跳到主要內容

臺灣博碩士論文加值系統

(3.236.23.193) 您好!臺灣時間:2021/07/24 12:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:何宣諭
研究生(外文):HO, HSUAN-YU
論文名稱:平板薄膜除濕器之熱質傳實驗與性能分析
論文名稱(外文):Experimental Measurement and Performance Analysis on Heat and Mass Transfer of a Planar Membrane Dehumidifier
指導教授:顏維謀顏維謀引用關係
指導教授(外文):YAN, WEI-MON
口試委員:張志彰陳震宇謝瑞青羅安成顏維謀
口試委員(外文):CHANG, CHIH-CHANGCHEN, CHEN-YUHSIEH, JUI-CHINGRUO, AN-CHENGYAN, WEI-MON
口試日期:2021-06-05
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:能源與冷凍空調工程系
學門:工程學門
學類:其他工程學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:116
中文關鍵詞:薄膜除濕器熱質傳計算流體力學實驗量測除濕性能蛇道分析
外文關鍵詞:Membrane DehumidifierHeat and Mass TransferCFDExperimental MeasurementDehumidification PerformanceSerpentine Channel Analysis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:19
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在本論文中主要以數值分析和實驗探討薄膜除濕器的熱質傳特性,研究內容主要有四個部份。第一部份為設計三種不同蛇數的新型流道分別為三蛇、六蛇、九蛇,並利用數值模擬分析三種流道的除濕性能指標。第二部份為比較三種不同蛇數流道之除濕性能,以除濕性能最佳的九蛇流道加工成實際模組,進行除濕實驗並和數值分析做驗證。第三部份為利用實驗驗證完成之數值模型,進行操作條件的參數化分析包含:入口溫度、相對濕度和流量。以上結果表明,九蛇流道有良好的溫度表現、較低的壓力損失,以及最好的性能指數,在數值分析與實驗對照中,數值分析的各項除濕性能與實驗結果相當符合,最後在除濕器的操作條件參數化分析中顯示,在低濕側流量、高濕側空氣溫度、高濕側入口空氣相對濕度、低乾側入口空氣溫度及低乾側入口相對濕度狀態下,會有較好的除濕性能。
In this thesis, numerical analysis and experimental measurement are mainly used to explore the heat and mass transfer characteristics of membrane dehumidifier. The thesis includes four parts. The first is to design three novel channels with different serpentine numbers, respectively, three serpentines, six serpentines, and nine serpentines, and use numerical simulation to analyze the dehumidification performance indexes for the three flow channels. The second parts is to compare the dehumidification performance of three different serpentine channels. The nine serpentines with the best dehumidification performance is processed into the actual module, and the dehumidification experiment is performed and verified with numerical analysis. The third part is the numerical model verified by experiments, and the parametric analysis of operating conditions includes: inlet temperature, relative humidity and flow rate. The above results show that the nine serpentine flow channel has good temperature performance, lower pressure loss, and the best performance index. For the comparison of the numerical analysis and experimental measurement, the dehumidification performance of the numerical analysis is quite consistent with the experimental results. Finally, in the parameterized analysis of the dehumidifier operating condition show that the membrane dehumidifier would have better dehumidification performance under the conditions of lower flow rate at wet side, higher inlet temperature at wet side, higher inlet relative humidity at wet side, lower inlet temperature at dry side and lower inlet relative humidity at dry side.
摘要 i
ABSTRACT ii
致謝 iv
目錄 v
表目錄 viii
圖目錄 ix
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 2
1.2.1 薄膜除濕器技術之研究 2
1.2.2 薄膜物理性質研究 3
1.2.3 除濕器流道幾何及薄膜厚度研究 4
1.2.4 除濕器數值模擬分析研究 6
1.2.5 薄膜性能與除濕器性能分析研究 8
1.3 研究動機與目的 10
第二章 數值分析 11
2.1 理論模型 11
2.1.1 幾何形狀設計 11
2.1.2 模擬假設 14
2.2 對流-擴散方程式的離散方式 15
2.3 壓力-速度的耦合關係 17
2.4 統御方程式 19
2.4.1 流體及多孔介質層 19
2.4.2 固體守恆方程式 20
2.4.3 絕熱邊界條件 21
2.5 除濕器邊界及操作參數 22
第三章 實驗分析 24
3.1 實驗架構 24
3.2 實驗儀器及設備 25
3.3 熱質傳式平板薄膜除濕器 31
3.3.1 平板式除濕器設計 31
3.3.2 平板式除濕器組裝 34
3.4 熱質傳式平板薄膜除濕實驗 37
3.4.1 除濕性能測試 37
3.4.2 除濕器流道壓力損失量測 39
3.5 除濕器性能指標計算 40
第四章 結果與討論 42
4.1 直通與蛇形流道測試 42
4.1.1 網格獨立測試 42
4.1.2 不同流道數及流道轉彎數之除濕效果 43
4.2 多級平板式除濕器實驗 50
4.2.1 氣密測試 50
4.2.2 除濕實驗再現性量測 51
4.2.3 除濕實驗不確定性分析 55
4.2.4 濕側入口空氣濕度之影響 56
4.2.5 濕側入口空氣溫度之影響 60
4.3 除濕器實驗與數值模擬比對 64
4.3.1 濕側入口空氣濕度之比對 64
4.3.2 濕側入口空氣溫度之比對 67
4.3.3 實驗與數值模擬相對誤差 70
4.4 薄膜除濕器性能參數化分析 71
4.4.1 乾側入口空氣溫度之影響 72
4.4.2 乾側入口空氣濕度之影響 75
4.4.3 濕側入口空氣溫度與流量之影響 78
4.4.4 濕側入口空氣濕度與流量之影響 85
4.4.5 乾側入口空氣濕度與流量之影響 92
4.4.6 乾側入口空氣溫度與流量之影響 99
第五章 結論與建議 106
5.1 結論 106
5.2 建議 108
參考文獻 109
個人著作 113
符號彙編 114

[1]G. Lee, C.W. Roh, B.S. Choi, E. Wang, H.S. Ra, J. Cho, Y.J. Baik, Y.S. Lee, H. Shin, B. Lee, 2019, “Performance estimation of membrane dehumidification based on heat exchanger analogy approaches using ε-NTU model,” Thermal Energy Systems Laboratory, Korea Institute of Energy Research, Daejeon, Korea
[2]J. Kim, D.H. Kim, Y. Kim, H.S. Kim, Y.S Seo, H.G. Park, S.H. Yoon, 2019, “Analytic approach to analyzing the performance of membrane dehumidification by pervaporation,” Journal of Mechanical Science and Technology, vol. 33, pp. 2979-2984.
[3]H. Li, R. Qi, L.Z. Zhang, 2020, “Analysis and optimization of material physical characteristics for electrolytic air dehumidifier with a PEM,” Applied Thermal Engineering, vol. 169, Article 114929.
[4]S.M. Huang, W.Z. Yuan, M. Yang, 2019, “Advances in heat and mass transfer in the membrane-based dehumidifiers and liquid desiccant air dehumidification systems,” International Journal of Heat and Mass Transfer, vol. 139, pp. 881-906.
[5]X. Liu, M. Qu, X. Liu, L. Wang, 2019 “Membrane-based liquid desiccant air dehumidification: A comprehensive review on materials, components, systems and performances,” Renewable and Sustainable Energy Reviews, vol. 110, pp. 446–466.
[6]H. Yu, Y. Zhang, X. Sun, J. Liu, H. Zhang, 2014, “Improving the antifouling property of polyethersulfone ultrafiltration membrane by incorporation of dextran grafted halloysite nanotubes,” Chemical Engineering Journal, vol. 237, pp. 322-328.
[7]Q. Duan, H. Wang, J. Benziger, 2012, “Transport of liquid water through Nafion membranes,” Journal of Membrane Science, vol. 392-393, pp. 88-94.
[8]M. Khandelwal and M.M. Mench, 2006, “Direct measurement of through-plane thermal conductivity and contact resistance in fuel cell materials,” Journal of Power Sources, vol. 161, pp.1106-1115.
[9]B.O. Loranca, 2012, “Thermal modeling and analysis of polymer electrolyte membrane
open cathode fuel cells,” Masters Theses, Missouri University of Science and Technology.
[10]W.J. Jeon, W.S. Kim, Y.D. Kim, 2019, “Integrated theoretical model for performance evaluation of flat-sheet membrane-based absorptive dehumidification module using lithium chloride-water solution,” Separation and Purification Technology, vol. 229, Article 115794.
[11]S. Sabek, F. Tiss, R. Chouikh, A. Guizani, 2018, “Numerical investigation of heat and mass transfer in partially blocked membrane based heat exchanger: Effects of obstacles forms,” Applied Thermal Engineering, vol. 130, pp. 211-220.
[12]C.Y. Chen, J.H. Su, H.M. Ali, W.M. Yan, M. Amani, 2020, “Effect of channel structure on the performance of a planar membrane humidifier for proton exchange membrane fuel cell,” International Journal of Heat and Mass Transfer, vol. 163, Article 120522.
[13]W.M. Yan, C.H. Li, C.Y. Lee, S. Rashidi, W.K. Li, 2020, “Numerical study on heat and mass transfer performance of the planar membrane-based humidifier for PEMFC,” International Journal of Heat and Mass Transfer, vol. 157, Article 119918.
[14]M.A. Izquierdo-Gil, V.M. Barraga´n, J.P.G. Villaluenga, M.P. Godino, 2012, “Water uptake and salt transport through Nafion cation-exchange membranes with different thicknesses,” ChemicalEngineeringScience, vol. 72, pp. 1-9.
[15]O. Almahmoud, H.S. Kim, Y.S. Seo, S.H. Yoon, T.Y. Choi, 2019, “An optimization of water transport through polyurethane silica-nanocomposite membrane,” Heat and Mass Transfer, vol. 55, pp. 2703-2711.
[16]A. Fakharnezhad, S. Masoumi, P. Keshavarz, 2019, “Analysis of design parameter effects on gas dehumidification in hollow fiber membrane contactor: Theoretical and experimental study,” Separation and Purification Technology, vol. 226, pp. 22-30.
[17]N. Zhang, S.Y. Yin, H.H. Yang, 2019, “Transient performance of coupled heat and mass transfer in cross-flow hollow fiber membrane module for air dehumidification,” International Journal of Refrigeration, vol. 108, pp. 190-199.
[18]Z. Li, H. Zhao, J. Han, X. Wang, J. Zhu, 2020, “Performance optimization of the dehumidifier with parallel-plate membrane modules,” Energy, vol. 194, Article 116829.
[19]A.M. Jafarpour, F. Fazelpour, S.A. Mousavi, 2020, “Performance optimization of polymeric porous membrane‑based liquid desiccant air dehumidifier used in air conditioning system,” International Journal of Energy and Environmental Engineering, vol. 11, pp. 55-71.
[20]R. AL-Waked, M.S. Nasif, G. Morrison, M. Behnia, 2015, “CFD simulation of air to air enthalpy heat exchanger: Variable membrane moisture resistance,” Applied Thermal Engineering, vol. 84, pp. 301-309.
[21]R. AL-Waked, M.S. Nasif, G. Morrison, M. Behnia, 2013, “CFD simulation of air to air enthalpy heat exchanger,” Energy Conversion and Management, vol. 74, pp. 377-385.
[22]M. Nasif, R. AL-Waked, G. Morrison, M. Behnia, 2010, “Membrane heat exchanger in HVAC energy recovery systems, systems energy analysis,” Energy and Buildings, vol. 42, pp. 1833-1840.
[23]M. Nasif, R. AL-Waked, M. Behnia, G. Morrison, 2012, “Modeling of Air to Air Enthalpy Heat Exchanger,” Heat Transfer Engineering, vol. 33, pp. 1010-1023.
[24]M. Jafarizave, A. Khaleghi, M. Rezakazemi, 2019, “Development of CFD model for membrane-basedenergy recovery ventilators,” Chemical Engineering Research and Design, vol. 145, pp. 226-234.
[25]C.H. Li, C.C. Chang, W.K. Li, W.M. Yan, 2019, “Physical properties measurement and performance analysis of membranes for a multi-stage planar membrane dehumidifier,” Case Studies in Thermal Engineering, vol. 15, Article 100516.
[26]Y.L. Liu, Y.Y. Wei, Y. Cao, X. Cui, L.W. Jin, L.Y. Zhang, J.C. Su, 2019, “Development of robust energy-efficient membrane dehumidifier for indoor air humidity control,” Earth and Environmental Science, vol. 268, Article 012146.
[27]D.E. Claridge, C. Culp, W. Liu, M. Pate, J. Haberl, J. Bynum, 2019, “A new approach for drying moist air: The ideal Claridge-Culp-Liu dehumidification process with membrane separation, vacuum compression and sub-atmospheric condensation,” International Journal of Refrigeration, vol. 101, pp. 211-217.
[28]B. Zhao, L.Y. Wang, T.S. Chung, 2019, “Enhanced membrane systems to harvest water and provide comfortable air via dehumidification & moisture condensation,” Separation and Purification Technology, vol. 220, pp. 136-144.
[29]Z.X. Li and L.Z. Zhang, 2014, “Flow maldistribution and performance deteriorations in a counter flow hollow fiber membrane module for air humidification/dehumidification,” International Journal of Heat and Mass Transfer, vol. 74, pp. 421-430.
[30]T.D. Bui, F. Chen, A. Nida, K.J. Chua, K.C. Ng, 2015, “Experimental and modeling analysis of membrane-based air dehumidification,” Separation and Purification Technology, vol. 144, pp. 114-122.
[31]C.H. Li, C.Y. Chen, T.F. Yang, W.K. Li, W.M. Yan, 2020, “Experimental study on heat and mass transfer of a multi-stage planar dehumidifier,” International Journal of Heat and Mass Transfer, vol. 148, Article 119104.
[32]Joint Committee for Guides in Metrology(JCGM), 2008, “Evaluation of measurement data — Guide to the expression of uncertainty in measurement,” JCGM 100 series, France.

電子全文 電子全文(網際網路公開日期:20260609)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top