跳到主要內容

臺灣博碩士論文加值系統

(44.200.168.16) 您好!臺灣時間:2023/04/02 00:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:柯亮鏵
研究生(外文):KO, LIANG-HUA
論文名稱:LID對地表鋪面溫度改善監測與分析
論文名稱(外文):Monitoring and Analysis of Variation of Surface Temperature by Low-impact Development
指導教授:林鎮洋林鎮洋引用關係
指導教授(外文):LIN, JEN-YANG
口試委員:林鎮洋陳起鳳徐宗宏
口試委員(外文):LIN, JEN-YANGCHEN, CHI-FENGHSU,TSUNG-HUNG
口試日期:2021-06-11
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:土木工程系土木與防災碩士班
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:119
中文關鍵詞:低衝擊開發地表鋪面溫度監測SketchUp
外文關鍵詞:Low impact developmentsurface temperaturemonitoringSketchUp
相關次數:
  • 被引用被引用:2
  • 點閱點閱:245
  • 評分評分:
  • 下載下載:42
  • 收藏至我的研究室書目清單書目收藏:0
世界各國致力因應氣候變遷,除減緩溫室氣體排放,當氣候變遷帶來災害時,維持都市的「容受力」及「回復力」,即為氣候變遷調適。行政院環境保護署訂定「國家氣候變遷調適政策綱領」,希望降低脆弱度並強化韌性,以確保國家及環境能永續發展,落實氣候變遷調適之能力建構,打造減緩溫度變異的微氣候空間。
本研究以區域型校園為重點場域,分析氣候變遷及調適,探討低衝擊開發(Low Impact Development,[LID])應用於微尺度的校園環境。許多以LID 為研究內容的文獻都以水文影響為主軸,少有針對溫度之研究,入滲及保水的低衝擊開發設施能夠涵養土壤水分,晴天時利用蒸發作用帶走熱能,達到改善區域微氣候,本研究使用實際監測數據評估低衝擊開發對於之表面溫度影響。
雨水花園為全年平均溫度最低之設施,全年溫差可控制於 10°C 以內,其中以雨水花園B 的降溫成效為最佳,與雨水花園A 溫差可達3.2°C,雨水花園A、B 溫度差異受植栽生長狀況及建築物陰影所影響。有效降雨事件分析發現低衝擊開發設施降雨後的溫度皆能大幅降低,冬季降雨事件中雨水花園B 降溫成效可達到8.2°C,雨水花園A 在春季短延時降雨中也達到5.5°C 的降溫成效。雨水花園於夏季6 月份時日溫差可保持在3°C 以內,7 月盛夏時對比鋪面設施日溫差10°C 以上,雨水花園仍可維持在8°C 以內的日溫差變化,顯示雨水花園在長時間無降雨事件中皆能達到良好的降溫效果,且有較佳的溫度控制效果,不會使區域溫度快速升降。分析雨水花園與大氣溫度之間溫度變化,雨水花園在春、夏季都能有3.4°C 以上降溫成效,且雨水花園A、B之間2°C 的差距,為雨水花園A 的植栽生長不良且土壤裸露部分多,顯示雨水花園建置後維護管理的重要性。研究區域經LID 設施導入,原先做為暴雨管理應用之外,也能達到區域降溫之功效,此降溫數據可做為未來臺北市建置LID 設施之參考。
Countries around the world are committed to responding to climate change, in addition to mitigating greenhouse gas emissions, when climate change brings disasters, maintaining the "resilience" and "resilience" of cities is climate change adaptation. The Environmental Protection Agency of the Executive Yuan formulated the "National Climate Change Adaptation Policy Program", hoping to reduce vulnerability and strengthen resilience to ensure the sustainable development of the country and the environment, implement the capacity building for climate change adaptation, and create a microclimate space that reduces temperature variability .
This research focuses on regional campuses, analyzes climate change and adjustment, and explores the application of Low Impact Development ([LID]) to the micro-scale campus environment. Many literatures with LID as the research content focus on hydrological influences. Few researches on temperature. Low-impact development facilities for infiltration and water retention can conserve soil moisture and use evaporation to take away heat energy during sunny days to improve the regional microclimate. , This study uses actual monitoring data to evaluate the impact of low-impact development on the surface temperature.
The rain garden is the facility with the lowest average temperature throughout the year. The annual temperature difference can be controlled within 10°C. Among them, the rain garden B has the best cooling effect, and the temperature difference with the rain garden A can reach 3.2°C. The rain garden A, B The temperature difference is affected by the growth status of the plants and the shadow of the buildings. The analysis of effective rainfall events found that the temperature of low-impact development facilities can be significantly reduced after rainfall. In winter rainfall events, the cooling effect of Rain garden B can reach 8.2°C, and Rain garden A can also reach 5.5°C in the short-delayed spring rainfall. . In the summer of June, the rain garden can keep the daily temperature difference within 3°C. In the mid-summer of July, the daily temperature difference of the paving facilities is more than 10°C. The rain garden can still maintain the daily temperature difference within 8°C, indicating that the rain garden is in It can achieve a good cooling effect in a long time without rainfall, and has a better temperature control effect, which will not cause the regional temperature to rise and fall rapidly. Analyzing the temperature change between the rain garden and the atmospheric temperature, the rain garden can have a cooling effect of 3.4°C or more in spring and summer, and the 2°C gap between the rain garden A and B is due to the poor growth of the rain garden A. And there are many exposed parts of the soil, showing the importance of maintenance and management of the rain garden after it is built. The research area was introduced by LID facilities. In addition to being originally used as a rainstorm management application, it can also achieve the effect of regional cooling. This cooling data can be used as a reference for future LID facilities in Taipei City.
摘 要 i
ABSTRACT iii
誌 謝 vi
目 錄 vii
表目錄 ix
圖目錄 x
第一章 緒論 1
1.1研究背景與動機 1
1.2研究目的 2
1.3研究流程 3
第二章 文獻回顧 4
2.1氣候變遷與調適 4
2.1.1全球氣候變遷 4
2.1.2國際因應策略 8
2.1.3臺灣氣候變遷調適 13
2.2低衝擊開發 16
2.2.1低衝擊開發緣起與概念 16
2.2.2低衝擊開發設施 18
2.2.3低衝擊開發設施效益 25
2.2.4溫度相關之研究 27
2.3三維電腦圖形軟體 30
第三章 研究方法 32
3.1研究區域概述 32
3.1.1研究區位背景介紹 32
3.1.2北投國小概述 37
3.1.3北投國小低衝擊開發設施 38
3.2監測計畫 40
3.2.1監測系統建置 40
3.2.2監測點位介紹 43
3.3 3D建模 49
第四章 結果與討論 51
4.1溫度監測數據 51
4.1.1全年溫度變化 52
4.1.2每日中午12時 57
4.1.3有效降雨 61
4.1.4長時間無降雨 68
4.2溫度差異比較 77
4.2.1設施特性 77
4.2.2日照角度 80
4.3氣候變遷調適能力 89
第五章 結論與建議 93
5.1結論 93
5.2建議 94
參考文獻 95
附錄一 每日中午12時溫度變化圖 100
附錄二 有效降雨 105
附錄三 長時間無降雨 113


1.Alexander, L., “Climate science: Extreme heat rooted in dry soils,” Nature Geoscience, Volume 4, Issue 1, 2010, pp.12-13.
2.Al-Kayssi, A.W., Al-Karaghouli, A.A., Hasson, A.M., and Beker, S.A., “Influence of soil moisture content on soil temperature and heat storage under greenhouse conditions,” Journal of Agricultural Engineering Research, Volume 45, 1990 , pp.241-252.
3.Amani-Beni, M., Zhang, B., Xie, G.-d., Xu, J., “Impact of urban park’s tree, grass and waterbody on microclimate in hot summer days: A case study of Olympic Park in Beijing, China,” Urban Forestry & Urban Greening, Volume 32, 2018, pp.1-6.
4.Bach, P.M., Rauch, W., Mikkelsen, P.S., McCarthy, D.T,. and Deletic, A., “A critical review of integrated urban water modelling – Urban drainage and beyond,” Environmental Modelling & Software, Volume 54, 2014, pp.88-107.
5.Bao, J.-H., “Potentials of meteorological characteristics and synoptic conditions to mitigate urban heat island effects,” Urban Climate, Volume 24, 2018, pp.26-33.
6.Brown, R. R., Keath, N., and Wong, T. H. F., “Urban water management in cities: historical, current and future regimes,” Water Sci Technol. 59 (5) 2009, pp.847–855.
7.Cameron, R.W.F., Blanuša, T., Taylor, J.E., Salisbury, A., Halstead, A.J., Henricot, B., Thompson, K., “The domestic garden – Its contribution to urban green infrastructure,” Urban Forestry & Urban Greening, Volume 11, Issue 2, 2012, pp.129-137.
8.Chan, F.K.S., Griffiths, J.A., Higgitt, D., Xu, S., Zhu, F., Tang, Y.-T., ..., Thorne, C.R., “Sponge City in China—A breakthrough of planning and flood risk management in the urban context,” Land Use Policy, Volume 76, 2018, pp.772-778.
9.Cook, J., Oreskes, N., Doran, P.T., Anderegg, W.R.L., Verheggen, B., Maibach, E.W., Carlton, J.S., Lewandowsky, S,. Skuce, A.G., Green, S.A., Nuccitelli, D., Jacobs, P., Richardson, M., Winkler, B., Painting, R., Rice, K., “Consensus on consensus: a synthesis of consensus estimates on human-caused global warmin,” Environmental Research Letters, Volume 11, 2016, Number 4.
10.Degirmenci, K., Desouza, K.C., Fieuw, W., Watson, R.T., Yigitcanlar, T., ”Understanding policy and technology responses in mitigating urban heat islands: A literature review and directions for future research,” Sustainable Cities and Society, Volume 70, 2020, Article 102873,.
11.Gaffney .O,. and Steffen. W, “The Anthropocene equation,” Sage jourals, Volume: 4 issue: 1, 2017, pp.53-61.
12.Geronimo, F.K.F., Maniquiz-Redillas, M.C. , Kim, L.H., “Treatment of parking lot runoff by a tree box filter,” Desalination and Water Treatment, Volume 51, 2013, Issue 19-21, pp.4044-4049.
13.GISTEMP Team, 2021:GISS Surface Temperature Analysis (GISTEMP), version 4. NASA Goddard Institute for Space Studies.
14.Gorsevski, V., Taha, H., Quattrochi, D., Luvall, J., “Air Pollution Prevention Through Urban Heat Island Mitigation: An Update on the Urban Heat Island Pilot Project,” 1998.
15.Gratani L, Catoni R, Tarquini F, “Carbon Dioxide Sequestration Capability of the Botanical Garden of Rome: Environmental and Economic Benefits,” American Journal of Plant Sciences, Vol.10 No.8, 2019.
16.Hou, J., Mao, H., Li, J., Sun, S., ”Spatial simulation of the ecological processes of stormwater for sponge cities,” Journal of Environmental Management, Volume 232, 2019, Pages 574-583.
17.IPCC, 2007: Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, Pachauri, R.K and Reisinger, A. (eds.)]. IPCC, Geneva, Switzerland, 104 pp.
18.IPCC, 2014: Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva, Switzerland, 151 pp.
19.IPCC, 2018: Summary for Policymakers. In: Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty [Masson-Delmotte, V., P. Zhai, H.-O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J.B.R. Matthews, Y. Chen, X. Zhou, M.I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, and T. Waterfield (eds.)]. World Meteorological Organization, Geneva, Switzerland, 32 pp.
20.Kerr ,RA., “Climate change: Global warming is changing the world,” Science, 13(4), 2007, pp.188-190.
21.Koriesh, E. M., S Islam, H. A.,Climate Change Impacts on Agriculture and Food Security in Egypt, Berlin: Springer, pp.345-419.2020
22.Kuang, W, “Seasonal Variation in Air Temperature and Relative Humidity on Building Areas and in Green Spaces in Beijing, China,” Chinese Geographical Science, volume 30, 2020, pp.75–88.
23.Li, X., and. Zhou, W., “Optimizing urban greenspace spatial pattern to mitigate urban heat island effects: extending understanding from local to the city scale,” Urban For. Urban Green, Volume 61, 2019, pp.255-263
24.Lin, X., Ren, J,.Xu, J., Zheng, T,. Cheng, W,. Qiao, J., Huang, J,. and Li, G., “Prediction of Life Cycle Carbon Emissions of Sponge City Projects: A Case Study in Shanghai, China,” Sustainability in Transportation and the Built Environment.10(11), 2018, pp.3978.
25.Lozano-Parra,J., Pulido, M., Lozano-Fondón, C., Schnabel, S., “How do Soil Moisture and Vegetation Covers Influence Soil Temperature in Drylands of Mediterranean Regions,” Water, 10(12), 2018, pp.1747.
26.Martins, T.A.L., Adolphe, L., Bonhomme, M., Bonneaud, F., Faraut, S., Ginestet, S., et al,” Impact of Urban Cool Island measures on outdoor climate and pedestrian comfort: Simulations for a new district of Toulouse, France,” Sustainable Cities and Society, Volume 26, 2016, pp.9-26.
27.Massachusetts clean water toolkit.(https://megamanual.geosyntec.com/npsmanual/bioretentionareasandraingardens.aspx)
28.Mohajerani, A., Bakaric, J., and Jeffrey-Bailey, T. “The urban heat island effect, its causes, and mitigation, with reference to the thermal properties of asphalt concrete,” J Environ Manage, 2017, pp.522-538.
29.Nguyen, T.T., Ngo, H.H., Guo, W.,. Wang, X.C., Ren, N., Li, G., Ding, J., and Liang, H., “Implementation of a specific urban water management - Sponge City,” Science of The Total Environment, Volume 652, 2019, pp.147-162.
30.Santamouris, M., “Using cool pavements as a mitigation strategy to fight urban heat island—A review of the actual developments,” Renewable and Sustainable Energy Reviews, vol. 26(C), 2013, pp.224-240.
31.Scholz, M., and Grabowiecki, P., “Review of permeable pavement systems,” Building and Environment, Volume 42, Issue 11, 2007, pp.3830-3836.
32.Shafique, M., Kim, R., and. Rafiq, M., “Green roof benefits, opportunities and challenges – A review,” Renewable and Sustainable Energy Reviews, Volume 90, 2018, pp.757-773.
33.United Nations Environment Programme, Emissions Gap Report, 2020, Nairobi.
34.Wang, H., Mei, C., Liu, J. et al., ”A new strategy for integrated urban water management in China: Sponge city” Science China Technological Sciences, Volume 61, 2018, pp.317–329.
35.World Bank Group. 2011.Guide to Climate Change Adaptation in Cities. World Bank, Washington, DC. © World Bank. https://openknowledge.worldbank.org/handle/10986/27396 License: CC BY 3.0 IGO.”
36.Xu, H., Badawi, R., Fan, X., Ren, J., Zhang, Z.,” Research for 3D visualization of Digital City based on SketchUp and ArcGIS,” International Symposium on Spatial Analysis, Spatial-Temporal Data Modeling, and Data Mining, Volume 7492, 2009.
37.Yang. L., & Li. Y, “Low-carbon City in China,” Sustainable Cities and Society, Volume 9, 2013, Pages 62-66.
38.Yoo, C., Ku, J.M., Jun, C., and Zhu, J.H, “Simulation of infiltration facilities using the SEEP/W model and quantification of flood runoff reduction effect by the decrease in CN,” Water Sci Technol, 74(1), 2016, pp.118-29.
39.Zemp, D., Schleussner, CF., Barbosa, H. et al., “Self-amplified Amazon forest loss due to vegetation-atmosphere feedbacks,” Nature Communications, volume 8, 2017, Article number: 14681.
40.內政部營建署,水環境低衝擊開發設施操作手冊,臺北:內政部營建署,2015,第1-166頁。
41.周佳,陳維婷,羅敏輝,李明安,許晃雄,洪志誠,鄒治華,盧孟明,洪致文,陳正達,鄭兆尊,臺灣氣候變遷科學報告 2017-物理現象與機制,臺北:國家災害防救科技中心,2017,第5-54頁。
42.林鎮洋,「低衝擊開發」,土木水利,43(5),2016,第4頁。
43.林憲德,「綠建築評估體系之雨水貯留滲透對策」,水資源管理季刊,第四127卷,第二期,2002,20-25頁。
44.翁心芸,透水鋪面對都市熱島效應影響之評估 -以國立臺北科技大學為例,碩士論文,國立臺北科技大學土木工程系土木與防災碩士班,臺北,2019。
45.翁銘宏,都市熱環境與表面溫度關係之研究-以臺北市為例,碩士論文,中國文化大學環境設計學院景觀學系,臺北,2010。
46.袁迪祺,入滲型LID設施保水成效之比較分析,碩士論文,國立臺北科技大學土木工程系土木與防災所,臺北,2020。
47.吳思穎,改質及鹼激花崗岩礦泥營建材料之物理性質,碩士論文,國立成功大學土木工程研究所,臺南,2019。
48.顏廷有,石材污泥燒製輕質骨材之研究,碩士論文,國立中興大學土木工程學系,臺中,2004。
49.楊才松,花崗岩浸泡熱水之後,滲透率、孔隙率與裂隙發展的關聯性,碩士論文,國立中央大學應用地質研究所,桃園,2006。
50.吳宗騂,透水性鋪面溫度行為模式之初步探討,碩士論文,逢甲大學交通工程與管理學系,臺中,2007。
51.游景雲、邱昱嘉、陳葦庭、徐佳鴻、王順加,「運用低衝擊開發於都市治水策略之探討」,土木水利,43(5),2016,第19-31頁
52.趙彩君、劉曉明,「城市綠地系統對於低碳城市的作用」,中國園林,第6期,2010,第23-26頁。
53.樊超、孫學良,「建築小區的海綿化改造效益核算-以固原市玫瑰苑小區為例」,環境工程技術學報,2020,第316-322頁。
54.潘宗毅、廖啟勳、張高華、張倉榮,熱島效應對臺北都會區水文型態之影響評估,農業工程學報,61(4),2015,第23-45頁。
55.環境省,気候変動の影響への適応計画,日本:環境省,2015,第70-74頁。
56.環境省,気候変動適応計画,日本:環境省,2018,第79-81頁。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊