. Yamada, "Input impedance increase of a very small meander line antenna.", IEEE Antennas and Propagation Society International Symposium. Digest. Held in conjunction with: USNC/CNC/URSI North American Radio Sci. Meeting, vol. 1, 2003, pp. 856-859.
36.A. P. Vicente, and A. A. Faisal, "Calibration of kinematic body sensor networks: Kinect-based gauging of data gloves “in the wild”.", 2013 IEEE International Conference on Body Sensor Networks, 2013, pp. 1-6.
37.A. Ibrahim, and D. Cumming, “Passive single chip wireless microwave pressure sensor,” Sensors and Actuators A: Physical, vol. 165, no. 2, 2011, pp. 200-206.
38.J.-C. Chiou, S.-H. Hsu, Y.-C. Huang, G.-T. Yeh, W.-T. Liou, and C.-K. Kuei, “A wirelessly powered smart contact lens with reconfigurable wide range and tunable sensitivity sensor readout circuitry,” Sensors, vol. 17, no. 1, 2017, pp. 108.
39.X. Xu, and H. Huang, “Battery-less wireless interrogation of microstrip patch antenna for strain sensing,” Smart Materials and Structures, vol. 21, no. 12, 2012, pp. 125007.
40.D. M. Pozar, Microwave engineering: John wiley & sons, 2011.



電子全文 電子全文(網際網路公開日期:20260125)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top