|
1.Costa, I.; Teodoro, M.; Zaghete, M.; Chiquito, A. J. J. o. A. P., Influence of the metastable state (V0++) on the electronic properties of SnO2 nanowires under the influence of light. 2020, 128 (11), 115702. 2.Kim, S. S.; Na, H. G.; Kim, H. W.; Kulish, V.; Wu, P. J. S. r., Promotion of acceptor formation in SnO2 nanowires by e-beam bombardment and impacts to sensor application. 2015, 5 (1), 1-12. 3.Bonu, V.; Das, A.; Amirthapandian, S.; Dhara, S.; Tyagi, A. K. J. P. C. C. P., Photoluminescence of oxygen vacancies and hydroxyl group surface functionalized SnO 2 nanoparticles. 2015, 17 (15), 9794-9801. 4.Zhong, Y.; Li, W.; Zhao, X.; Jiang, X.; Lin, S.; Zhen, Z.; Chen, W.; Xie, D.; Zhu, H. J. A. a. m.; interfaces, High-response room-temperature NO2 sensor and ultrafast humidity sensor based on SnO2 with rich oxygen vacancy. 2019, 11 (14), 13441-13449. 5.Wang, W.-C.; Lai, C.-Y.; Lin, Y.-T.; Yua, T.-H.; Chen, Z.-Y.; Wu, W.-W.; Yeh, P.-H. J. R. a., Surface defect engineering: gigantic enhancement in the optical and gas detection ability of metal oxide sensor. 2016, 6 (69), 65146-65151. 6.Gaidi, M.; Chenevier, B.; Labeau, M. J. S.; Chemical, A. B., Electrical properties evolution under reducing gaseous mixtures (H2, H2S, CO) of SnO2 thin films doped with Pd/Pt aggregates and used as polluting gas sensors. 2000, 62 (1), 43-48. 7.Ma, N.; Suematsu, K.; Yuasa, M.; Kida, T.; Shimanoe, K. J. A. a. m.; interfaces, Effect of water vapor on Pd-loaded SnO2 nanoparticles gas sensor. 2015, 7 (10), 5863-5869. 8.Ma, N.; Suematsu, K.; Yuasa, M.; Shimanoe, K. J. A. a. m.; interfaces, Pd size effect on the gas sensing properties of Pd-loaded SnO2 in humid atmosphere. 2015, 7 (28), 15618-15625. 9.Bernand-Mantel, A.; Seneor, P.; Bouzehouane, K.; Fusil, S.; Deranlot, C.; Petroff, F.; Fert, A. J. N. P., Anisotropic magneto-Coulomb effects and magnetic single-electron-transistor action in a single nanoparticle. 2009, 5 (12), 920-924. 10.Tiwari, J. N.; Tiwari, R. N.; Kim, K. S. J. P. i. M. S., Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices. 2012, 57 (4), 724-803. 11.Yang, D. J.; Kamienchick, I.; Youn, D. Y.; Rothschild, A.; Kim, I. D. J. A. F. M., Ultrasensitive and highly selective gas sensors based on electrospun SnO2 nanofibers modified by Pd loading. 2010, 20 (24), 4258-4264. 12.Wang, M.; Ioccozia, J.; Sun, L.; Lin, C.; Lin, Z. J. E.; Science, E., Inorganic-modified semiconductor TiO2 nanotube arrays for photocatalysis. 2014, 7 (7), 2182-2202. 13.Depas, M.; Nigam, T.; Heyns, M. M. J. I. T. o. E. D., Soft breakdown of ultra-thin gate oxide layers. 1996, 43 (9), 1499-1504. 14.Li, L.; Richter, C.; Paetel, S.; Kopp, T.; Mannhart, J.; Ashoori, R. J. S., Very large capacitance enhancement in a two-dimensional electron system. 2011, 332 (6031), 825-828. 15.Mendoza‐Sánchez, B.; Gogotsi, Y. J. A. M., Synthesis of two‐dimensional materials for capacitive energy storage. 2016, 28 (29), 6104-6135. 16.Iijima, S. J. n., Helical microtubules of graphitic carbon. 1991, 354 (6348), 56-58. 17.Morales, A. M.; Lieber, C. M. J. S., A laser ablation method for the synthesis of crystalline semiconductor nanowires. 1998, 279 (5348), 208-211. 18.Pan, Z. W.; Wang, Z. L. J. S., Nanobelts of semiconducting oxides. 2001, 291 (5510), 1947-1949. 19.Yang, P.; Yan, H.; Mao, S.; Russo, R.; Johnson, J.; Saykally, R.; Morris, N.; Pham, J.; He, R.; Choi, H. J. J. A. f. m., Controlled growth of ZnO nanowires and their optical properties. 2002, 12 (5), 323-331. 20.Sun, M.; Zhao, Q.; Du, C.; Liu, Z. J. R. A., Enhanced visible light photocatalytic activity in BiOCl/SnO2: heterojunction of two wide band-gap semiconductors. 2015, 5 (29), 22740-22752. 21.Gubbala, S.; Russell, H. B.; Shah, H.; Deb, B.; Jasinski, J.; Rypkema, H.; Sunkara, M. K. J. E.; Science, E., Surface properties of SnO2 nanowires for enhanced performance with dye-sensitized solar cells. 2009, 2 (12), 1302-1309. 22.Petritz, R. L. J. P. R., Theory of photoconductivity in semiconductor films. 1956, 104 (6), 1508. 23.Yuliarto, B.; Gumilar, G.; Septiani, N. L. W. J. A. i. M. S.; Engineering, SnO2 nanostructure as pollutant gas sensors: synthesis, sensing performances, and mechanism. 2015, 2015. 24.Hoang, S.; Gao, P. X. J. A. E. M., Nanowire array structures for photocatalytic energy conversion and utilization: a review of design concepts, assembly and integration, and function enabling. 2016, 6 (23), 1600683. 25.Gong, J.; Wang, X.; Fan, X.; Dai, R.; Wang, Z.; Zhang, Z.; Ding, Z. J. O. M. E., Temperature dependent optical properties of SnO2 film study by ellipsometry. 2019, 9 (9), 3691-3699. 26.AK, P.; Rahmawati, T.; Kusumawardani, C. J. R. J. o. C.; Environment_Vol, Tin (IV) oxide-supported cobalt oxides catalysts for methylene blue photodegradation. 2017, 21, 12. 27.Soltan, W. B.; Nasri, S.; Lassoued, M. S.; Ammar, S. J. J. o. M. S. M. i. E., Structural, optical properties, impedance spectroscopy studies and electrical conductivity of SnO2 nanoparticles prepared by polyol method. 2017, 28 (9), 6649-6656. 28.Zhu, H.; Li, Q.; Ren, Y.; Gao, Q.; Chen, J.; Wang, N.; Deng, J.; Xing, X. J. S., A new insight into cross‐sensitivity to humidity of SnO2 sensor. 2018, 14 (13), 1703974. 29.Sear, R. P. J. J. o. P. C. M., Nucleation: theory and applications to protein solutions and colloidal suspensions. 2007, 19 (3), 033101. 30.Mer, V. K. L. J. I.; Chemistry, E., Nucleation in phase transitions. 1952, 44 (6), 1270-1277. 31.Thanh, N. T.; Maclean, N.; Mahiddine, S. J. C. r., Mechanisms of nucleation and growth of nanoparticles in solution. 2014, 114 (15), 7610-7630. 32.Hu, J.; Bando, Y.; Liu, Q.; Golberg, D. J. A. F. M., Laser‐ablation growth and optical properties of wide and long single‐crystal SnO2 ribbons. 2003, 13 (6), 493-496. 33.Budak, S.; Miao, G.; Ozdemir, M.; Chetry, K.; Gupta, A. J. J. o. c. g., Growth and characterization of single crystalline tin oxide (SnO2) nanowires. 2006, 291 (2), 405-411. 34.Kuang, Q.; Lao, C.; Wang, Z. L.; Xie, Z.; Zheng, L. J. J. o. t. A. C. S., High-sensitivity humidity sensor based on a single SnO2 nanowire. 2007, 129 (19), 6070-6071. 35.Liu, L.; Shu, S.; Zhang, G.; Liu, S. J. A. A. N. M., Highly selective sensing of C2H6O, HCHO, and C3H6O gases by controlling SnO2 nanoparticle vacancies. 2018, 1 (1), 31-37. 36.Zhao, Q.; Ju, D.; Deng, X.; Huang, J.; Cao, B.; Xu, X. J. S. r., Morphology-modulation of SnO2 hierarchical architectures by Zn doping for glycol gas sensing and photocatalytic applications. 2015, 5 (1), 1-9. 37.Hosono, H. J. J. o. n.-c. s., Ionic amorphous oxide semiconductors: Material design, carrier transport, and device application. 2006, 352 (9-20), 851-858. 38.Hu, Y.; Zhou, J.; Yeh, P. H.; Li, Z.; Wei, T. Y.; Wang, Z. L., Supersensitive, fast‐response nanowire sensors by using Schottky contacts. Wiley Online Library: 2010. 39.Yang, Y.; Wang, Y.; Yin, S. J. A. S. S., Oxygen vacancies confined in SnO2 nanoparticles for desirable electronic structure and enhanced visible light photocatalytic activity. 2017, 420, 399-406. 40.Li, W.; Ma, S.; Li, Y.; Yang, G.; Mao, Y.; Luo, J.; Gengzang, D.; Xu, X.; Yan, S. J. S.; Chemical, A. B., Enhanced ethanol sensing performance of hollow ZnO–SnO2 core–shell nanofibers. 2015, 211, 392-402. 41.Sadeghzadeh-Attar, A.; Bafandeh, M. J. C., The effect of annealing temperature on the structure and optical properties of well-aligned 1D SnO2 nanowires synthesized using template-assisted deposition. 2018, 20 (4), 460-469. 42.Jia, T.; Chen, J.; Deng, Z.; Fu, F.; Zhao, J.; Wang, X.; Long, F. J. M. S.; B, E., Facile synthesis of Zn-doped SnO2 dendrite-built hierarchical cube-like architectures and their application in lithium storage. 2014, 189, 32-37. 43.Ansell, R.; Dickinson, T.; Povey, A.; Sherwood, P. J. J. o. E. S.; Phenomena, R., Quantitative use of the angular variation technique in studies of tin by X-ray photoelectron spectroscopy. 1977, 11 (3), 301-313. 44.Yang, J. J.; Pickett, M. D.; Li, X.; Ohlberg, D. A.; Stewart, D. R.; Williams, R. S. J. N. n., Memristive switching mechanism for metal/oxide/metal nanodevices. 2008, 3 (7), 429-433. 45.Chong, S.; Kadowaki, K.; Xia, J.; Idriss, H. J. A. p. l., Interesting magnetic behavior from reduced titanium dioxide nanobelts. 2008, 92 (23), 232502. 46.Swallow, J. E.; Williamson, B. A.; Whittles, T. J.; Birkett, M.; Featherstone, T. J.; Peng, N.; Abbott, A.; Farnworth, M.; Cheetham, K. J.; Warren, P. J. A. F. M., Self‐compensation in transparent conducting F‐doped SnO2. 2018, 28 (4), 1701900. 47.Shao, M.; Liu, J.; Ding, W.; Wang, J.; Dong, F.; Zhang, J. J. J. o. M. C. C., Oxygen vacancy engineering of self-doped SnO2− x nanocrystals for ultrasensitive NO2 detection. 2020, 8 (2), 487-494. 48.Choi, S.-W.; Katoch, A.; Kim, J.-H.; Kim, S. S. J. A. a. m.; interfaces, Prominent reducing gas-sensing performances of n-SnO2 nanowires by local creation of p–n heterojunctions by functionalization with p-Cr2O3 nanoparticles. 2014, 6 (20), 17723-17729. 49.Cultrera, A.; Boarino, L.; Amato, G.; Lamberti, C. J. J. o. P. D. A. P., Band-gap states in unfilled mesoporous nc-TiO2: measurement protocol for electrical characterization. 2013, 47 (1), 015102. 50.Karthik, T.; Hernandez, A.; de la Olvera, M.; Maldonado, A.; Pozos, H. G. J. J. o. M. S. M. i. E., Effect of Au and Ag contacts on the CO sensitivity of SnO2 thick films. 2020, 31 (10), 7481-7489. 51.Gu, F.; Wang, S. F.; Lü, M. K.; Zhou, G. J.; Xu, D.; Yuan, D. R. J. T. J. o. P. C. B., Photoluminescence properties of SnO2 nanoparticles synthesized by sol−gel method. 2004, 108 (24), 8119-8123. 52.Zhang, G.; Liu, M. J. S.; Chemical, A. B., Effect of particle size and dopant on properties of SnO2-based gas sensors. 2000, 69 (1-2), 144-152. 53.Choi, Y.-J.; Hwang, I.-S.; Park, J.-G.; Choi, K. J.; Park, J.-H.; Lee, J.-H. J. N., Novel fabrication of an SnO2 nanowire gas sensor with high sensitivity. 2008, 19 (9), 095508. 54.Lai, C. Y.; Lin, Y. T.; Hsu, H. K.; Wang, D. Y.; Wu, W. W.; Yeh, P. H. J. G. c., Enhancement in the Detection Ability of Metal Oxide Sensors Using Defect‐Rich Polycrystalline Nanofiber Devices. 2020, 4 (11), 2000041. 55.Grossmann, K.; Pavelko, R. G.; Barsan, N.; Weimar, U. J. S.; Chemical, A. B., Interplay of H2, water vapor and oxygenat the surface of SnO2 based gas sensors–An operando investigation utilizing deuterated gases. 2012, 166, 787-793.
|