跳到主要內容

臺灣博碩士論文加值系統

(44.222.64.76) 您好!臺灣時間:2024/06/15 06:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:許秉澤
研究生(外文):HSU, BING-ZE
論文名稱:摻雜Sr的LaMO3(M = Co,Yb)觸媒應用於鋰空氣電池
論文名稱(外文):Sr-doped LaMO3 (M=Co, Yb) catalysts for lithium-air batteries
指導教授:李懿軒
指導教授(外文):LEE, YI-HSUAN
口試委員:劉奕宏嚴治平黃中人
口試委員(外文):LIU, YI-HUNGYEN, CHIH-PINGHUANG, JHONG-REN
口試日期:2021-07-28
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:機械工程系機電整合碩士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:130
中文關鍵詞:鈣鈦礦結構氧空缺OER反應可充電鋰空氣電池
外文關鍵詞:Perovskite materialsOxygen vacancyOxygen evolution reactionRechargeable lithium−air battery
相關次數:
  • 被引用被引用:0
  • 點閱點閱:154
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本實驗通過溶膠-凝膠法(Sol-Gel)成功合成出La1-xSrxCoO3-δ (x = 0, 0.1, 0.3, 和0.5)(LSC)和La0.9Sr0.1YbO3-δ (LSYb)鈣鈦礦氧化物結構的材料,其中在1.7 V的電流密度下以La0.5Sr0.5CoO3-δ(L5SC,0.91 mA/cm2)>La0.7Sr0.3CoO3-δ(L7SC,0.39 mA/cm2)>La0.9Sr0.1CoO3-δ(L9SC,0.26 mA/cm2)>La0.9Sr0.1YbO3-δ(LSYb,0.16 mA/cm2);表現出A位摻雜增強了活性,亦代表氧空缺數增加,因此OER活性增加,另外LSC的OER活性也優於LSYb。
由於OER反應促進將能促進鋰空氣電池之充電性能,在組成鋰空氣電池的充放電實驗中,在純碳材料的放電電容相比是純Super P(2253 mA h/g)>純MWCNTs多壁奈米碳管(2023 mAh/g)>純Vulcan XC-500(1394 mAh/g1);之後在添加出觸媒後的放電電容量相比是La0.5Sr0.5CoO3-δ(L5SC) 與Super P碳黑(6032 mAh/g)>La0.7Sr0.3CoO3-δ(L7SC) 與Super P碳黑(4562mAh/g)>La0.9Sr0.1CoO3-δ(L9SC) 與Super P碳黑(3202 mAh/g)>La0.9Sr0.1YbO3-δ(LSYb)與Super P碳黑(2746 mAh/g),跟OER實驗的趨勢相符合。含有La0.5Sr0.5CoO3-δ(L5SC) 與Super P碳黑的正極材料對放電電容提供了最好的電化學性能。充放電後,正極表面上可以觀察到Li2CO3、Li2O2,生成越明顯Li2CO3之正極的放電電容會越高。從La0.5Sr0.5CoO3-δ(L5SC) 與Super P碳黑和La0.5Sr0.5CoO3-δ(L5SC) 與XC500碳黑得知,擁有Super P碳黑的放電電容(6032 mAh/g)比XC500碳黑放電電容(2247 mAh/g)高。

In this experiment, La1-xSrxCoO3-δ(x = 0, 0.1, 0.3 and 0.5)(LSC) and La0.9Sr0.1YbO3-δ(LSYb) perovskite structures materials were successfully synthesized via a sol–gel methode. The order of current density at 1.7 V under the oxygen evolution reaction condition were La0.5Sr0.5CoO3-δ(L5SC,0.91 mA/cm2)>La0.7Sr0.3CoO3-δ(L7SC,0.39 mA/cm2)>La0.9Sr0.1CoO3-δ(L9SC,0.26 mA/cm2)>La0.9Sr0.1YbO3-δ(LSYb,0.16 mA/cm2). It is suggested that doped A-site could enhanced catalytic activity. Because of increase oxygen vacancies, La1-xSrxCoO3-δ has the best OER activity.
In the charging and discharging experiment of lithium-air batteries, the discharge capacitance of pure carbon materials were shown as following order: pure Super P(2253 mAh/ g)>pure MWCNTs (multi-walled carbon nanotubes, 2023 mAh/g)>pure Vulcan XC-500(1394 mAh/g). After mixing with catalysts, discharge capacitance of catalyst were shown as following order: La0.5Sr0.5CoO3-δ(L5SC) and Super P carbon black(6032 mAh/g)> La0.7Sr0.3CoO3-δ(L7SC) and Super P carbon black(4562 mAh/g)>La0.9Sr0.1CoO3-δ(L9SC) and Super P carbon black(3202 mAh/g) >La0.9Sr0.1YbO3-δ(LSYb) and Super P carbon black(2746 mAh/g). These results were consistent with the trend of the oxygen evolution reaction. Oxygen cathodes (La0.5Sr0.5CoO3-δ(L5SC) and Super P carbon black) show the highest capacity than others mixture materials. After the first charge and discharge, Li2CO3 could be observed with XRD on the positive electrode. High battery capacity is considered to related to more Li2CO3 generation. From La0.5Sr0.5CoO3-δ(L5SC) and Super P carbon black、La0.5Sr0.5CoO3-δ(L5SC) and XC 500 carbon black, it were known that the discharge capacitance of Super P carbon black is higher than that of XC500 carbon black. This study suggests that the more Li2CO3 and Li2O2 are generated, the higher discharge capacity of the battery composed of the positive electrode.

摘 要 i
ABSTRACT iii
誌 謝 v
目 錄 vi
表目錄 x
圖目錄 xi
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 3
1.3 論文架構 5
第二章 理論與文獻回顧 6
2.1 電化學池簡介 6
2.2 鋰空氣電池的工作原理與反應機制 8
2.2.1 水溶液型鋰空氣電池(Aqueous electrolytic type) 9
2.2.2 非水性型鋰空氣電池(Aprotic/nonaqueous electrolytic type) 10
2.2.3 混和型鋰空氣電池(Mixed (aprotic-aqueous) type) 12
2.2.4 固態型鋰空氣電池(Solid-state type) 13
2.2.5 四種系統的鋰空氣電池的優、缺點比較 15
2.3 鋰空氣電池的近況 16
2.3.1 鋰空氣電池的配置 16
2.3.2 鋰空氣電池的陰極(正極)電極與觸媒材料 17
2.3.2.1 碳基材支撐材料 17
2.3.2.2 金屬基材支撐材料 18
2.3.3 鋰空氣電池的隔離膜 18
2.3.4 鋰空氣電池的電解液 20
2.3.5 碳材料的種類與性能 21
2.3.5.1 商業用碳材料 21
2.3.5.2 功能性的碳材料 23
2.3.5.3 摻雜N的碳材料 24
2.4 鈣鈦礦結構觸媒 25
2.5 鋰空氣電池正極觸媒 26
2.5.1 貴金屬基材料 26
2.5.2 非貴金屬基材料 27
2.5.2.1 過渡金屬 27
2.5.2.2 過渡金屬氧化物 27
2.5.2.3 過渡金屬碳化物、硫化物和氮化物 28
2.6 OER (Oxygen Evolution Reaction) 29
2.7 Li-O2電池電極在循環過程中的化學和形態變化 31
第三章 實驗 33
3.1 實驗架構 33
3.2 實驗藥品與儀器 38
3.3 溶膠-凝膠法(Sol-Gel) 41
3.4 正極與負極的製備 42
3.5 鋰空氣電池的組裝 43
3.6 OER實驗電極製備 44
3.7 鋰空氣電池與OER實驗的材料分析與電化學性質測試 46
3.8 X光繞射分析(X-ray diffraction) 47
3.9 掃描電子顯微鏡(Scanning Electron Microscope-SEM) 49
3.10 穿透式電子顯微鏡(TEM) 51
3.11 X射線光電子能譜儀(XPS) 52
3.12 循環伏安法(Cyclic Voltammetry, CV) 53
3.13 充放電測試 54
3.14 交流阻抗分析(Electrochemical impedance spectroscopy,EIS) 55
第四章 結果與討論 57
4.1 X光繞射分析 57
4.1.1 X光繞射分析 - La1-xSrxCoO3-δ 57
4.1.2 X光繞射分析 - Yb 59
4.2 觸媒表面分析 61
4.2.1 TEM分析 61
4.2.2 EDS/Mapping元素分析 63
4.3 觸媒之XPS分析 70
4.3.1 La 70
4.3.2 Sr 71
4.3.3 Co/Yb 71
4.3.4 O 73
4.4 電化學性質 – OER反應(Oxygen Evolution Reaction) 82
4.4.1 酸性電解液下之線性掃描伏安法(LSV) 82
4.4.2 酸性電解液下之啟動電壓(Onset Potential) 85
4.4.3 鹼性電解液下之線性掃描伏安法(LSV) 85
4.4.4 鹼性電解液下之啟動電壓(Onset Potential) 87
4.5 電化學性質 – 鋰空氣電池 89
4.5.1 摻雜Sr的LaMO3(M = Co,Yb)複合型電極之表面分析 89
4.5.2 充放電測試 91
4.5.3 電化學阻抗測試 98
4.5.4 充/放電完電極之XRD比較 102
4.5.5 循環伏安法測試 110
4.5.6 循環壽命測試 112
4.5.7 充/放電示意圖與結果結合 113
4.6 第4章小結 116
第五章 結論 118
參考文獻 120



[1]T. P. Hughes, J. T. Kerry, M. Álvarez-Noriega, J. G. Álvarez-Romero, K. D. Anderson, A. H. Baird, R. C. Babcock, M. Beger, D. R. Bellwood, R. Berkelmans, T. C. Bridge, I. R. Butler, M. Byrne, N. E. Cantin, S. Comeau, S. R. Connolly, G. S. Cumming, S. J. Dalton, G. Diaz-Pulido, C. M. Eakin, W. F. Figueira, J. P. Gilmour, H. B. Harrison, S. F. Heron, A. S. Hoey, J.-P. A. Hobbs, M. O. Hoogenboom, E. V. Kennedy, C. Kuo, J. M. Lough, R. J. Lowe, G. Liu, M. T. McCulloch, H. A. Malcolm, M. J. McWilliam, J. M. Pandolfi, R. J. Pears, M. S. Pratchett, V. Schoepf, T. Simpson, W. J. Skirving, B. Sommer, G. Torda, D. R. Wachenfeld, B. L. Willis, and S. K. Wilson, “Global warming and recurrent mass bleaching of corals,” Nature, 2017, vol.543, no. 7645, pp.373–377, Mar.
[2]A. AghaKouchak, L. Cheng, O. Mazdiyasni, and A. Farahmand, “Global warming and changes in risk of concurrent climate extremes: Insights from the 2014 California drought,” Geophysical Research Letters, 2014, vol.41, no. 24, pp.8847–8852.
[3]I. Dincer and C. Zamfirescu, “Potential options to greenize energy systems,” Energy, 2012, vol.46, no. 1, pp.5–15, Oct.
[4]J. Speirs, M. Contestabile, Y. Houari, and R. Gross, “The future of lithium availability for electric vehicle batteries,” Renewable and Sustainable Energy Reviews, 2014, vol.35, pp.183–193, Jul.
[5]J. Y. Yong, V. K. Ramachandaramurthy, K. M. Tan, and N. Mithulananthan, “A review on the state-of-the-art technologies of electric vehicle, its impacts and prospects,” Renewable and Sustainable Energy Reviews, 2015, vol.49, pp.365–385, Sep.
[6]P. G. Bruce, S. A. Freunberger, L. J. Hardwick, and J.-M. Tarascon, “Li–O2 and Li–S batteries with high energy storage,” Nature Mater, vol.11, no. 1, pp.19–29, Jan. 2012.
[7]B. Dunn, H. Kamath, and J.-M. Tarascon, “Electrical Energy Storage for the Grid: A Battery of Choices,” Science, 2011, vol.334, no. 6058, pp.928–935, Nov.
[8]“A review of high energy density lithium–air battery technology | SpringerLink,” https://link.springer.com/article/10.1007/s10800-013-0620-8, accessed Jul. 13. 2021.
[9]G. Girishkumar, B. McCloskey, A. C. Luntz, S. Swanson, and W. Wilcke, “Lithium−Air Battery: Promise and Challenges,” J. Phys. Chem. Lett., 2010, vol.1, no. 14, pp.2193–2203, Jul.
[10]M. Armand and J.-M. Tarascon, “Building better batteries,” Nature, 2008, vol.451, no. 7179, pp.652–657, Feb.
[11]S. FANKHAUSER, D. KENNEDY, and J. SKEA, “Building a low-carbon economy: The inaugural report of the UK Committee on Climate Change,” Environmental Hazards, 2009, vol.8, no. 3, pp.201–208, Jan.
[12]T. Foxon, “Energy 2050: Making the Transition to a Secure Low Carbon Energy System,” The Energy Journal, 2012, vol.33, no. 2, pp.225–227, Apr.
[13]A. Poullikkas, “A comparative overview of large-scale battery systems for electricity storage - ScienceDirect,” Renew. Sust. Energ. Rev., 2013, vol. 27, pp. 778-788, Nov.
[14]J.-S. Lee, S. T. Kim, R. Cao, N.-S. Choi, M. Liu, K. T. Lee, and J. Cho, “Metal–Air Batteries with High Energy Density: Li–Air versus Zn–Air,” Advanced Energy Materials, 2011, vol.1, no. 1, pp.34–50.
[15]N. Akhtar and W. Akhtar, “Prospects, challenges, and latest developments in lithium–air batteries,” International Journal of Energy Research, 2015, vol.39, no. 3, pp.303–316.
[16]U. R. Farooqui, A. L. Ahmad, and N. A. Hamid, “Challenges and potential advantages of membranes in lithium air batteries: A review,” Renewable and Sustainable Energy Reviews, 2017, vol.77, pp.1114–1129, Sep.
[17]H. Arai and M. Hayashi, “SECONDARY BATTERIES – METAL-AIR SYSTEMS | Overview (Secondary and Primary),” in Encyclopedia of Electrochemical Power Sources, J. Garche, ed. Elsevier, Amsterdam, 2009, pp.347–355.
[18]P. Tan, Z. Wei, W. Shyy, and T. S. Zhao, “Prediction of the theoretical capacity of non-aqueous lithium-air batteries,” Applied Energy, 2013, vol.109, pp.275–282, Sep.
[19]K. M. Abraham and Z. Jiang, “A Polymer Electrolyte‐Based Rechargeable Lithium/Oxygen Battery,” J. Electrochem. Soc., 1996, vol.143, no. 1, p.1, Jan.
[20]M. S. Whittingham “Lithium Batteries and Cathode Materials | Chemical Reviews,” Chem. Rev., 2004, vol.104, no. 10, pp.4271–4302, Sep.
[21]M.-K. Song, S. Park, F. M. Alamgir, J. Cho, and M. Liu, “Nanostructured electrodes for lithium-ion and lithium-air batteries: the latest developments, challenges, and perspectives,” Materials Science and Engineering: R: Reports, vol.72, no. 11, pp.203–252, Nov. 2011.
[22]A. Débart, A. J. Paterson, J. Bao, and P. G. Bruce, “α-MnO2 Nanowires: A Catalyst for the O2 Electrode in Rechargeable Lithium Batteries,” Angewandte Chemie International Edition, 2008, vol.47, no. 24, pp.4521–4524.
[23]E. L. Littauer and K. C. Tsai, “Anodic Behavior of Lithium in Aqueous Electrolytes: I . Transient Passivation,” J. Electrochem. Soc., 1976, vol.123, no. 6, p.771, Jun.
[24]P. Tan, H. R. Jiang, X. B. Zhu, L. An, C. Y. Jung, M. C. Wu, L. Shi, W. Shyy, and T. S. Zhao, “Advances and challenges in lithium-air batteries,” Applied Energy, 2017, vol.204, pp.780–806, Oct.
[25]J.-G. Zhang, D. Wang, W. Xu, J. Xiao, and R. E. Williford, “Ambient operation of Li/Air batteries,” Journal of Power Sources, 2010, vol.195, no. 13, pp.4332–4337, Jul.
[26]W. Xu, J. Xiao, J. Zhang, D. Wang, and J.-G. Zhang, “Optimization of Nonaqueous Electrolytes for Primary Lithium/Air Batteries Operated in Ambient Environment,” J. Electrochem. Soc., 2009, vol.156, no. 10, p.A773, Jul.
[27]D. Zhang, Z. Fu, Z. Wei, T. Huang, and A. Yu, “Polarization of Oxygen Electrode in Rechargeable Lithium Oxygen Batteries,” J. Electrochem. Soc., 2010, vol.157, no. 3, p.A362, Feb.
[28]M. Mirzaeian and P. J. Hall, “Characterizing capacity loss of lithium oxygen batteries by impedance spectroscopy,” Journal of Power Sources, 2010, vol.195, no. 19, pp.6817–6824, Oct.
[29]C. O. Laoire, S. Mukerjee, K. M. Abraham, E. J. Plichta, and M. A. Hendrickson “Influence of Nonaqueous Solvents on the Electrochemistry of Oxygen in the Rechargeable Lithium−Air Battery,” J. Phys. Chem. C , 2010, vol.114, no.19, pp. 9178–9186.
[30]F. Mizuno, S. Nakanishi, Y. Kotani, S. Yokoishi, and H. Iba, “Rechargeable Li-Air Batteries with Carbonate-Based Liquid Electrolytes,” Electrochemistry, 2010, vol.78, no. 5, pp.403–405.
[31]V. S. Bryantsev, V. Giordani, W. Walker, M. Blanco, S.Zecevic, K. Sasaki, J. Uddin, D. Addison, and G. V. Chase, “Predicting Solvent Stability in Aprotic Electrolyte Li–Air Batteries: Nucleophilic Substitution by the Superoxide Anion Radical (O2•–), ” J. Phys. Chem.A , 2011, vol.115, no. 44, pp.12399–12409.
[32]H. Wang and K. Xie, “Investigation of oxygen reduction chemistry in ether and carbonate based electrolytes for Li–O2 batteries,” Electrochimica Acta, 2012, vol.64, pp.29–34, Mar.
[33]Z.-L. Wang, D. Xu, J.-J. Xu, L.-L. Zhang, and X.-B. Zhang, “Graphene Oxide Gel-Derived, Free-Standing, Hierarchically Porous Carbon for High-Capacity and High-Rate Rechargeable Li-O2 Batteries,” Advanced Functional Materials, 2012, vol.22, no. 17, pp.3699–3705.
[34]B. M. Gallant, D. G. Kwabi, R. R. Mitchell, J. Zhou, C. V. Thompson, and Y. Shao-Horn, “Influence of Li2O2 morphology on oxygen reduction and evolution kinetics in Li–O2 batteries,” Energy Environ. Sci., 2013, vol.6, no. 8, pp.2518–2528, Jul.
[35]J. Lu, Y. Lei, K. C. Lau, X. Luo, P. Du, J. Wen, R. S. Assary, U. Das, D. J. Miller, J. W. Elam, H. M. Albishri, D. A. El-Hady, Y.-K. Sun, L. A. Curtiss, and K. Amine, “A nanostructured cathode architecture for low charge overpotential in lithium-oxygen batteries,” Nat Commun, 2013, vol.4, no. 1, p.2383, Aug.
[36]Z. Zhang, G. Zhou, W. Chen, Y. Lai, and J. Li, “Facile Synthesis of Fe2O3 Nanoflakes and Their Electrochemical Properties for Li-Air Batteries,” ECS Electrochem. Lett., 2014, vol.3, no. 1, p.A8, Jan.
[37]Z. Peng, S. A. Freunberger, Y. Chen, and P. G. Bruce, “A Reversible and Higher-Rate Li-O2 Battery,” Science, vol.337, no. 6094, pp.563–566, Aug. 2012.
[38]Z. H. Wei, P. Tan, L. An, and T. S. Zhao, “A non-carbon cathode electrode for lithium–oxygen batteries,” Applied Energy, 2014, vol.130, pp.134–138, Oct.
[39]P. Tan, W. Shyy, Z. H. Wei, L. An, and T. S. Zhao, “A carbon powder-nanotube composite cathode for non-aqueous lithium-air batteries,” Electrochimica Acta, 2014, vol.147, pp.1–8, Nov.
[40]S. J. Visco, E. Nimon, B. Katz, M.Y. Chu, and L. D. Jonghe, “LITHIUM/AIR SEMI-FUEL CELLS: HIGH ENERGY DENSITY BATTERIES BASED ON LITHIUM METAL ELECTRODES, ” 2009.
[41]F. Li, H. Kitaura, and H. Zhou, “The pursuit of rechargeable solid-state Li–air batteries,” Energy Environ. Sci., 2013, vol.6, no. 8, pp.2302–2311, Jul.
[42]P. Kichambare, S. Rodrigues, and J. Kumar, “Mesoporous Nitrogen-Doped Carbon-Glass Ceramic Cathodes for Solid-State Lithium–Oxygen Batteries,” ACS Appl. Mater. Interfaces, 2012, vol.4, no. 1, pp.49–52, Jan.
[43]H. Kitaura and H. Zhou, “Electrochemical Performance of Solid-State Lithium–Air Batteries Using Carbon Nanotube Catalyst in the Air Electrode,” Advanced Energy Materials, 2012, vol.2, no. 7, pp.889–894.
[44]Y. Lu, Z. Wen, J. Jin, Y. Cui, M. Wu, and S. Sun, “Mesoporous carbon nitride loaded with Pt nanoparticles as a bifunctional air electrode for rechargeable lithium-air battery,” J Solid State Electrochem, 2012, vol.16, no. 5, pp.1863–1868, May.
[45]T. T. Truong, Y. Qin, Y. Ren, Z. Chen, M. K. Chan, J. P. Greeley, K. Amine, and Y. Sun, “Single-Crystal Silicon Membranes with High Lithium Conductivity and Application in Lithium-Air Batteries,” Advanced Materials, 2011, vol.23, no. 42, pp.4947–4952.
[46]D. Zhang, R. Li, T. Huang, and A. Yu, “Novel composite polymer electrolyte for lithium air batteries,” Journal of Power Sources, 2010, vol.195, no. 4, pp.1202–1206, Feb.
[47]J.-M. Tarascon and M. Armand, “Issues and challenges facing rechargeable lithium batteries,” Nature, 2001, vol.414, no. 6861, pp.359–367, Nov.
[48]L.-L. Zhang, Z.-L. Wang, D. Xu, X.-B. Zhang, and L.-M. Wang, “The development and challenges of rechargeable non-aqueous lithium–air batteries,” International Journal of Smart and Nano Materials, 2013, vol.4, no. 1, pp.27–46, Mar.
[49]M. Park, H. Sun, H. Lee, J. Lee, and J. Cho, “Lithium-Air Batteries: Survey on the Current Status and Perspectives Towards Automotive Applications from a Battery Industry Standpoint,” Advanced Energy Materials, 2012, vol.2, no. 7, pp.780–800.
[50]Z. Wen, C. Shen, and Y. Lu, “Air Electrode for the Lithium–Air Batteries: Materials and Structure Designs,” ChemPlusChem, 2015, vol.80, no. 2, pp.270–287.
[51]S. Jin, Y. Jiang, H. Ji, and Y. Yu, “Advanced 3D Current Collectors for Lithium-Based Batteries,” Advanced Materials, 2018, vol.30, no. 48, p.1802014.
[52]Q. Li, R. Cao, J. Cho, and G. Wu, “Nanostructured carbon-based cathode catalysts for nonaqueous lithium–oxygen batteries,” Phys. Chem. Chem. Phys., 2014, vol.16, no. 27, pp.13568–13582, Jun.
[53]J.-W. Jung, D.-W. Choi, C. K. Lee, K. R. Yoon, S. Yu, J. Y. Cheong, C. Kim, S.-H. Cho, J.-S. Park, Y. J. Park, and I.-D. Kim, “Rational design of protective In2O3 layer-coated carbon nanopaper membrane: Toward stable cathode for long-cycle Li-O2 batteries,” Nano Energy, 2018, vol.46, pp.193–202, Apr.
[54]H. D. Lim, K. Y. Park, H. Song, E. Y. Jang, H. Gwon, J. Kim, Y. H. Kim, M. D. Lima, R. O. Robles, X. Lepró, R. H. Baughman, K. Kang “Enhanced Power and Rechargeability of a Li−O2 Battery Based on a Hierarchical‐Fibril CNT Electrode, ” Adv. Mater., 2013, vol.25, no.9, Mar 6, pp.1348-1352.
[55]C. Y. Jung, T. S. Zhao, L. Zeng, and P. Tan, “Vertically aligned carbon nanotube-ruthenium dioxide core-shell cathode for non-aqueous lithium-oxygen batteries,” Journal of Power Sources, 2016, vol.331, pp.82–90, Nov.
[56]J.-W. Jung, S.-H. Cho, J. S. Nam, and I.-D. Kim, “Current and future cathode materials for non-aqueous Li-air (O2) battery technology – A focused review,” Energy Storage Materials, 2020, vol.24, pp.512–528, Jan.
[57]H. Lee, M. Yanilmaz, O. Toprakci, K. Fu, and X. Zhang, “A review of recent developments in membrane separators for rechargeable lithium-ion batteries,” Energy Environ. Sci., 2014, vol.7, no. 12, pp.3857–3886, Nov.
[58]J. Jang, J. Oh, H. Jeong, W. Kang, and C. Jo, “A Review of Functional Separators for Lithium Metal Battery Applications,” Materials (Basel), 2020, vol.13, no. 20, p.4625, Oct.
[59]P. Arora and Z. (John) Zhang, “Battery Separators,” Chem. Rev., 2004, vol.104, no. 10, pp.4419–4462, Oct.
[60]C. M. Costa, M. M. Silva, and S. Lanceros-Méndez, “Battery separators based on vinylidene fluoride (VDF) polymers and copolymers for lithium ion battery applications,” RSC Advances, 2013, vol.3, no. 29, pp.11404–11417.
[61]S. S. Zhang, “A review on the separators of liquid electrolyte Li-ion batteries,” Journal of Power Sources, 2007, vol.164, no. 1, pp.351–364, Jan.
[62]C. F. J. Francis, I. L. Kyratzis, and A. S. Best, “Lithium-Ion Battery Separators for Ionic-Liquid Electrolytes: A Review,” Advanced Materials, 2020, vol.32, no. 18, p.1904205.
[63]K. Xu, “Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries, ” Chem. Rev. , 2004, vol.104, no. 10, pp.4303–4418.
[64]B. D. McCloskey, D. S. Bethune, R. M. Shelby, T. Mori, R. Scheffler, A. Speidel, M. Sherwood, and A. C. Luntz, “Limitations in Rechargeability of Li-O2 Batteries and Possible Origins,” J. Phys. Chem. Lett., 2012, vol.3, no. 20, pp.3043–3047, Oct.
[65]J. Christensen, P. Albertus, R. S. Sanchez-Carrera, T. Lohmann, B. Kozinsky, R. Liedtke, J. Ahmed, and A. Kojic, “A Critical Review of Li/Air Batteries,” J. Electrochem. Soc., 2011, vol.159, no. 2, p.R1, Dec.
[66]M. Endo, C. Kim, K. Nishimura, T. Fujino, and K. Miyashita, “Recent development of carbon materials for Li ion batteries,” Carbon, 2000, vol.38, no. 2, pp.183–197, Jan.
[67]E. Frackowiak and F. Béguin, “Carbon materials for the electrochemical storage of energy in capacitors,” Carbon, 2001, vol.39, no. 6, pp.937–950, May.
[68]T. Laino and A. Curioni, “A New Piece in the Puzzle of Lithium/Air Batteries: Computational Study on the Chemical Stability of Propylene Carbonate in the Presence of Lithium Peroxide,” Chemistry – A European Journal, 2012, vol.18, no. 12, pp.3510–3520.
[69]J. Read, “Characterization of the Lithium/Oxygen Organic Electrolyte Battery,” J. Electrochem. Soc., 2002, vol.149, no. 9, p.A1190, Jul.
[70]J. Read, “Ether-Based Electrolytes for the Lithium/Oxygen Organic Electrolyte Battery,” J. Electrochem. Soc., 2005, vol.153, no. 1, p.A96, Dec.
[71]Y. Gao, C. Wang, W. Pu, Z. Liu, C. Deng, P. Zhang, and Z. Mao, “Preparation of high-capacity air electrode for lithium-air batteries,” International Journal of Hydrogen Energy, 2012, vol.37, no. 17, pp.12725–12730, Sep.
[72]H. Cheng and K. Scott, “Carbon-supported manganese oxide nanocatalysts for rechargeable lithium–air batteries,” Journal of Power Sources, 2010, vol.195, no. 5, pp.1370–1374, Mar.
[73]G. Zhao, L. Zhang, T. Pan, and K. Sun, “Preparation of NiO/multiwalled carbon nanotube nanocomposite for use as the oxygen cathode catalyst in rechargeable Li–O2 batteries,” J Solid State Electrochem, 2013, vol.17, no. 6, pp.1759–1764, Jun.
[74]S. D. Beattie, D. M. Manolescu, and S. L. Blair, “High-Capacity Lithium–Air Cathodes,” J. Electrochem. Soc., 2008, vol.156, no. 1, p.A44, Nov.
[75]C. K. Park, S. B. Park, S. Y. Lee, H. Lee, H. Jang, and W. I. Cho, “Electrochemical Performances of Lithium-air Cell with Carbon Materials,” Bulletin of the Korean Chemical Society, 2010, vol.31, no. 11, pp.3221–3224.
[76]O. Crowther, B. Meyer, M. Morgan, and M. Salomon, “Primary Li-air cell development,” Journal of Power Sources, 2011, vol.196, no. 3, pp.1498–1502, Feb.
[77]J. Li, H. Zhang, Y. Zhang, M. Wang, F. Zhang, and H. Nie, “A hierarchical porous electrode using a micron-sized honeycomb-like carbon material for high capacity lithium–oxygen batteries,” Nanoscale, 2013, vol.5, no. 11, pp.4647–4651, May.
[78]Y. C. Lu , Z. Xu, H. A. Gasteiger, S. Chen, K. H. Schifferli, and Y. S. Horn, “Platinum−Gold Nanoparticles: A Highly Active Bifunctional Electrocatalyst for Rechargeable Lithium−Air Batteries, ” J. Am. Chem. Soc., 2010, vol.132, no. 35, pp.12170–12171.
[79]B. Sun, B. Wang, D. Su, L. Xiao, H. Ahn, and G. Wang, “Graphene nanosheets as cathode catalysts for lithium-air batteries with an enhanced electrochemical performance,” Carbon, 2012, vol.50, no. 2, pp.727–733, Feb.
[80]X. Yang, P. He, and Y. Xia, “Preparation of mesocellular carbon foam and its application for lithium/oxygen battery,” Electrochemistry Communications, 2009, vol.11, no. 6, pp.1127–1130, Jun.
[81]Y. Li, J. Wang, X. Li, D. Geng, R. Li, and X. Sun, “Superior energy capacity of graphene nanosheets for a nonaqueous lithium-oxygen battery,” Chem. Commun., 2011, vol.47, no. 33, pp.9438–9440, Aug.
[82]Y. Li, J. Wang, X. Li, D. Geng, M. N. Banis, R. Li, and X. Sun, “Nitrogen-doped graphene nanosheets as cathode materials with excellent electrocatalytic activity for high capacity lithium-oxygen batteries,” Electrochemistry Communications, 2012, vol.18, pp.12–15, Jan.
[83]H. Liu and X. Yang, “A brief review on perovskite multiferroics,” Ferroelectrics, 2017, vol.507, no. 1, pp.69–85, Jan.
[84]J. Richter, P. Holtappels, T. Graule, T. Nakamura, and L. J. Gauckler, “Materials design for perovskite SOFC cathodes,” Monatsh Chem, 2009, vol.140, no. 9, pp.985–999, Sep.
[85]C. Moure and O. Peña, “Recent advances in perovskites: Processing and properties,” Progress in Solid State Chemistry, 2015, vol.43, no. 4, pp.123–148, Dec.
[86]X. Lu, L. Zhang, X. Sun, W. Si, C. Yan, and O. G. Schmidt, “Bifunctional Au–Pd decorated MnOx nanomembranes as cathode materials for Li–O2 batteries,” J. Mater. Chem. A, 2016, vol.4, no. 11, pp.4155–4160, Mar.
[87]K. Song, J. Jung, M. Park, H. Park, H.-J. Kim, S.-I. Choi, J. Yang, K. Kang, Y.-K. Han, and Y.-M. Kang, “Anisotropic Surface Modulation of Pt Catalysts for Highly Reversible Li–O2 Batteries: High Index Facet as a Critical Descriptor,” ACS Catal., 2018, vol.8, no. 10, pp.9006–9015, Oct.
[88]R. Gao, X. Liang, P. Yin, J. Wang, Y. L. Lee, Z. Hu, and X. Liu, “An amorphous LiO2-based Li-O2 battery with low overpotential and high rate capability,” Nano Energy, 2017, vol.41, pp.535–542, Nov.
[89]X. Lin, Y. Cao, S. Cai, J. Fan, Y. Li, Q.-H. Wu, M. Zheng, and Q. Dong, “Ruthenium@mesoporous graphene-like carbon: a novel three-dimensional cathode catalyst for lithium–oxygen batteries,” J. Mater. Chem. A, 2016, vol.4, no. 20, pp.7788–7794, May.
[90]X. Zeng, D. Dang, L. Leng, C. You, G. Wang, C. Zhu, and S. Liao, “Doped reduced graphene oxide mounted with IrO2 nanoparticles shows significantly enhanced performance as a cathode catalyst for Li-O2 batteries,” Electrochimica Acta, 2016, vol.192, pp.431–438, Feb.
[91]Z. Wang, S. Peng, Y. Hu, L. Li, T. Yan, G. Yang, D. Ji, M. Srinivasan, Z. Pan, and S. Ramakrishna, “Cobalt nanoparticles encapsulated in carbon nanotube-grafted nitrogen and sulfur co-doped multichannel carbon fibers as efficient bifunctional oxygen electrocatalysts,” J. Mater. Chem. A, 2017, vol.5, no. 10, pp.4949–4961, Mar.
[92]Z. Lyu, L. Yang, Y. Luan, X. Renshaw Wang, L. Wang, Z. Hu, J. Lu, S. Xiao, F. Zhang, X. Wang, F. Huo, W. Huang, Z. Hu, and W. Chen, “Effect of oxygen adsorbability on the control of Li2O2 growth in Li-O2 batteries: Implications for cathode catalyst design,” Nano Energy, 2017, vol.36, pp.68–75, Jun.
[93]P. Zhang, S. Zhang, M. He, J. Lang, A. Ren, S. Xu, and X. Yan, “Realizing the Embedded Growth of Large Li2O2 Aggregations by Matching Different Metal Oxides for High-Capacity and High-Rate Lithium Oxygen Batteries,” Advanced Science, 2017, vol.4, no. 11, p.1700172.
[94]S. J. Amirfakhri, J.-L. Meunier, and D. Berk, “Electrocatalytic activity of LaNiO3 toward H2O2 reduction reaction: Minimization of oxygen evolution,” Journal of Power Sources, 2014, vol.272, pp.248–258, Dec.
[95]L. Li, L. Shen, P. Nie, G. Pang, J. Wang, H. Li, S. Dong, and X. Zhang, “Porous NiCo2O4 nanotubes as a noble-metal-free effective bifunctional catalyst for rechargeable Li–O2 batteries,” J. Mater. Chem. A, 2015, vol.3, no. 48, pp.24309–24314, Dec.
[96]X. Zhang, C. Wang, Y.-N. Chen, X.-G. Wang, Z. Xie, and Z. Zhou, “Binder-free NiFe2O4/C nanofibers as air cathodes for Li-O2 batteries,” Journal of Power Sources, 2018, vol.377, pp.136–141, Feb.
[97]H. Wu, W. Sun, J. Shen, C. Lu, Y. Wang, Z. Wang, and K. Sun, “Improved structural design of single- and double-wall MnCo2O4 nanotube cathodes for long-life Li–O2 batteries,” Nanoscale, 2018, vol.10, no. 27, pp.13149–13158, Jul.
[98]G.-H. Lee, S. Lee, J.-C. Kim, D. W. Kim, Y. Kang, and D.-W. Kim, “MnMoO4 Electrocatalysts for Superior Long-Life and High-Rate Lithium-Oxygen Batteries,” Advanced Energy Materials, 2017, vol.7, no. 6, p.1601741.
[99]L. Wang, X. Cui, L. Gong, Z. Lyu, Y. Zhou, W. Dong, J. Liu, M. Lai, F. Huo, W. Huang, M. Lin, and W. Chen, “Synthesis of porous CoMoO4 nanorods as a bifunctional cathode catalyst for a Li–O2 battery and superior anode for a Li-ion battery,” Nanoscale, 2017, vol.9, no. 11, pp.3898–3904, Mar.
[100]G. Sun, Q. Zhao, T. Wu, W. Lu, M. Bao, L. Sun, H. Xie, and J. Liu, “3D Foam-Like Composites of Mo2C Nanorods Coated by N-Doped Carbon: A Novel Self-Standing and Binder-Free O2 Electrode for Li–O2 Batteries,” ACS Appl. Mater. Interfaces, 2018, vol.10, no. 7, pp.6327–6335, Feb.
[101]Y. Hou, Y. Liu, Z. Zhou, L. Liu, H. Guo, H. Liu, J. Wang, and J. Chen, “Metal-oxygen bonds: Stabilizing the intermediate species towards practical Li-air batteries,” Electrochimica Acta, 2018, vol.259, pp.313–320, Jan.
[102]M. Asadi, B. Kumar, C. Liu, P. Phillips, P. Yasaei, A. Behranginia, P. Zapol, R. F. Klie, L. A. Curtiss, and A. Salehi-Khojin, “Cathode Based on Molybdenum Disulfide Nanoflakes for Lithium–Oxygen Batteries,” ACS Nano, 2016, vol.10, no. 2, pp.2167–2175, Feb.
[103]K. R. Yoon, K. Shin, J. Park, S.-H. Cho, C. Kim, J.-W. Jung, J. Y. Cheong, H. R. Byon, H. M. Lee, and I.-D. Kim, “Brush-Like Cobalt Nitride Anchored Carbon Nanofiber Membrane: Current Collector-Catalyst Integrated Cathode for Long Cycle Li–O2 Batteries,” ACS Nano, 2018, vol.12, no. 1, pp.128–139, Jan.
[104]J. Suntivich, K. J. May, H. A. Gasteiger, J. B. Goodenough, and Y. Shao-Horn, “A Perovskite Oxide Optimized for Oxygen Evolution Catalysis from Molecular Orbital Principles,” Science, 2011, vol.334, no. 6061, pp.1383–1385, Dec.
[105]B. M. Gallant, R. R. Mitchell, D. G. Kwabi, J. Zhou, L. Zuin, C. V. Thompson, and Y. Shao-Horn, “Chemical and Morphological Changes of Li–O2 Battery Electrodes upon Cycling,” J. Phys. Chem. C, 2012, vol.116, no. 39, pp.20800–20805, Oct.
[106]N. Elgrishi, K. J. Rountree, B. D. McCarthy, E. S. Rountree, T. T. Eisenhart, and J. L. Dempsey, “A Practical Beginner’s Guide to Cyclic Voltammetry ,” J. Chem. Educ., 2018, vol.95, no. 2, pp.197–206.
[107]W. Choi, H.-C. Shin, J. M. Kim, J.-Y. Choi, and W.-S. Yoon, “Modeling and Applications of Electrochemical Impedance Spectroscopy (EIS) for Lithium-ion Batteries,” J. Electrochem. Sci. Technol, 2020, vol.11, no. 1, pp.1–13, Jan.
[108]J. J. Lee, M. Y. Oh, and K. S. Nahm, “Effect of Ball Milling on Electrocatalytic Activity of Perovskite La0.6Sr0.4CoO3-δ Applied for Lithium Air Battery,” J. Electrochem. Soc., 2015, vol.163, no. 2, p.A244, Nov.
[109]J. H. Son, M. W. Oh, B. S. Kim, S. D. Park, B. K. Min, M. H. Kim, and H. W. Lee, “Effect of ball milling time on the thermoelectric properties of p-type (Bi,Sb)2Te3,” Journal of Alloys and Compounds, 2013, vol.566, pp.168–174, Jul.
[110]F. Meng, C. Sun, J. Shi, H. Zhang, B. Xu, and Y. Ding, “Facile synthesis of uniform LaSrCoO4 using amino acid-derived surfactant and its utilization as an excellent cathode material for intermediate temperature solid oxide fuel cell,” International Journal of Hydrogen Energy, 2019, vol.44, no. 2, pp.1122–1129, Jan.
[111]E. J. Crumlin, E. Mutoro, Z. Liu, M. E. Grass, M. D. Biegalski, Y.-L. Lee, D. Morgan, H. M. Christen, H. Bluhm, and Y. Shao-Horn, “Surface strontium enrichment on highly active perovskites for oxygen electrocatalysis in solid oxide fuel cells,” Energy & Environmental Science, 2012, vol.5, no. 3, pp.6081–6088.
[112]R. P. Vasquez, “X-ray photoelectron spectroscopy study of Sr and Ba compounds,” Journal of Electron Spectroscopy and Related Phenomena, 1991, vol.56, no. 3, pp.217–240, Jun.
[113]P. A. W. van der Heide, “Systematic x-ray photoelectron spectroscopic study of La1−xSrx-based perovskite-type oxides,” Surface and Interface Analysis, 2002, vol.33, no. 5, pp.414–425.
[114]R. Brackmann, C. A. Perez, and M. Schmal, “LaCoO3 perovskite on ceramic monoliths – Pre and post reaction analyzes of the partial oxidation of methane,” International Journal of Hydrogen Energy, 2014, vol.39, no. 26, pp.13991–14007, Sep.
[115]A. Chainani, M. Mathew, and D. D. Sarma, “Electron-spectroscopy study of the semiconductor-metal transition in La1−xSrxCoO3,” Phys. Rev. B, 1992, vol.46, no. 16, pp.9976–9983, Oct.
[116]B. Liu, Y. Zhang, and L. Tang, “X-ray photoelectron spectroscopic studies of Ba0.5Sr0.5Co0.8Fe0.2O3−δ cathode for solid oxide fuel cells,” International Journal of Hydrogen Energy, 2009, vol.34, no. 1, pp.435–439, Jan.
[117]J. Xu, P. Gao, and T. S. Zhao, “Non-precious Co3O4 nano-rod electrocatalyst for oxygen reduction reaction in anion-exchange membrane fuel cells,” Energy & Environmental Science, 2012, vol.5, no. 1, pp.5333–5339,
[118]P. Wang, L. Yao, M. Wang, and W. Wu, “XPS and voltammetric studies on La1−xSrxCoO3−δ perovskite oxide electrodes,” Journal of Alloys and Compounds, 2000, vol.311, no. 1, pp.53–56, Oct.
[119]M. Y. A. Yagoub, H. C. Swart, and E. Coetsee, “Effect of Yb3+ ions on structural and NIR emission of SrF2:Eu2+/Pr3+ down-conversion containing Na+ ions,” Materials Research Bulletin, 2017, vol.93, pp.170–176, Sep.
[120]N. S. McIntyre and M. G. Cook, “X-ray photoelectron studies on some oxides and hydroxides of cobalt, nickel, and copper,” Anal. Chem., 1975, vol.47, no. 13, pp.2208–2213, Nov.
[121]A. Galenda, M. M. Natile, V. Krishnan, H. Bertagnolli, and A. Glisenti, “LaSrCoFeO and Fe2O3/LaSrCoFeO Powders:  Synthesis and Characterization,” Chem. Mater., 2007, vol.19, no. 11, pp.2796–2808, May
[122]C. Norman and C. Leach, “In situ high temperature X-ray photoelectron spectroscopy study of barium strontium iron cobalt oxide,” Journal of Membrane Science, 2011, vol.382, no. 1, pp.158–165, Oct.
[123]Y. Uwamino, T. Ishizuka, and H. Yamatera, “X-ray photoelectron spectroscopy of rare-earth compounds,” Journal of Electron Spectroscopy and Related Phenomena, 1984, vol.34, no. 1, pp.67–78, Jan.
[124]J. H. Kim, “X-ray photoelectron spectroscopy analysis of (Ln1−xSrx)CoO3−δ (Ln: Pr, Nd and Sm),” Applied Surface Science, 2011, vol.258, no. 1, pp.350–355, Oct.
[125]X. Wang, K. Huang, J. Qian, Y. Cong, C. Ge, and S. Feng, “Enhanced CO catalytic oxidation by Sr reconstruction on the surface of LaxSr1−xCoO3−δ,” Science Bulletin, 2017, vol.62, no. 9, pp.658–664, May.
[126]C. Jin, X. Cao, L. Zhang, C. Zhang, and R. Yang, “Preparation and electrochemical properties of urchin-like La0.8Sr0.2MnO3 perovskite oxide as a bifunctional catalyst for oxygen reduction and oxygen evolution reaction,” Journal of Power Sources, 2013, vol.241, pp.225–230, Nov.
[127]S. Malkhandi, P. Trinh, A. Manohar, K. Jayachandrababu, A. Kindler, G. Prakash, and S. Narayanan, “Electrocatalytic Activity of Transition Metal Oxide-Carbon Composites for Oxygen Reduction in Alkaline Batteries and Fuel Cells,” 2013.
[128]X. Cheng, E. Fabbri, M. Nachtegaal, I. E. Castelli, M. El Kazzi, R. Haumont, N. Marzari, and T. J. Schmidt, “Oxygen Evolution Reaction on La1–xSrxCoO3 Perovskites: A Combined Experimental and Theoretical Study of Their Structural, Electronic, and Electrochemical Properties,” Chem. Mater., 2015, vol.27, no. 22, pp.7662–7672, Nov.
[129]J. Suntivich, H. A. Gasteiger, N. Yabuuchi, H. Nakanishi, J. B. Goodenough, and Y. Shao-Horn, “Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal–air batteries,” Nature Chem, 2011, vol.3, no. 7, pp.546–550, Jul.
[130]W. G. Hardin, D. A. Slanac, X. Wang, S. Dai, K. P. Johnston, and K. J. Stevenson, “Highly Active, Nonprecious Metal Perovskite Electrocatalysts for Bifunctional Metal–Air Battery Electrodes,” J. Phys. Chem. Lett., 2013, vol.4, no. 8, pp.1254–1259.
[131]W. G. Hardin, J. T. Mefford, D. A. Slanac, B. B. Patel, X. Wang, S. Dai, X. Zhao, R. S. Ruoff, K. P. Johnston, and K. J. Stevenson, “Tuning the Electrocatalytic Activity of Perovskites through Active Site Variation and Support Interactions, ” Chem. Mater., 2014, vol.26, no. 11, pp.3368–3376.
[132]M. Yuasa, M. Nishida, T. Kida1, N. Yamazoe and K. Shimanoe, “Bi-Functional Oxygen Electrodes Using LaMnO3/LaNiO3 for Rechargeable Metal-Air Batteries ,” J. Electrochem. Soc., 2011, vol.158, no. 5, pp.605-610.
[133]Z. Fu, X. Lin, T. Huang, and A. Yu, “Nano-sized La0.8Sr0.2MnO3 as oxygen reduction catalyst in nonaqueous Li/O2 batteries,” J Solid State Electrochem, 2012, vol.16, no. 4, pp.1447–1452, Apr.
[134]M. Young Oh, J. Sook Jeon, J. Ju Lee, P. Kim, and K. Suk Nahm, “The bifunctional electrocatalytic activity of perovskite La0.6Sr0.4CoO 3−δ for oxygen reduction and evolution reactions,” RSC Advances, 2015, vol.5, no. 25, pp.19190–19198.
[135]Y. Cui, Z. Wen, X. Liang, Y. Lu, J. Jin, M. Wu, and X. Wu, “A tubular polypyrrole based air electrode with improved O2 diffusivity for Li–O2 batteries,” Energy Environ. Sci., 2012, vol.5, no. 7, pp.7893–7897, Jun.
[136]N. Mushtaq, Y. Lu, C. Xia, W. Dong, B. Wang, M. A. K. Y. Shah, S. Rauf, M. Akbar, E. Hu, R. Raza, M. I. Asghar, P. D. Lund, and B. Zhu, “Promoted Electrocatalytic Activity and Ionic Transport simultaneously in Dual Functional Ba0.5Sr0.5Fe0.8Sb0.2O3-δSm0.2Ce0.8O2-δ Heterostructure,” Applied Catalysis B: Environmental, p.120503, Jul. 2021.
[137]A. T. S. Freiberg, J. Sicklinger, S. Solchenbach, and H. A. Gasteiger, “Li2CO3 decomposition in Li-ion batteries induced by the electrochemical oxidation of the electrolyte and of electrolyte impurities,” Electrochimica Acta, 2020, vol.346, p.136271, Jun.
[138]Z. Peng, S. A. Freunberger, L. J. Hardwick, Y. Chen, V. Giordani, F. Bardé, P. Novák, D. Graham, J.-M. Tarascon, and P. G. Bruce, “Oxygen Reactions in a Non-Aqueous Li+ Electrolyte,” Angewandte Chemie, 2011, vol.123, no. 28, pp.6475–6479.
[139]T. Ogasawara, A. Débart, M. Holzapfel, P. Novák, and P. G. Bruce, “Rechargeable Li2O2 Electrode for Lithium Batteries,” J. Am. Chem. Soc., 2006, vol.128, no. 4, pp.1390–1393, Feb.

電子全文 電子全文(網際網路公開日期:20260913)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top