跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2024/12/07 07:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李秬緯
研究生(外文):LI, CHU-WEI
論文名稱:小波轉換結合相位領先補償器應用於放射治療中呼吸運動補償系統搭配超音波追蹤技術
論文名稱(外文):Wavelet Transform Combined with Phase Leading Compensator Applied to Respiratory Motion Compensation System with Ultrasound Tracking Technique in Radiation Therapy
指導教授:莊賀喬莊賀喬引用關係
指導教授(外文):CHUANG, HO-CHIAO
口試委員:廖愛禾呂隆昇黃執中許書涵莊賀喬
口試委員(外文):LIAO, AI-HOLU, LUNG-SHENGHUANG, CHIH-CHUNGHSU, SHU-HANCHUANG, HO-CHIAO
口試日期:2021-07-28
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:機械工程系機電整合碩士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:67
中文關鍵詞:呼吸運動小波轉換呼吸運動補償系統
外文關鍵詞:Respiratory motionWavelet transformRespiratory motion compensation system
相關次數:
  • 被引用被引用:0
  • 點閱點閱:222
  • 評分評分:
  • 下載下載:34
  • 收藏至我的研究室書目清單書目收藏:0
影響放射治療成效的因素有很多,其中器官運動是造成治療效果下降的主要原因。在放射治療期間,器官會因為病患呼吸而持續地移動,也讓腫瘤的位置產生變化,導致放射線無法精準照射於腫瘤,使劑量覆蓋率不足,無法有效地消滅病灶。所以便有使用呼吸運動補償的方法,減少呼吸運動所產生的位移來提升治療效果,但是,從偵測呼吸訊號到補償呼吸訊號之間有系統延遲存在,導致補償效果可能不顯著,因此本研究的目的是提升本團隊先前開發的二維呼吸運動補償系統的補償效果。
本研究利用二維呼吸運動模擬系統(Respiratory Motion Simulation System,RMSS)以及二維呼吸運動補償系統(Respiratory Motion Compensation System,RMCS)進行呼吸運動補償之實驗,藉由本團隊先前開發之超音波影像追蹤演算法(Ultrasound Image Tracking Algorithm, UITA)擷取真實人體呼吸訊號,而且超音波檢查屬於非侵入式的偵測方式,所以不會對人體造成治療上額外的副作用。由於訊號傳輸過程中存在著系統延遲時間的影響,導致RMCS無法立即隨著RMSS進行反向運動因而產生補償誤差。因此本研究使用LabVIEW控制軟體開發一套利用小波轉換結合相位領先補償器應用於RMCS位移補償之演算法,讓RMCS能夠隨著各種不同的呼吸波形,自動且即時調控PLC之參數,降低系統延遲時間帶來的影響,達到更好的呼吸位移補償效果。最後使用RMSS和RMCS的編碼器讀取之位置訊號,計算均方根誤差(Root mean squared error, RMSE)與系統補償率(Compensation Rate , CR)兩種指標來評估RMCS的補償效果。
實驗結果顯示,在RL向和SI向的補償率皆有所提升,補償率在RL和SI向分別介於67.96%~88.05%和70.38%~91.43%之間,尤其在追蹤頻率較慢的呼吸訊號時具有較高的補償率,但在追蹤頻率較快與振幅瞬間大幅改變的呼吸訊號時,補償效果略為下降。
相較於本團隊先前開發的補償演算法,本研究將小波轉換結合PLC應用於RMCS進行人體呼吸位移補償實驗,能夠有效地提升補償率,其中補償呼吸頻率較慢的訊號有較大地提昇,而補償呼吸頻率較快的訊號略微提升。為了能夠降低放射治療的風險,除了提升RMCS的補償效果以外,未來將更進一步探討橫膈膜運動與腫瘤運動之間的轉換公式及開發AP向的運動補償設備,達到三維的呼吸運動補償。

There are many factors that affect the effectiveness of radiotherapy, among which organ movement is the main reason for the decline of the treatment effect. During radiotherapy, the organs will constantly move due to the patient breathe, which also changes the position of the tumor. As a result, the radiation cannot be accurately irradiated to the tumor, resulting in insufficient dose coverage and unable to effectively eliminate the lesion. Therefore, there is a method of using to compensate respiratory motion to reduce the displacement generated by the respiratory motion to improve the treatment effect. However, there is a system delay between the detection of the respiratory signal and the compensation of the respiratory signal, which may cause the compensation effect to be poor. Therefore, the purpose of the research is to improve the compensation effect of the two-dimensional respiratory motion compensation system previously developed by the team.
In this study, a two-dimensional respiratory simulation system (RMSS) and RMCS were used for respiratory movement compensation experiments. Our previously developed ultrasound image tracking algorithm (UITA) was used to capture human respiratory signals. Ultrasound is a non-invasive detection method and will not cause additional therapeutic effects on the human body. Due to signal in the transmission process, the system delay time causes the RMCS fail to move in the reverse direction along with the RMSS immediately, which results in compensation errors. Therefore, this study uses LabVIEW control software to develop an algorithm for RMCS in displacement compensation by using WT combined with a PLC, so that RMCS can automatically and real-time control the PLC parameters with various respiratory waveforms, thereby reducing the impact of system delay time and achieve a better compensation effect in respiratory movement. Finally, the position signals read by the RMSS and RMCS encoders were used to calculate the Root Mean Squared Error (RMSE) and compensation rate (CR) to evaluate the compensation effect of RMCS.
The experimental results show that the compensation rate in the RL and SI directions has been improved, and CR in the RL and SI directions is 67.96% - 88.05 % and 70.38% - 91.43%, respectively. Especially when tracking a repiratory signal with a slower frequency, it has a higher compensation rate; however, when tracking a repiratory signal with a faster frequency and a sharp change in amplitude, the compensation effect is slightly reduced.
Compared with the compensation algorithm previously developed by our team, this study applies wavelet transform combined with PLC to the RMCS for human respiratory displacement compensation experiments, which can effectively increase the compensation rate. Among them, the signal with slower respiratory rate is greatly improved. The signal that compensates for a faster breathing rate is slightly increased. In order to reduce the risk of radiotherapy, in addition to improving the compensation effect of RMCS, the conversion formula between diaphragm motion and tumor motion will be further explored in the future, and AP direction motion compensation equipment will be developed to achieve three-dimensional respiratory motion compensation.

目 錄

摘 要 i
ABSTRACT iii
誌 謝 vi
目 錄 vii
表目錄 x
圖目錄 xi
第一章 緒 論 1
1.1 前言 1
1.2 研究動機與目的 2
1.3 研究步驟與優勢 3
1.4 論文架構 5
第二章 文獻回顧 7
2.1 放射治療過程產生的影響 7
2.1.1治療範圍的誤差 7
2.1.2呼吸運動造成的影響 9
2.2 解決腫瘤運動的放射治療技術 10
2.2.1擴大目標治療範圍 11
2.2.2呼吸調控放射治療技術 13
2.2.3影像導引放射治療 14
2.2.4身體立體定位放射治療 14
2.2.5螺旋刀 16
2.2.6弧形刀 17
2.2.7電腦刀 19
2.2.8智慧型真光刀 20
2.2.9 質子刀 21
2.2.10呼吸運動位移補償 22
2.3 觀察呼吸運動的方式 24
2.3.1即時呼吸調控系統 24
2.3.2基準標記物 25
2.3.3四維電腦斷層掃描 28
2.3.4核磁共振 28
2.3.5正子電腦斷層造影 29
2.3.6超音波 30
2.5橫膈膜運動與腫瘤位移之相關性 31
2.6補償呼吸運動的控制方法 33
2.6.1相位領先補償器 33
2.6.2類神經網路預測 33
2.7時頻分析 34
2.7.1傅立葉轉換 34
2.7.2小波轉換 35
第三章 材料與方法 37
3.1實驗架構 37
3.2實驗設備 37
3.2.1二維呼吸運動模擬系統 38
3.2.2二維呼吸運動補償系統 39
3.2.3超音波影像追蹤系統 40
3.2.4實驗仿體 41
3.2.5控制系統軟體 42
3.3補償呼吸運動實驗 44
3.3.1實驗呼吸訊號 44
3.3.2實驗方法 46
3.3.3相位領先補償器 47
3.3.4自動偵測呼吸頻率程式 48
3.3.5小波轉換 48
3.3.6呼吸運動補償系統之追蹤誤差 50
第四章 結果與討論 51
4.1結果 51
4.2討論 56
第五章 結論與未來研究方向 59
5.1結論 59
5.2未來展望 59
參考文獻 60

參考文獻
[1]衛生福利部統計處。108年死因統計結果分析。檢自:
https://dep.mohw.gov.tw/dos/cp-4927-54466-113.html
[2]康健雜誌。徹底消滅癌細胞!3大治癌新療法。檢自:
https://www.commonhealth.com.tw/article/77160
[3]奇美醫療體系衛教資訊網。檢自:https://www.chimei.org.tw/main/cmh_department/59012/info/5700/A5700204.html
[4]衛生福利部台中醫院放射腫瘤科。檢自:
https://www.taic.mohw.gov.tw/?aid=53&pid=122&page_name=detail&iid=539
[5]Motherland Red, Li Fusheng, Su Chen, He Xinyu. Advances in the research of positioning errors in precise radiotherapy for head and neck tumors. Chinese Radiological Health. 2016 ;25(1):125-128.
[6]Chen-Lin Kang ; Wen-Kai Chen ; Cheng-Hsiang Tasi ; Hsuan-Ming Chang ; Tzung-Yi Liao ; Kuo-Jung Juan. The Application of ExactTrac X-ray Positioning System to Analyze the Setup Error in Radiotherapy for Nasopharyngeal Cancer Patients. Chinese Journal of Radiology. 2008 ; 32(1):65-71.
[7]van Herk, M. Errors and margins in radiotherapy. Seminars in Radiation Oncology. 2004 Jan;14(1):52-64.
[8]Lin,LL, Hertan,L, Rengan,R, Kevin,BK. Effect of Body Mass Index on Magnitude of Setup Errors in Patients Treated With Adjuvant Radiotherapy for Endometrial Cancer With Daily Image Guidance. International Journal of Radiation Oncology Biology Physics. 2012 JUN;83(2):670-675.
[9]K. M. LANGEN, D. T. L. JONES. Organ Motion and its Management. Int J Radiat Oncol Biol Phys. 2001 May 1;50(1):265-78.
[10]Uchinami, Y , Suzuki, R, Katoh, N , Taguchi, H , Yasuda, K ,Miyamoto, N , Ito, YM, Shimizu, S ,Shirato, H . Impact of organ motion on volumetric and dosimetric parameters in stomach lymphomas treated with intensity‐modulated radiotherapy. Journal of Applied Clinical Medical Physics. 2019 AUG;20(8):78-86.
[11]Ya-Wen Li, Jao-Perng Lin, Chun-You Chen, Liang-Ming Lee, Ke-Hsun Lin, Yu-Ching Wen, Chi-Hao Hsiao, Yung-Wei Lin, Chiu-Ping Chen, Chih-Cheng Chou, Szu-Yuan Wu. The Dosimetric Impact of Daily Setup Error with Image-Guided Radiotherapy for Prostate Cancer. Radiotherapy and Oncology. 2014;21(4):305-315.
[12]T. Landberg, P. Almond, J. M. V. Burgers, M. Busch, C. A. Joslin, J. P. Paunier.ICRU report 29: Dose specification for reporting external beam therapy with photons and electrons. Journal of the International Commission on Radiation Units and Measurements, Volume os15, Issue 2, 1 April 1978, Page NP.
[13]Anne Kiil Berthelsen, Jane Dobbs, Elisabeth Kjellén, Torsten Landberg, Torgil R. Möller, Per Nilsson, Lena Specht, and André Wambersie. What's new in target volume definition for radiologists in ICRU Report 71? How can the ICRU volume definitions be integrated in clinical practice? Cancer Imaging. 2007; 7(1): 104–116.
[14]T. Landberg, J. Chavaudra, J. Dobbs, G. Hanks, K.-A. Johansson, T. Möller, J. Purdy. Prescribing, recording, and reporting photon beam therapy. Journal of the International Commission on Radiation Units and Measurements, Volume 10, Issue 1, April 2010, Page NP.
[15]T. Landberg, J. Chavaudra, J. Dobbs, J. -P. Gerard, G. Hanks, J. -C. Horiot, K. -A. Johansson, T. Möller, J. Purdy, N. Suntharalingam, H. Svensson. Prescribing, recording and reporting photon beam therapy (Supplement to ICRU Report 50). Journal of the International Commission on Radiation Units and Measurements, Volume os26, Issue 1, 1 September 1993, Page NP.
[16]James A Purdy. Current ICRU definitions of volumes: limitations and future direction. Semin Radiat Oncol. 2004 Jan;14(1):27-40.
[17]Anca-Ligia Grosu, Lisa D. Sprague, and Michael Molls. Definition of Target Volume and Organs at Risk. Biological Target Volume. New Technologies in Radiation Oncology. 2006 Jan;pp 167-177.
[18]J.W Wong, M.B Sharpe, D.A Jaffray, V.R Kini, J.M Robertson, J.S Stromberg, A.A Martinez.The use of active breathing control (ABC) to reduce margin for breathing motion. Int J Radiat Oncol Biol Phys. 1999 JUL;44(4):911-919.
[19]L.A. Dawson, C. Eccles, J. Bissonnette, K. Brock. Accuracy of daily image guidance for hypofractionated liver radiotherapy with active breathing control. Int J Radiat Oncol Biol Phys. 2005 JUL;62(4):1247-1252.
[20]Dawson, L.A., Brock, K.K., Kazanjian, S., Fitch, D., McGinn, C.J., Lawrence, T.S., Haken, R.K. Ten and Balter, J. (2001) “The reproducibility of organ position using active breathing control (ABC) during liver radiotherapy”, International Journal of Radiation Oncology Biology Physics, 51(5), pp. 1410–1421.
[21]Lax, I . Panettieri, V . Wennberg, B. Duch, MA . Naslund, I. Baumann, P . Gagliardi, G.Dose distributions in SBRT of lung tumors: Comparison between two different treatment planning algorithms and Monte-Carlo simulation including breathing motions. Acta Oncologica. 2006 SEP;45(7):978-988.
[22]Wurm, RE. Gum, F et al. Image guided respiratory gated hypofractionated Stereotactic Body Radiation Therapy (H-SBRT) for liver and lung tumors: Initial experience. Acta Oncologyca. 2006 SEP;45(7):978-988.
[23]Wulf, J . Hadinger, U. Oppitz, U. Thiele, W. Ness-Dourdoumas, R.Flentje, M. Stereotactic radiotherapy of targets in the lung and liver. Strahlentherapie Und Onkologie. 2001 DEC;177(12):645
[24]光田醫療社團法人光田綜合醫院放射腫瘤科。檢自:
http://www.ktgh.com.tw/web/index.asp?DataID=76&CatID=51&ModuleType=Y
[25]Maturen, KE. Feng, MU. Wasnik, AP. Azar, SF. Appelman, HD. Francis, IR. Platt, JF. Imaging Effects of Radiation Therapy in the Abdomen and Pelvis: Evaluating "Innocent Bystander" Tissues. Radiographics. 2013 MAR-APR;33(2):599-619.
[26]Chang, JY . Dong, L. Liu, H . Starkschall, G. Balter, P . Mohan, R . Liao, ZX. Cox, JD . Komaki, R. Image-guided radiation therapy for non-small cell lung cancer. Journal of Thoracic Oncology. 2008 FEB;3(2):177-186.
[27]光田醫療社團法人光田綜合醫院放射腫瘤科。檢自:
http://www.ktgh.com.tw/web/index.asp?DataID=76&CatID=41&ModuleType=Y
[28]Mi-Tech Tungsten Mental. Available at:
https://www.mttm.com/tungsten-alloys/industries/medical
[29]仁愛醫療財團法人。檢自:
https://www.jah.org.tw/form/index-1.asp?m=3&m1=8&m2=362&gp=361&id=1039
[30]Mongeon, M. Thibault, F. Chartrand-Lefebvre, C. Gorgos, AB. Soulez, G. Filion, E. Therasse, E . Safety and Efficacy of Endovascular Fiducial Marker Insertion for CyberKnife Stereotactic Radiation Therapy Planning in Early-Stage Lung Cancer. Journal of Vascular and Interventional Radiology. 2017 AUG;28(8):1090-1097.
[31]William T. Brown, Xiaodong Wu, B-Chen Wen, John F. Fowler, Fahed Fayad, Beatriz E. Amendola, Silvio García, Alberto De La Zerda, Zhicong Huang & James G. Schwade. Early results of CyberKnife image-guided robotic stereotactic radiosurgery for treatment of lung tumors. Computer Aided Surgery. 2007 SEP;12(5):253-261.
[32]Greto, D. Pallotta, S . Masi, L. Talamonti, C. Marrazzo, L. Doro, R . Saieva, C . Scoccianti, S. Desideri, I . Livi, L. A dosimetric comparison between CyberKnife and tomotherapy treatment plans for single brain metastasis. Radiologia Medica. 2017 MAY;122(5):392-397.
[33]Chang, Z. Wu, QW . Adamson, J. Ren, L . Bowsher, J . Yan, H . Thomas, A . Yin, FF . Commissioning and dosimetric characteristics of TrueBeam system: Composite data of three TrueBeam machines. Medical Physics. 2012 NOV;39(11):6981-7018.
[34]國泰綜合醫院放射腫瘤科。檢自:
https://www.cgh.org.tw/ec99/rwd1320/category.asp?category_id=634
[35]Shiinoki, T. Kawamura, S. Uehara, T. Yuasa, Y. Fujimoto, K. Koike, M . Sera, T . Emoto, Y . Hanazawa, H. Shibuya, K. Evaluation of a combined respiratory-gating system comprising the TrueBeam linear accelerator and a new real-time tumor-tracking radiotherapy system: a preliminary study. Journal of Applied Clinical Medical Physics 2016;17(4):202-213.
[36]肝病防治學術基金會。檢自:
https://www.liver.org.tw/journalView.php?cat=60&sid=750&page=1
[37]Depuydt T et al. Geometric accuracy of a novel gimbals based radiation therapy tumor tracking system. Radiother Oncol. 2011;98:pp.365–372.
[38]D’Souza W D et al. Investigation of motion sickness and inertial stability on a moving couch for intra-fraction motion compensation. Acta Oncol. 2009;48:pp.1198–1203.
[39]Zhang, L. LoSasso, T . Zhang, PP. Hunt, M . Mageras, G . Tang, GC. Couch and multileaf collimator tracking: A clinical feasibility study for pancreas and liver treatment. Medical Physics. 2020 SEP;47(10):pp.4743-4757.
[40]Sundarapandian, M . Kalpathi, R. Siochi, RAC. Kadam, AS .Lung diaphragm tracking in CBCT images using spatio-temporal MRF.Computerized Medical Imagind and Graphics. 2016 OCT;53:9-18.
[41]A. Sawant, R. Venkat, V. Srivastava, et al. Management of three-dimensional intrafraction motion through real-time DMLC tracking. Med Phys, 35 (2008), pp. 2050-2061
[42]A. Sawant, RL.Smith, R.Venkat, et al.Toward Submillimeter Accuracy in the Management of Intrafraction Motion: The Integration of Real-Time Internal Position Monitoring and Multileaf Collimator Target Tracking. International Journal of Radiation Oncology Biology Physics. 2009 JUN;74(2):575-582.
[43]R.I. Whyte, R. Crownover, M.J. Murphy, et al.Stereotactic radiosurgery for lung tumors: Preliminary report of a Phase I trial.Annals of Thoracic Surgery. 75 (2003), pp. 1097-1101
[44]Jin, JY. Ajlouni, M. Ryu, S . Chen, Q. Li, SD . Movsas, B .
A technique of quantitatively monitoring both respiratory and nonrespiratory motion in patients using external body markers.Medical Physics. 2007 JUL;34(7):2875-2881.
[45]W. De Wever, S. Stroobants, J. Coolen, J. Verschakelen.Integrated PET/CT in the staging of nonsmall cell lung cancer: technical aspects and clinical integration.European. Respiratory Journal. 33 (1) (2009), pp. 201-212
[46]Subotic, DR. Stevic, R. Gajic, M . Vesovic, R. Diaphragm motion and lung function prediction in patients operated for lung cancer - a pilot study on 27 patients.Journal of Cardiothoracic Surgery. 2013 NOV;8
[47]L.I. Cervino, A.K. Chao, A. Sandhu, S.B. Jiang. The diaphragm as an anatomic surrogate for lung tumor motion. Phys. Med. Biol., 54 (11) (2009), p. 3529-3542.
[48]L.I. Cervino, A.K. Chao, A. Sandhu, S.B. Jiang. Tumor motion prediction with the diaphragm as a surrogate: a feasibility study. Phys. Med. Biol., 55 (9) (2010), p. N221-N229.
[49]Mori S et al. First clinical experience in carbon ion scanning beam therapy: retrospective analysis of patient positional accuracy. Journal of Radiation Research. 2012 SEP;53(5):pp.760-768
[50]Yip, E. Yun, J. Wachowicz, K . Gabos, Z . Rathee, S . Fallone, BG
Sliding window prior data assisted compressed sensing for MRI tracking of lung tumors. Medical Physics. 2017 JAN;44(1):pp.84-98
[51]Niu, Y . Betzel, GT. Yang, XC . Gui, MZ. Parke, WC. Yi, B. Yu, CX
Planning 4D intensity-modulated arc therapy for tumor tracking with a multileaf collimator Physics in Medicine and Biology. 2017 FEB;62(4):pp.1480-1500
[52]Isaksson, M . Jalden, J . Murphy, MJ .On using an adaptive neural network to predict lung tumor motion during respiration for radiotherapy applications. Medical Physics. 2005 DEC;32(12):pp.3801-3809
[53]AAVOS International Fourier transform. 2017. Available at:
https://aavos.eu/glossary/fourier-transform/
[54]Kevric, J. Subasi, A. Comparison of signal decomposition methods in classification of EEG signals for motor-imagery BCI system. Biomedical Signal Processing and Control. 2017 JAN;31:pp.398-406
[55]Chen, XW . Yang, RQ. Ge, LL. Zhang, L. Lv, RX. Heart rate variability analysis during hypnosis using wavelet transformation. Biomedical Signal Processing and Control. 2017 JAN;31:pp.1-5
[56]Kuo C, Chuang H, Teng K et al. An autotuning respiration compensation system based on ultrasound image tracking. Journal of X-Ray Science and Technology. 2016;24(6):875-892.
[57]Fukuda Denshi UF-4000 Ultrasound, Portable - Manufacturer specifications. Medwowcom. 2017. Available at:
http://www.medwow.com/med/ultrasound-portable/fukuda-denshi/uf-4000/15838.model-spec.
[58]楊笠延、曾聖貿、陳君睿。圖片馬賽克建置。檢自:
http://www.cs.thu.edu.tw/upload_files/96_cttsai_01.pdf
[59]L. Debnath. Wavelets and Signal Processing
(first ed.), Springer Science & Business Media, New York (2003)
[60]Kuo, CC. Chuang, HC. Yu, HW et al. Adaptive control of phase leading compensator parameters applied to respiratory motion compensation system
Journal of X-Ray Science and Technology. 2019 vol. 27, no. 4, pp. 715-729
[61]S.C Davies, A.L Hill, R.B Holmes, et al. Ultrasound quantitation of respiratory organ motion in the upper abdomen. British Journal of Radiology. 67 (1994), pp. 1096-1102
[62]Menten, MJ, Guckenberger, M, Herrmann, C, Krauss, A , Nill, S, Oelfke, U, Wilbert, J .Comparison of a multileaf collimator tracking system and a robotic treatment couch tracking system for organ motion compensation during radiotherapy. Medical Physics. 2012 NOV;39(11):pp.7032-7041
[63]Lee, S, Chang, KH, Shim, JB et al.Evaluation of mechanical accuracy for couch-based tracking system (CBTS).Journal of Applied Clinical Medical Physics. 2012;13(6):pp.157-169
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top